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Simple Summary: Leaves often turn red during senescence, providing us with a colorful life. Antho-
cyanin accumulation is the main cause of the coloration and its biosynthesis during leaf senescence
is an important biological process, which might contain different mechanisms from other tissues.
It is essential to understand the molecular mechanism of anthocyanin accumulation during leaf
senescence, which would provide new insight into leaf coloration and molecular breeding for more
colorful plants in spring or autumn. In this review, we focused on leaf coloration during senescence.
We emphatically discussed several networks linked to genetic, hormonal, environmental, and nu-
tritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to
provide a regulatory model for leaf coloration and to put forward some prospects for future studies.

Abstract: Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color
change. In some species, anthocyanins are accumulated during leaf senescence, which are vital
indicators for both ornamental and commercial value. Therefore, it is essential to understand the
molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide
new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin
accumulation is a surprisingly complex process, and significant advances have been made in the past
decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed
several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating
anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for
leaf coloration and to put forward some prospects for future development.
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1. Introduction

Anthocyanins are water-soluble pigments produced in the cytoplasm of plants and
are widely distributed in plant organs such as fruits and leaves. They impart vibrant colors
to various organs, especially flowers and fruits, aiding in the attraction of seed dispersers.
Anthocyanins serve as secondary metabolites, protecting plants from both biotic and abiotic
stresses [1]. Additionally, they possess the ability to scavenge free radicals and exhibit
antioxidant properties. This capability not only helps living organisms defend against
oxidative damage, but also provides various beneficial health effects for humans [2,3].
Anthocyanins and their derivatives are recognized for their roles in protecting eyesight
and slowing brain aging [2], leading to their widespread inclusion in daily diets. Apart
from their health benefits, there is a growing interest in utilizing anthocyanins to augment
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the aesthetic qualities of plants, thereby elevating their ornamental value. Consequently,
breeding programs now prioritize the creation of anthocyanin-enriched plants.

In this review, the genetic regulation of anthocyanins’ biosynthesis is elaborated, and
the phytohormones and environmental regulation of biosynthesis is discussed subsequently.
By summarizing existing knowledge, we concluded the regulatory network and factors af-
fecting anthocyanin accumulation during leaf senescence. The review can provide valuable
insights for developing strategies for obtaining colored-leaf trees through breeding and
controlled environmental conditions.

2. Anthocyanin and Its Biosynthesis

A comprehensive understanding of anthocyanin is helpful to target regulation of
anthocyanin accumulation in plants. Over the past few decades, a great deal of work has
been performed to reveal the characteristics and synthetic mechanisms of anthocyanin. An-
thocyanins belong to the flavonoids compound with a typical structure that has C6-C3-C6
as the basic skeleton. All the natural anthocyanins exist in the form of glycosides. There
are six types of anthocyanins commonly found in plants: delphinidin 3-O-glucosides,
cyanidin 3-O-glucosides, pelargonidin 3-O-glucosides, peonidin 3-O-glucosides, petuni-
din 3-O-glucosides, and malvidin 3-O-glucosides [4]. The color of anthocyanins changes
depending on the pH, co-existing colorless compounds, and metal ions [5]. In acidic condi-
tions, anthocyanins appear as red but turn blue when the pH increases. Metal ions, such as
Al3+ and Fe3+, play a critical role in the generation of blue flowers in Tulipa gesneriana and
Hydrangea macrophylla [6,7].

2.1. Biological Functions of Anthocyanins

At present, a large number of in vivo and in vitro experiments have proved that antho-
cyanin has many functions, such as antibacterial, anti-inflammatory, anticancer, antioxidant,
free radical scavenging, and the prevention of cardiovascular diseases. Previous studies
on the antioxidant properties of six deoxyanthocyanins showed that cyanidin-3-glucoside
showed high anti-free radical and reductive activity in DPPH and FRAP experiments [8].
In addition, anthocyanin is also helpful for cancer prevention and treatment, such as colon
cancer, liver and bladder cancer, breast cancer, and so on [9–11]. The anthocyanin metabo-
lites gallic acid and 3-O-methylgallic acid can inhibit cell proliferation and induce cell
apoptosis at the same time to achieve anticancer effects [12]. Moreover, anthocyanins are
able to fight inflammation [13] and contribute to eye health [14]. Due to the powerful
biological functions of anthocyanins, fruits and vegetables rich in anthocyanins are widely
considered to be beneficial to the human body. Anthocyanins are widely used for their
health care functions. Not only that, anthocyanin, as one of the important pigments of
ornamental plants, creates a colorful life for people [6,7].

2.2. Biological Metabolic Pathways of Anthocyanins

Anthocyanin synthesis is a complex process, which is synthesized by the phenyl-
propyl pathway. Many studies have collectively demonstrated that the process is conserva-
tively co-catalyzed by phenylalanine ammonia lyase [15,16], cinnamic acid 4-hydroxylase
(C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI),
flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin syn-
thase (ANS), and UDPG-flavonoid glucosyltransferase (UFGT) [2,17]. Various mutations
in these anthocyanin biosynthesis genes lead to abnormal anthocyanin pigmentation in
plants. For example, splicing changes in the promoter region of DFR gene in eggplant
(Solanum melongena) lead to abnormal coding of dihydroflavonol 4-reductase and affect
anthocyanin accumulation [18]. After synthesis and modification in the cytoplasm and
endoplasmic reticulum membranes, anthocyanins are transported to the vacuole by the
action of glutathione transferase (GST). Results showed that two loss-of-function alleles in
the GST gene cause early termination of the translation and anthocyanin deficiency in the
flower and fruit skin of peach [19].
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2.3. MYB-Centered Molecular Network

The biosynthesis of plant anthocyanins is not only controlled by structural genes,
but also influenced by regulatory genes and other factors. It is generally believed that
the MBW complex formed by R2R3-MYB, bHLH, and WD40, is an important regulatory
complex for anthocyanin biosynthesis, with MYB TFs playing a central role [20,21]. In
kiwifruit (Actinidia chinensis), AcMYB10 and AcMYB110 act as core transcriptional activators,
promoting anthocyanin accumulation in kiwifruit pulp [22]. Multiple MYB members, such
as MdMYB1 in apple (Malus domestica), co-regulate anthocyanin pigmentation [23–25].
And yet the insertion of a Long Terminal Repeat Transposable Element (LTR-TE) in the
exon of FvMYB10 lead to different anthocyanin accumulation in the skin and flesh of
a diploid strawberry [26]. Moreover, the insertion of a 288-bp in the promoter of ReS
(GhMYB113) enhances anthocyanin accumulation in cotton (Gossypium hirsutum) resulting
in red foliated cotton [27]. A single nucleotide substitution of 10 bp upstream of the
start codon in the R2R3-MYB gene PETAL LOBEANTHOCYANIN (PELAN) in Mimulus
leads to the loss of protein function and inhibition of anthocyanin accumulation [28]. In
recent years, with in-depth research, it has been found that MYB transcription factors
also play a decisive role in leaf coloring. ApMYB1 acts as a positive regulator during leaf
coloration in ornamental plant Acer palmatum [29]. With the accumulation of anthocyanin,
the expression of PcMYB113 increases in Pistacia chinensis during leaf senescence [30].
Further results of functional verification confirmed that overexpression of PcMYB113 could
promote anthocyanin accumulation in Arabidopsis thaliana. Under lower temperatures and
changing light conditions in autumn, the leaf coloring of two oak species was attributed
to the marked upregulation of QdMYB in Quercus dentata, and the significantly higher
expression of QaMYB1 and QaMYB3 in Q. aliena during senescence [31,32]. Formosan
sweet gum (Liquidambar formosana) is a deciduous tree with dark red autumn leaves and
purple young leaves. The different colors are attributed to the different regulations of MYB
TFs, LfMYB5 increases the expression of LfF3′5′H, LfMYB123 induces the expression of
LfF3′H1 and LfDFR1 in the spring, while LfMYB113 up-regulates the expression of LfF3′H1,
LfDFR1, and LfDFR2 in late autumn during leaf senescence [33]. Therefore, we speculate
that some MYBs in plants can conservatively promote anthocyanin accumulation.

Apart from anthocyanin-activating MYBs, some MYBs are also involved in inhibiting
anthocyanin accumulation in various ways. First of all, most MYB inhibitors have repres-
sion motifs in the C-terminal such as C1 (LIsrGIDPxT/SHRxI/L), EAR (LxLxL or DLNxxP),
or TLLLFR [34]. LvMYB1, as a negative MYB factor, inhibits anthocyanin synthesis in lily
(Lilium spp.) through its EAR motif [35]. In addition, the MYB inhibitor can compete with
the MYB activator for binding to basic Helix Loop Helixes (bHLHs), thereby reducing the
accumulation of anthocyanin. In peaches (Prunus persica), PpMYB18 protein competes with
PpMYB10 to interact with PpbHLH3 and PpbHLH33, resulting in reduced anthocyanin
accumulation in the peel [36]. In addition, IbMYB44 in purple-fleshed sweet potato could
inhibit the MYB340-bHLH2-NAC56 complex, which negatively affects anthocyanin syn-
thesis [37]. Overall, MYB transcription factors are essential to the regulatory network that
regulates the production of anthocyanins across multiple organs.

Other transcription factors including HY5, BBX, NAC, and WRKY have been reported
to play key roles in anthocyanin accumulation by regulating the expression of MYBs
(Figure 1). FvRIF, a NAC transcription factor, activates the transcription of FvMYB10 in the
fruit of strawberry, establishing a clear connection between fruit development and antho-
cyanin accumulation [38]. Several BBX proteins in pears have been identified as promoters
of anthocyanin accumulation. PpBBX18 and PpBBX16 form heterodimers with PpHY5
through two B-box domains, thereby activating the PpMYB10 expression and promoting
anthocyanin accumulation in the peel of red pears [39,40]. Additionally, A 14-bp deletion
in PyBBX24 causes premature translation termination, preventing PyMYB10-induced an-
thocyanin accumulation in pears [41]. MdWRKY75 in apple peel binds to the promoter of
MdMYB1 to stimulate the accumulation of anthocyanins [42]. In the bright red autumn
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leaves of Q. dentata, QdNAC may regulate anthocyanin accumulation and chlorophyll
degradation during leaf senescence through direct interaction with QdMYB [32].
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Figure 1. Model of MYB-centered molecular network of anthocyanin biosynthesis. Anthocyanin
biosynthesis transcription is regulated by the MYB-centered MBW complex. Several MYB repres-
sors competitively bind to bHLH TFs and negatively regulated anthocyanin biosynthesis. Other
transcription factors (e.g., ERF, WRKY, and NAC) induced by STAY-GREEN (SGR) act upstream
of MYB-centered MBW complex, activating or inhibiting anthocyanin accumulation. Epigenetic
regulations, such as DNA methylation, histone H2A, H3K4me3, H3K9, and H3ac modification,
participate in the regulation of MYB-centered anthocyanin biosynthesis. Black arrows represent
activation; ‘T’ arrows represent repression; small red arrows represent a level decrease. Dashed lines
denote indirect regulation or uncertain pathways.

In recent years, increasing evidence has suggested that noncoding RNAs also play
important roles in anthocyanin biosynthesis (Figure 1). In M. spectabilis leaves, miR858
negatively regulates MsMYB62-like, an anthocyanin biosynthesis inhibitor, and promotes
anthocyanin accumulation under low-nitrogen conditions [43]. Similarly, miR156 targets
to the SQUAMOSA PROMOTER BINDING PROTEINLIKE (SPL), destabilizing the MBW
complex and inhibiting anthocyanin biosynthesis at the junction between the rosette and
the stem in Arabidopsis [44].

2.4. Epigenetic Regulations

Epigenetic modifications, including DNA methylation and histone modification, are in-
creasingly being shown to be involved in the manufacture of anthocyanins. The regulatory
role of DNA methylation has been shown in many plants to be involved in the biosynthesis
of anthocyanin. For example, different methylation intensities on the promoter of the ANS
gene result in red and white colors in different lotus (Nelumbo nucifera) cultivars [45]. In
many fruits, the methylation level of the MYB10 promoter region is negatively correlated
with peel color and anthocyanin accumulation [46,47]. Additionally, environmental factors
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have also been shown to affect DNA methylation levels. Bai and Tuan [48] showed that
shading treatment decreased the methylation level of MdMYB1-2/-3 promoters, initiated
anthocyanin biosynthesis, and significantly increased the pigment content of non-red ap-
ple varieties. Low temperature induces the accumulation of anthocyanin and promotes
leaf coloring by decreasing the methylation level of promoters in structural genes, which
has been confirmed in all three varieties of M. domestica [49]. In conclusion, the DNA
methylation level of the promoter in anthocyanin biosynthesis gene is closely related to the
accumulation of anthocyanin.

Histone modifications are also evidently important in regulating anthocyanin biosyn-
thesis. In Arabidopsis, the deposition of H2A.Z, a histone H2 variant, downregulates the
expression of several genes related anthocyanin biosynthesis by inhibiting trimethylation of
lysine 4 on histone H3 (H3K4me3), thereby preventing anthocyanin accumulation between
the hypocotyl and cotyledons [50]. In poplar, a conserved histone H3K9 demethylase,
JMJ25, directly binds to the negative transcription factor PtrMYB182 gene loci and upreg-
ulates its expression, thereby inhibiting anthocyanin biosynthesis in leaves [51]. Histone
acetylation can also affect the production of anthocyanin. In pear fruit, the PpERF9-PpTPL1
complex decreased the level of Histone H3 acetylation (H3ac) in the promoter regions of
PpRAP2.4 and PpMYB114, which inhibited the expression of these genes, and ultimately
suppressed anthocyanin biosynthesis [52]. As DNA methylation and histone modifications
have a dose effect, further study could be conducted to reveal the gradual changes in gene
expression in response to leaf senescence.

2.5. Color Change in Different Tissues

Anthocyanin biosynthesis in fruits can improve the nutritional and commercial value
of fruits. In the past few decades, the mechanisms regulating anthocyanin synthesis in the
skin and flesh of fruits have been well understood. Core MYB transcription factors are
regulated by upstream genes to activate or inhibit anthocyanin accumulation and promote
or inhibit fruit coloring (Table 1). In addition, special mutant plants may be caused by the
structural variation of a key gene in the anthocyanin biosynthesis pathway. For example,
variation in the GhMYB113 gene directly caused the whole cotton to be brown, especially
the cotton fiber, which is of significant economic importance [27].

Table 1. Color changes in different tissues.

Specie Tissue Transcription Factor Regulation Changes in Anthocyanin Year

Pyrus pvrifolia Peel BBX16 induced MYB10 expression Increase 2019

Pyrus pvrifolia Peel BBX18 and BBX21 antagonistically
regulate MYB10 expression 2019

Prunus persica Peel MYB18 competed with MYB10 Decrease 2018
Malus domestica Peel EIL1 enhanced MYB1 action Increase 2018

Fragaria vesca
Fragaria × ananassa Skin and flesh MYB10 Increase 2020

Actinidia chinensis Pulp MYB10 and MYB110 Increase 2022
Mimulus Flower PELAN Inhibition 2023

Pyrus pvrifolia Whole plant BBX24 Increase 2020
Gossypium hirsutum Whole plant MYB113 Increase 2022

Quercus dentata Autumn leaf MYB Increase 2023
Quercus aliena Autumn leaf MYB1 and MYB3 Increase 2022

Pistacia chinensis Autumn leaf MYB113 Increase 2021

Liquidambar formosana Autumn leaf
Young leaf

MYB5 and MYB123 increased in spring;
MYB113 increased in late autumn Increase 2021

Cinnamomum camphora Bark and leaf Several bHLH genes Increase 2023

Compared to fruits, leaves containing various polyphenols exhibit a much higher
antioxidant capacity in blueberries and lingonberries [3]. Therefore, we hypothesize that
anthocyanin accumulation in leaves plays a vital role, especially during senescence. As
leaves age, their color markedly changes from green to yellow or red. This transformation
occurs because trees cycle nutrients through their leaves, leading to the degradation of
chlorophyl, as well as the appearance of carotenoids and other auxiliary photosynthetic



Biology 2024, 13, 329 6 of 18

pigments. The accumulation of anthocyanins provides a means to delay leaf senescence
and helps plants adapt to environmental constraints [1]. Reports on anthocyanin biosyn-
thesis in deciduous trees during leaf senescence showed that a class of MYB transcription
factors are specifically expressed in the leaves [30,33]. In evergreen trees, leaf senescence
is also associated with anthocyanin accumulation. Cinnamomum camphora is a material
for extracting natural pigments due to its variety of leaf colors at different stages of matu-
rity [53]. A study has shown that the significantly high expression of several bHLH genes
in the bright red bark and leaves after half-lignification implied their role in anthocyanin
biosynthesis [54]. Therefore, we believe that the accumulation of anthocyanin in senescent
leaves is completely different from the process of fruit coloring.

In both deciduous trees and evergreen trees, leaf senescence is often accompanied by
the process of anthocyanin biosynthesis (Table 2). The decline of photosynthetic capacity,
the degradation of chlorophyll, and the accumulation of anthocyanins are the important
signs of leaf senescence in A. saccharum [55]. WRKY and NAC TFs are often considered
candidate genes to link anthocyanin biosynthesis to senescence, acting by activating MYB,
which is specifically highly expressed in the senescence stage [32,56,57]. In M. domestica,
MdbHLH3 interacts with MdMYB1 enhancing anthocyanin content and fruit coloration,
meanwhile regulating leaf senescence by directly increasing MdDEP1 expression [58].

Table 2. Regulations of anthocyanin during leaf senescence.

Specie Classification Key Genes Changes in Anthocyanin Year

Acer saccharum Deciduous tree Increase 2016
Liquidambar formosana Deciduous tree WRKY75, NAC1 and MYB113 Increase 2015
Liquidambar formosana Deciduous tree MYB113 Increase 2021

Malus domestica Deciduous tree bHLH3-MYB1; bHLH3-DEP1 Increase 2020
Malus spectabilis Deciduous tree eTM-miR858-MYB62-like module Increase 2023
Pistacia chinensis Deciduous tree JA signaling-related genes Increase 2021
Pistacia chinensis Deciduous tree MYB113 Increase 2021

Prunus persica Deciduous tree NAC1-MYB10.1 Increase 2023
Quercus aliena Deciduous tree MYB1 and MYB3 Increase 2022

Quercus dentata Deciduous tree NAC, MYB Increase 2023
Cinnamomum camphora Evergreen tree bHLH genes Increase 2023

3. Factors Affecting Biosynthesis of Anthocyanin
3.1. Phytohormones

In addition to developmental age, leaf senescence is also influenced by numerous
internal and external signals. Plant hormonal signals are combined with age information to
regulate leaf senescence as major players [59]. Among them, ethylene, jasmonic acid, and
abscisic acid act as primary inducers to promote this process [60–62]. These three phyto-
hormones have been shown to play dominant roles in promoting leaf senescence. Here,
we focus on these three kinds of hormones and their effects on anthocyanin biosynthesis
during leaf senescence.

3.1.1. Ethylene

Studies have shown that both plant ripening and senescence are sensitive to ethylene
and are regulated by endogenous ethylene [63]. Ethylene plays dual roles in modulating
anthocyanin accumulation in different plants. Its positive influence on fruit coloration
has been demonstrated in a number of fruit crops, including grape, apple, and mulberry.
In apples, ethylene accelerates anthocyanin accumulation by promoting the transcription
of MdMYB1 and other key genes in anthocyanin biosynthesis, while MdMYB1 induces
the transcription of an ETHYLENE RESPONSE FACTOR, MdERF3, to further enhance
ethylene-mediated anthocyanin accumulation and apple fruit coloration [64]. Ethylene
treatment promotes the strong expression of MaERF5, which regulates anthocyanin biosyn-
thesis in ‘Zijin’ mulberry (Morus alba) fruits by interacting with MaMYBA and MaF3H [65].
Conversely, Arabidopsis and pears serve as examples of how ethylene negatively affects the
biosynthesis of anthocyanin. In Arabidopsis, ethylene suppresses anthocyanin accumulation
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by diminishing the expression of the anthocyanin activator AtPAP1 and promoting the
expression of anthocyanin repressor AtMYBL2 [66]. PpERF105, activated by ethylene, stim-
ulates the expression of the repressor-type transcription factor PpMYB140, which inhibits
anthocyanin biosynthesis in red pear fruits [67].

Considering the role of ethylene in leaf senescence, it can be speculated that ethylene
plays a positive role in leaf coloration during senescence (Figure 2). Analysis of membrane
transport proteins and hormone pathways in Arabidopsis during leaf growth showed
that ACC synthetase (ACS) and ACC oxidase (ACO), encoded by ethylene biosynthesis
genes, were up-regulated with leaf senescence, thus promoting ethylene accumulation [68].
After ethylene treatment, ETHYLENE INSENSITIVE3 (EIN3), a key transcription factor
of ethylene signaling pathway, can directly activate the expression of master senescence-
associated genes ORE1/NAC092 and SAG29 to accelerate chlorophyll degradation and
leaf senescence [69,70]. In Arabidopsis, the erf mutant decreased the rate and extent of leaf
anthocyanin production [71]. MpERF105 and MpNAC72, induced by ethylene, positively
regulates anthocyanin accumulation in fungal disease-infected M. ‘Profusion’ leaves by
mediating the expression of MpMYB10b and enhancing rust resistance [72]. Ethylene
signaling, which also promotes fruit coloration, regulates key genes in the anthocyanin
biosynthesis pathway to adjust anthocyanin accumulation during leaf senescence.
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3.1.2. Abscisic Acid

Abscisic acid is crucial for both plant senescence and the promotion of anthocyanin
biosynthesis. NCED is a key enzyme that promotes ABA biosynthesis. In strawberries,
anthocyanin accumulation on the surface of FaNCED1-RNAi fruits was inhibited compared
with control lines, and exogenous ABA treatment restored anthocyanin content in FaNCED1-
RNAi fruits [73]. The mechanisms of ABA regulating the biosynthesis of anthocyanin have
been clarified. ABA induces anthocyanin accumulation by activating MYB-centered MBW
complex and improving the expression of structural genes (Figure 2). In sweet cherries,
red pigment markedly enhanced, and the expression of anthocyanin activator PacMYBA
significantly increased after ABA treatment [74]. Similarly, exogenous ABA treatment also
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induces the biosynthesis of anthocyanin via activating FaMYB10 in strawberries [75]. In
Aristotelia chilensis, the expression of AcUFGT decreased in fully-expanded leaves of stressed
plants treated with fluridone, an inhibitor of ABA biosynthesis, while subsequent ABA
application increased the AcUFGT expression [76]. Many TFs, like Basic Leucine Zipper
(bZIP), have been reported to participate in the major ABA-dependent signaling pathways
and act on downstream MYBs. In the absence of ABA, MdbZIP44 in apples was degraded
and ubiquitinated by MdBT2, inhibiting fruit coloring. Under ABA treatment, ABA directly
increased the expression of MdbZIP44 and inhibited MdBT2 expression, resulting in the
release of the MdbZIP44 protein and improvement of anthocyanin accumulation [77].
Moreover, MdABI5 promotes anthocyanin accumulation by activating MdbHLH3 and
increasing the interaction between MdMYB1 and MdbHLH3 [78]. In the young leaves of
the tea plant (Camellia sinensis), exogenous ABA induces the expression of CsMYB4/44 and
further activates transcription of bHLHs and MYBs, which directly activates anthocyanins’
biosynthesis and transport genes expression [79]. Given that ABA is accumulated during
leaf senescence, it could be speculated that ABA promotes anthocyanin biosynthesis during
leaf senescence, but the detailed mechanism needs further study.

3.1.3. Jasmonic Acid

Jasmonic acid (JA) is a class of lipid plant hormones that plays important roles in
plant defense and senescence [80]. JA signaling is perceived by the receptor COI1, and
the JASMONATE ZIM-DOMAIN (JAZ) protein serves as a repressor in the JA signaling
transduction pathway (Figure 2). The interaction of COI1 with JAZs leads to JAZ ubiquiti-
nation, resulting in the release of transcription factors and the activation of downstream
gene expression [81]. The Arabidopsis JAZ proteins interact with bHLH (TT8) and MYB
proteins (MYB75), reducing the transcriptional function of the MBW complex and inhibiting
anthocyanin accumulation. Upon perception of JA signal, JAZ proteins are degraded, and
the MBW complex is released to regulate anthocyanin biosynthesis [82]. Recent studies
have shown that ECAP helps JAZ6/8 recruit TOPLESS-RELATED 2 (TPR2) to form a
transcription suppressor complex in this process [83]. In addition, JA-induced degradation
of MdJAZ5/10 leads to a high expression of MdMYC2 and MdMYB1/9/11, promoting
anthocyanin accumulation in apples [84]. This result indicates that ethylene and jasmonic
acid have a synergistic effect on the regulation of anthocyanin. During the leaf senescence
of P. chinensis, bioactive jasmonic acid-isoleucine (JA-Ile) was markedly accumulated, and
four JA signaling-related genes were reduced in the autumn leaf [85]. Overall, JA plays an
important positive regulatory role in anthocyanin biosynthesis.

3.2. Environmental Factors
3.2.1. Light

Light exposure has been proven to increase anthocyanin biosynthesis in plants
(Figure 2) [23]. Without light, aging leaves could not accumulate anthocyanin [85]. Specifi-
cally, the quality, duration, and intensity of light have a significant impact on the accumu-
lation of anthocyanins [17]. For instance, apple fruits directly exposed to light showed a
more intense anthocyanin pigmentation compared to the wrapped ones [25]. In addition,
light quality also affects anthocyanin biosynthesis [86,87]. UV-A irradiation and high red
light have been reported to induce anthocyanin content in tomato seedlings compared to
darkness [88,89]. Recently, the mechanism of light-controlled anthocyanin biosynthesis
has been widely reported. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a key
suppressor in light signal transduction downstream of the photoreceptor. In darkness,
MdCOP1 protein interacts with MdMYB1 and mediates its ubiquitination and degradation,
thereby inhibiting apple fruit coloration [90]. Several transcription factors (e.g., HY5 and
BBX) are involved in the light signal regulation of anthocyanin biosynthesis [39,91]. HY5
can not only directly activate structural genes but also regulate MYB transcription factors
and the MBW complex to indirectly affect the expression of structural genes [92,93]. In
purple pummelo (Citrus grandis), CgHY5 is induced by light and directly binds to the G-box
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within an R2R3 MYB transcription factor (CgRuby1) promoter, leading to anthocyanin
accumulation [94]. Recently, it has been reported that protein complexes regulate down-
stream gene expression by activating anthocyanin biosynthesis [95]. In poplars, PtrHY5
interacts with the PtrBBX23 gene through the C-terminal bZIP domain to enhance the
expression of downstream genes and modulate the accumulation of anthocyanins in the
leaf [96]. Some studies have shown that protein phosphorylation is a part of the light-
induced developmental processes. Protein phosphorylation induced by mitogen-activated
protein kinase (MAPK) contributes to anthocyanin accumulation [97]. Light-induced MPK4
phosphorylation of MYBs promotes its stability and increases anthocyanin accumulation in
Arabidopsis and apples [98,99].

3.2.2. Temperature

Temperature is also an important environmental factor that affects anthocyanin pig-
mentation during leaf senescence. Most studies have shown that high temperatures (HTs)
restrain while low temperatures (LTs) induce anthocyanin accumulation (Figure 2) [16,100].
In physiological metabolism, LTs reduce the rate of dark respiration and accelerate the
accumulation of sugar, further promoting anthocyanin biosynthesis [101]. At the transcrip-
tional level, the CsUGT75C1 gene is up-regulated, activating anthocyanin accumulation in
C. sinensis leaves under LT conditions rather than HT [102]. HY5 could participate in and
integrate low temperature and light signaling [91]. In Arabidopsis, LTs stimulate COP1 to
become inactivated and be excluded from the nucleus, allowing HY5 stabilization and acti-
vation of anthocyanin biosynthesis genes [100]. In addition to directly activating structural
genes, HY5 binds to either the G-box or ACE-box of MYB transcription factors to regulate
anthocyanin biosynthesis [103–105]. With the deepening of research, MYB transcription fac-
tors are reported to specifically regulate LT-induced anthocyanin. The interaction between
MdbHLH and MdMYB1 is enhanced, activating anthocyanin accumulation after exposure
to LT [106]. The insertion of a low-temperature-responsive element (LTRE) in CsRuby1
induced anthocyanin accumulation in pulp only at low temperatures [94]. Exceptionally,
LTs lead to lower anthocyanin contents in strawberry fruit by stimulating the phosphory-
lation of FvMYB10 by MITOGEN-ACTIVATED PROTEIN KINASE 3 (FvMAPK3) [107].
Therefore, LTs might have dual roles in anthocyanin accumulation.

On the other hand, high temperatures would inhibit anthocyanin accumulation by
reducing anthocyanin biosynthesis and promoting anthocyanin degradation. Several MYB
repressors have been activated by HTs to reduce anthocyanin accumulation. CmMYB012
in chrysanthemum was induced and led to a decrease in anthocyanins by suppressing
CmCHS, CmDFR, CmANS, and CmUFGT expressions [108]. HTs cause a reduction in antho-
cyanin biosynthesis in potatoes (S. tuberosum) by enhancing the expression of flesh-specific
StMYB44 [109]. Additionally, anthocyanins are degraded by numerous enzymes during
HTs. BcPrx01, a basic peroxidase, is responsible for the degradation of anthocyanins in
Brunfelsia calycina flowers [110]. VviPrx31 peroxidase in grapes participates in anthocyanin
degradation under high temperatures [111]. In summary, temperature is one of the key
environmental factors affecting anthocyanin biosynthesis.

3.3. Nutrient Deficiency

Nutrients support growth and development, making them indispensable for the plant
life cycle. Leaf senescence is characterized by the transition from nutrient assimilation
to nutrient reactivation [112]. The earliest and most significant change in this process is
the decomposition of chloroplasts. Chloroplasts are important sites for photosynthesis
and storage of many nutrient elements [113]. Consequently, aging leaves of plants are
confronted with nutrient deficiency and imbalances, which have been shown to be related
to anthocyanin accumulation [114].
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3.3.1. Nitrogen Deficiency

The nitrogen (N) content in senescent leaves significantly decreased [115]. Studies
have demonstrated that anthocyanins accumulate in leaves when plants are grown un-
der N deficiency conditions (Figure 3) [116,117]. During low N-induced leaf senescence,
anthocyanin accumulations can minimize stress-related oxidative damage and facilitate
nutrient remobilization from older leaves to younger active tissues to enhance their adap-
tation to low nitrogen [118]. In Arabidopsis, regulation of anthocyanin biosynthesis by
the GA-DELLA module is important for plant adaptation to a nitrogen deficiency [119].
This deficiency of N increases anthocyanin biosynthesis by up-regulating the expression of
structural genes such as PAL, CHS, and F3H in tomatoes [120]. In M. spectabilis, the total
anthocyanin content and cyanidin-3-O-galactoside chloride in the explants accumulate
obviously under low-nitrogen conditions [43,121]. As major forms of N, nitrate (NO3

−) and
ammonium (NH4

+) regulate plant growth as signals [122]. Media generally contain NO3
−

and ammonium NH4
+ ions as nitrogen sources and significantly influence the growth and

metabolism of plant tissue. In many plants, including Catharanthus roseus, Cleome rosea, and
A. thaliana, a decrease in NO3

− and NH4
+ levels leads to a greater accumulation of antho-

cyanins [123–125]. This suggests that plant responses to nitrogen concentrations can protect
sensitive plants from stress by inducing more anthocyanins. This hypothesis has been veri-
fied in A. thaliana: under low nitrate conditions, the PAP1-D/fls1ko mutants with significant
anthocyanin accumulation show higher salt tolerance than the ttg1 anthocyanin-deficient
mutants [126]. Additionally, sucrose is involved in low nitrogen-induced anthocyanin
accumulation. Increased sucrose in the hypocotyls of radish sprouts contributes to nitrogen
deficiency-induced anthocyanin accumulation [127].
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3.3.2. Phosphorus Deficiency

Phosphorus (P), like nitrogen, decreased significantly in senescent leaves (Figure 3) [115].
As a general plant response, an increase in the anthocyanin content occurs under P de-
ficiency, as reported for multiple plant species, such as A. thaliana, Zea mays, S. lycoper-
sicum, and Triticum aestivum [128–132]. Total anthocyanin accumulation was observed
in suspension-cultured grape (Vitis vinifera) cells in vitro under P deficiency [133]. In
general, foliar anthocyanin production is associated with P deficiency to enhance plant
tolerance [134]. These results reveal that anthocyanins act as defense substances that
help plants adapt to a nutrient deficiency. Like nitrogen deficiency, deficiency of P in-
creases anthocyanin biosynthesis by regulating structural genes and transcription factors.
PHOSPHATE STARVATION RESPONSE1 (PHR1) plays key roles in P deficiency-induced
anthocyanin biosynthesis in plants. MdPHR1 is activated by P-deficient stress and inter-
acts with MdWRKY75 to enhance the transcription of MdMYB1, leading to anthocyanin
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biosynthesis in apples [135]. Similarly, in Arabidopsis, the DFR gene is increased in phr1
mutants, and anthocyanin accumulates under the condition of P deficiency [136].

3.3.3. Potassium

Potassium, as an essential nutrient, plays an important role in anthocyanin biosynthe-
sis. Research shows that low K could significantly increase the content of soluble sugar
and anthocyanins in the skin of grapes [137]. Similarly, this conclusion has been confirmed
in litchis [138]. Potassium appears to facilitate anthocyanin synthesis by enhancing the
accumulation and transport of sugars.

3.3.4. Changes in Sugars

The level of sugars regulates plant growth and development. Extensive evidence
shows that carbohydrate storage products in leaves reduce photosynthetic activity and
induce leaf senescence [139–141]. For example, there are higher sugar levels in tobacco
leaves at the edge of senescence than in younger or older tobacco leaves [112]. In addition,
sugars induce anthocyanin biosynthesis in various plant species. They not only provide
carbon sources, skeletons, and glucosides for anthocyanin biosynthesis but also increase
the expression levels of biosynthetic structural genes and regulatory MYB genes [142–144].
PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) in Arabidopsis, the major TF
regulating anthocyanin biosynthesis, responds positively to increased sucrose concentra-
tions [142]. In our research, it was also found that 30 g/L of sucrose could significantly
promote the leaf coloring of P. chinensis in autumn [145]. With further research, Hexokinase
1 (HXK1) was considered to be a sugar sensor in plants and crosstalk with ABA, ethylene,
auxin, cytokinin, and brassinosteroid signaling [145,146]. In the presence of glucose, Md-
HXK1 protein kinase stabilizes MdbHLH3 by phosphorylation to increase anthocyanin
accumulation in apples [147]. Therefore, we hypothesized that senescent leaves induce
hormone crosstalk through sugar accumulation and promote the expression of anthocyanin
genes to increase leaf coloring (Figure 3).

4. Conclusions and Perspectives

Anthocyanin accumulation during leaf senescence is an essential process in response
to biological and abiotic stresses. Despite substantial advances in the understanding of the
regulatory mechanism of anthocyanin pigmentation in fruit over the last few decades, the
study of leaf coloration during senescence remains insufficient. Our current consensus is
that a low temperature may be the main environmental factor that promotes leaf coloration
in autumn, especially for deciduous trees. We propose a regulatory model suggesting
that changes in the environment lead to the accumulation of ethylene, ABA, JA, and other
hormones, resulting in the differential expression of transcription factors in their signal
pathway. These TFs interact with core MYB transcription factors, thereby upregulating
structural genes in the anthocyanin biosynthesis pathway. As a conspicuous aspect of leaf
senescence, anthocyanin accumulation is typically accompanied by chlorophyll degrada-
tion. It has been confirmed that some transcription factors (e.g., NAC) can simultaneously
activate key genes in chlorophyll degradation and anthocyanin biosynthesis, thereby ini-
tially linking the two processes. However, several major issues related to anthocyanin
accumulation in leaf coloration need to be addressed in the future:

(1) What are the differences in anthocyanin biosynthesis mechanisms at different leaf
stages, such as young leaves and old leaves? What are the key transcription factors
specifically regulating anthocyanin biosynthesis in response to leaf senescence? An-
swers to these questions will contribute to the molecular breeding of ornamental
plants with different colors in different seasons.

(2) What is the transcriptional regulatory network between chlorophyll degradation and
anthocyanin biosynthesis? How can anthocyanin biosynthesis be promoted, which
delays leaf senescence at the same time? Addressing these questions will help extend
the ornamental period of the plants.
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(3) How can leaf coloration be facilitated through artificial intervention under abnormal
temperature conditions in nature for landscaping purposes?
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