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Abstract: This manuscript shows the CMOS design of Lorenz systems using operational transcon-
ductance amplifiers (OTAs). Two Lorenz systems are then synchronized in a master–slave topology
and used to implement a CMOS secure communication system. The contribution is devoted to the
correct design of first- and second-order OTA-C filters, using 180 nm CMOS technology, to guarantee
chaotic behavior. First, Simulink is used to simulate a secure communication system using two
Lorenz systems connected in a master–slave topology, which is tested using sinusoidal signals that
are masked by chaotic signals. Second, the Lorenz systems are scaled to have amplitudes of the state
variables below 1 Volt, to allow for CMOS design using OTA-C filters. The transconductances of the
OTAs are tuned to accomplish a Laplace transfer function. In this manner, this work highlights the
design of a second-order CMOS OTA-C filter, whose damping factor is tuned to generate appropriate
chaotic behavior. Finally, chaotic masking is performed by designing a whole CMOS secure commu-
nication system by using OTA-C based Lorenz systems, and its SPICE simulation results show its
appropriateness for hardware security applications.

Keywords: chaos; Lorenz system; secure communication system; OTA-C filter; biquadratic filter;
damping factor; SPICE

1. Introduction

Chaos is a complex and seemingly disordered phenomenon that was introduced
by meteorologist Edward Lorenz in proposing a mathematical model consisting of three
ordinary differential equations (ODEs) [1]. Up to now, researchers know that a chaotic
system is highly sensitive to slight variations in the initial conditions, which can lead
the solutions of ODEs to have completely different trajectories over time. In this manner,
despite its apparent disorder, chaos has at least three remarkable characteristics, i.e., high
sensitivity to initial conditions, lack of periodicity, and deterministic behavior, which
means that its time evolution is completely determined by its mathematical model. In the
continuous-time domain, a chaotic system must have at least three ODEs, as for the case of
the Lorenz system [2], which is one of the most famous examples of chaotic systems.

Chaotic systems have proven to be useful in the design of secure communications.
For instance, the authors in [3] detail the development of chaos-based digital commu-
nication systems, including coherent and non-coherent systems. In this work, a secure
communication system is designed by applying the synchronization technique introduced
by Pecora and Carroll [4], where two chaotic systems, such as Lorenz systems, can be
synchronized to perform a chaotic masking of information. This work uses two Lorenz
systems that are synchronized in a master–slave topology to mask data. Additionally,
one can use other chaotic systems, for example, the autonomous electronic chaos gen-
erator, which comprises a bipolar junction transistor, a resistor, two inductors, and one
capacitor [5]; chaotic maps designed with four transistors [6,7]; or other chaotic systems
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designed with different building blocks using CMOS technology. Examples of the latter
include the work in [8], which uses a modified voltage differencing voltage transconduc-
tance amplifier; ref. [9], which uses a voltage differencing inverted buffered amplifier;
refs. [10,11], which use a modified voltage differencing current conveyor; ref. [12], which
uses a current-controlled current conveyor feedback amplifier; ref. [13], which uses a single
extra-X current-controlled current conveyor; ref. [14], which uses a voltage differencing
gain amplifier; ref. [15], which uses cross-coupled inverter rings; and [16], which uses
operational amplifiers and multipliers. Despite the huge number of active devices, this
work shows the suitability of operational transconductance amplifiers (OTAs) to design
biquadratic filters that are tuned to implement CMOS chaos generators.

The CMOS design of OTAs is not a trivial task, especially when the target is to develop
low-voltage and low-power circuit applications. In designing chaos generators, another
important device is the CMOS multiplier, for which a good tutorial was introduced by
Han and Sanchez-Sinencio [17], where the authors highlight that the multiplier is used
not only as a computational building block but also as a programming element in systems
such as filters and neural networks, and as a mixer/modulator in communication systems.
Regarding OTA design, recent works emphasize its CMOS implementation, as in [18],
where an OTA-based meminductor simulator circuit is introduced, or in [19], where a simple
realization of the meminductor emulator using two OTAs and two capacitors is presented.
In designing chaotic systems, active filters and those implemented with OTAs could be
required. Some related works on OTA-C filters are the following: the authors in [20] show
two new first-order universal active filter configurations employing OTAs and grounded
capacitors; in [21], the authors present a biquadratic filter using one dual-output OTA, three
single-output OTAs, and two grounded capacitors to derive a new quadrature oscillator
with independent control of the oscillation frequency and the oscillation condition; the
authors in [22] present an independently tunable five-input and three-output biquadratic
filter using five single-ended output OTAs and two grounded capacitors; and the authors
in [23] present an OTA-C filter for biomedical applications that consists of a cascade of
biquadratic sections, each configured via a serial-peripheral-interface circuit embedded
with nonvolatile memories to provide low-pass or bandpass response. An implementation
of an OTA-C filter using commercially available discrete components was given in [24];
an OTA-based filter with low sensitivity operating at high frequency was given in [25]; OTA-
based biquadratic filters with electronically reconfigurable transfer functions were given
in [26]; and biquadratic OTA-C and universal filters with tunable pole-Q were introduced
in [27]. One can find more works related to OTA-C filters, but in all cases, the topologies
are quite similar to the ones given in the tutorial [28]. The outstanding challenge is the
design of integrated circuits for low-voltage and low-power applications, as in the case
studies given in [29–31].

The remaining sections are organized as follows: Section 2 shows the mathematical
model and analysis of Lorenz systems and synchronization in a master–slave topology
using Simulink to appreciate an application in the chaotic masking of sinusoidal signals.
Section 3 shows the scaling of the Lorenz system to obtain amplitudes of the state variables
within ±1 Volt to allow for CMOS design using 180 nm integrated circuit technology; it also
shows the macro-modeling of the OTA-C blocks that implement first- and second-order
active filters. Section 4 pays special attention to the design of the OTAs, detailing the tuning
of the transconductances, and the design of the OTA-C biquad filters, the damping factor
of which is tuned to generate chaotic behavior. Section 5 shows the design of a CMOS
secure communication system that synchronizes two CMOS Lorenz systems and masks
a sinusoidal signal, which is recovered after having been encrypted by chaotic signals.
Finally, the conclusions are provided in Section 6.

2. Chaotic Masking Using Lorenz Systems

In his seminal work [1], Lorenz introduced a mathematical model to describe how the
air behaves and evolves in the atmosphere under small changes. This model helped him
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to discover that chaotic behavior can be modeled by three ODEs and that their solutions
highly depend and are highly sensitive to the initial conditions. Since then, such a model
has been well known as Lorenz system and its attractor is said to have a butterfly effect.
Equation (1) shows the mathematical model of the Lorenz system, which generates chaotic
behavior by setting the coefficients as [1] σ = 10, ρ = 28, and β = 8/3 and by using the
initial conditions of (x0, y0, z0) = (0.1, 0.1, 0.1).

ẋ = σ(y − x),

ẏ = x(ρ − z)− y,

ż = xy − βz.

(1)

The high-level simulation of the chaotic Lorenz system can be performed by using
Simulink, whose equations in the frequency domain are given in (2). The block description
is sketched in Figure 1, where it can be appreciated that the equations are synthesized using
addition, subtraction, multiplication, and gain blocks, while three 1/s integrator blocks are
used to obtain each state variable, x, y, and z. The simulated times series for each state
variable can be appreciated in Figure 2, while the chaotic attractor in a 3D space is shown
in Figure 3.

X(s) =
1
s
(σ(Y(s)− X(s))),

Y(s) =
1
s
(X(s)(ρ − Z(s))− Y(s)),

Z(s) =
1
s
(X(s) ∗ Y(s)− βZ(s)).

(2)

Simulink is a useful software application to test the synchronization of two identical
chaotic systems. Let us consider two Lorenz systems to perform their synchronization
by applying the Pecora and Carroll technique. In this case, a master–slave topology can
be synthesized from (3) (denoting the master system) and (4) (denoting the slave system),
where it can be appreciated that one of the variables, e.g., xm, of the master system is used
as a coupling signal to control and synchronize the slave system, so that xs = xm. This
coupling signal is adjusted over time to make both systems evolve similarly, thus achieving
the synchronization of their chaotic behaviors.

Figure 1. Implementation of the Lorenz oscillator in Matlab/Simulink from (2).
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Figure 2. Time series of x, y, and z of the Lorenz system.

Figure 3. Lorenz attractor in 3D space.
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˙xm = σ(ym − xm),

˙ym = xm(ρ − zm)− ym,

˙zm = xmym − βzm,

(3)

ẏs = xm(ρ − zs)− ys,

żs = xmys − βzs.
(4)

As one can infer, Equations (3) and (4) can be described in Simulink, as shown in
Figure 4. The blocks of the master system (m) are distinguished from those of the synchro-
nized slave system (s), but according to (3) and (4), state variable xs must be taken from
the master block, i.e., xm = xs. As the synchronization is ideal, i.e., using the mathematical
equations given in (3) and (4), the phase plots between the state variables of the master
and slave systems form a line with a 45◦ slope. This synchronized scheme can be used to
implement a secure communication system, as the one shown in Figure 5.

Figure 4. Implementation of the synchronization technique in Matlab/Simulink.

Chaotic masking by using two synchronized systems in a master–slave topology can
be performed as shown in Figure 5. The upper blocks describe the masking of chaos (Ym)
with the transmitted signal and the recovery of the original signal by subtracting the chaotic
time series (Ys). In this case, channel B(t) encrypts the transmitted signal (A(t)), and the
recovered one (C(t)) must be the same, i.e., C(t) = A(t). Let us consider a test signal
as the sum of three sine waves, as given in (5), to which the chaos of the master system
(Ym) is added, as given in (6). In this case, channel B(t) encrypts the information being
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transmitted; afterwards, the latter can be recovered by subtracting the chaotic signal in the
slave system, with Ys behaving as Ym, thus generating the equation given in (7). In the end,
as the master and slave systems are synchronized, Ym = Ys, and finally, C(t) = A(t).

A(t) = 0.1sin(100t) + 0.1sin(500t) + 0.1sin(500t) (5)

B(t) = 0.1sin(100t) + 0.1sin(500t) + 0.1sin(500t) + Ym (6)

C(t) = (0.1sin(100t) + 0.1sin(500t) + 0.1sin(500t) + Ym)− Ys (7)

Figure 5. Chaotic masking by using two synchronized systems in a master–slave topology.

The test signal given in (5), consisting of the sum of three sine signals of different
frequencies and equal amplitude, is shown in Figure 6. This signal is masked with chaos,
so that the channel is described by (6), as shown in Figure 7. If the slave follows the master
system with zero error, then the recovered signal can be expressed by (7), as shown in
Figure 8.

Figure 6. Test signal given in (5), consisting of the sum of three sine signals of different frequency
and equal amplitude.
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Figure 7. Chaotic masking described by (6).

Figure 8. Recovered signal described by (7).

3. Scaling of Lorenz System and Simulation Using OTA-C Filters

The CMOS design using integrated circuit technology imposes restrictions on the
amplitudes of the signals. In this work, Lorenz systems are designed using 180 nm in-
tegrated circuit technology from UMC. Both MOSFET models of the P- and N-channels
are nm180_reg_18_V124 of level 49. In this manner, the mathematical model is scaled to
have amplitudes of the state variables within a range of ±1 Volt. In principle, the scaling
process is performed by a variable change for each state variable, until one finds the up-
dated coefficient values that allow for CMOS design. In this work, the scaled system of
equations for Lorenz systems in the Laplace domain is given in (8). One can see that the
Laplace transform of the multiplication of two variables in the time domain produces the
convolution of those variables; in this case, the two products are described by X(s) ∗ Z(s)
and X(s) ∗ Y(s).

sX(s) = 10Y(s)− 10X(s),

sY(s) = 28X(s)− 400X(s) ∗ Z(s)− Y(s),

sZ(s) = 400X(s) ∗ Y(s)− 8
3

Z(s).

(8)

From this system of equations, the manipulation of each state variable can lead to
associate transfer functions to first- and second-order (biquadratic) active filters. For the
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case of state variable X(s), it can be associated to a first-order low-pass filter, as shown
in (9).

X(s) =
(

10
s + 10

)
Y(s). (9)

For the case of Y(s), it also results in associating low-pass filters that multiply one
state variable or the convolution of two of them, as shown in (10).

Y(s) =
(

28
s + 1

)
X(s)−

(
400

s + 1

)
X(s) ∗ Z(s). (10)

For the case of Z(s), one can associate (11). However, as X(s) is given in (9), one can
derive an equation that includes a transfer function equivalent to a biquadratic active filter,
as given in (12), which also performs the convolution Y(s) ∗ Y(s).

Z(s) =
(

400
s + 8/3

)
X(s) ∗ Y(s), (11)

Z(s) =

(
4000

s2 + 38
3 s + 80

3

)
Y(s) ∗ Y(s). (12)

Equations (9), (10), and (12) can be simulated as the block description shown in
Figure 9, which shows the labels of the three state variables and the first- and second-order
(biquadratic) transfer functions, which are designed with OTA-C filters herein.

(
10

s+10

)
X(s)

Y (s)

Z(s)

(
28
s+1

)

(
400
s+1

)
∑+

−

×

×
(

4000
s2+ 38

3 s+80/3

)

Figure 9. Block diagram description associated to Equations (9), (10), and (12).

As shown in Figure 9, the convolution operations can be performed using a multiplier
circuit, which can be designed with CMOS technology, as already shown in the tutorial
given in [17]. In the same manner, the transfer functions can be associated to active filters
that can be designed with OTA-C topologies, as shown in the tutorial [28]. The integrator
based on OTA-C is shown in Figure 10. In this case, the transconductance of the OTAs and
capacitance values can be calculated from the transfer function in voltage mode given at
the bottom of the figure.
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gm2

−

+

gm1

+

− C

Vi

Vo

Vo
Vi
=

gm1
sC+gm2

Figure 10. Structure of an adjustable integrator OTA-C circuit in voltage-mode operation.

The block diagram shown in Figure 9 can be macro-modeled using integrators, mul-
tipliers, and OTA-C active filter topologies to generate the design shown in Figure 11. It
can be appreciated that Figure 9 embeds four transfer functions whose OTA-C topologies
require the values of transconductances (gm) and capacitances that must be suitable for
CMOS design. Table 1 lists the values of the transconductances and capacitances associated
to CMOS first- and second-order active filters.

gm1

−

+

gm1

+

− C1

gm4

−

+

gm3

+

− C3

gm2

−

+

gm1

+

− C2

gm3

−

+

gm3

+

− C4

gm5

−

+

gm3

+

− C3

X(s)

Y (s)

Z(s)

×

+

−

+

−

×

+

−

+

−

Figure 11. Macro-modeling the block description shown in Figure 9 by using multipliers, integrators,
and OTA-C active filter topologies.
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Table 1. Transconductance (gm) and capacitance values to accomplish each transfer function shown
in Figure 9, which are designed with OTA-C topologies as shown in Figure 11.

Active Filter gm [µS] Capacitance [pF]
10

s+10 gm1 = 164.44 C1 = 16.44
28

s+1 gm1 = 164.44, gm2 = 5.87 C2 = 5.87
400
s+1 gm3 = 500, gm4 = 1.25 C3 = 1.25
4000

s2+38/3s+80/3 gm3 = 500, gm5 = 3.32 C4 = 50

4. Design of OTA-C Biquad Filters

To accomplish each of the macro-modeling specifications of the OTA-C topologies,
it is necessary to design five different transconductance (gm) values. These gm must be
suitable for the four active OTA-C filters listed in Table 1. For instance, the first of the OTAs
will have the schematic structure shown in Figure 12, which is taken from [32], in order
to achieve gm ≈ 164.44µS. After sizing the MOSFETs, the width (W) and length (L) of the
channel of each transistor and the resistor value are listed in Table 2.

M3 M4

M2

M6

M1Vi1 Vi2

VDD

Vo

VSS

M5

R

Figure 12. Design of an OTA to obtain gm ≈ 164.44 µS.

Table 2. W/L values of each MOSFET for the OTA shown in Figure 12, in order to obtain gm ≈
164.44µS.

MOSFET W/L Dimensions [µm] Value [kΩ]

M1, M2 6/0.54 -
M3, M4 24/0.54 -
M5, M6 12/0.54 -

R - 75

For the case of obtaining gm2 , gm4 , and gm5 , one can use a variant of the OTA shown
in Figure 12. Briefly, the updated topology includes source degeneration using resistors,
as detailed in [33] and shown in Figure 13, where R1 = R2, which can be varied to tune
the desired gm value. Some authors just vary the current bias, as shown in [34]; however,
the transconductance may become nonlinear, so the best solution herein is the use of source
degeneration topologies.
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M3 M4

M2

M6

M1Vi1 Vi2

VDD

Vo

VSS

M5

R

R1 R2

Figure 13. Source degeneration-based OTA design.

Finally, for the implementation of the OTA whose transconductance value should be
gm3 = 500 µS, the two-stage Miller topology shown in Figure 14, which is taken from [32],
is implemented with its respective compensation stage composed of Rc and Cc. Table 3
shows the W/L dimensions of each MOSFET, as well as the passive circuit element values.

M3 M4 M5

Rc
Cc

M2

M6

M1Vi+ Vi−

VDD

Vo−

M7
M0

R

VSS

Figure 14. Two-stage OTA to obtain gm3 = 500 µS.
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Table 3. W/L dimensions of the MOSFETs and circuit element values of the two-stage OTA shown in
Figure 14.

MOSFET W/L [µm] kΩ pF

M1, M2 6/0.54 - -
M3, M4 24/0.54 - -
M0, M6 12/0.54 - -

M5 48/0.54 - -
Rc - 1.25 -
R - 20 -

Cc, CL - - 0.5

The direct CMOS design from Figure 11 mitigates chaotic behavior due to the fact that
the biquadratic filter requires finding the right place for the poles, which is established
as follows: The mathematical description of a second-order or biquadratic filter that
satisfies (12) is given in (13).

H(s) =
kω2

n
s2 + 2δωn + ω2

n
, (13)

where δ is the relative damping factor and ωn is the undamped natural frequency. In this
manner, (12) can be re-ordered as given in (14).

Z(s) =
400σ

s2 + (β + σ)s + (βσ)
Y(s) ∗ Y(s), (14)

where it can be seen that ωn =
√

βσ and 2δωn = (β + σ), so that at the end, the damping
factor can be described by (15).

δ =
(β + σ)

2
√

βσ
. (15)

The damping factor can be tuned to generate the desired behavior, which, in this
case, is chaotic behavior. Therefore, the damping factor depends on the values of σ and β,
as shown in (15), so depending on the value of δ, a system behaves as follows:

If δ > 1, the system is overdamped.
If δ = 1, the system is critically damped.
If δ < 1, the system is underdamped.
If δ = 0, the system is not damped, and it tends to oscillate.

By setting σ = 10, then the damping factor depends on β, as given in (16).

δ =
(β + 10)
2
√

10
√

β
=

(10 + β)

2
√

10
· 1√

β
, (16)

and plotting this function can help to visualize how δ depends on the values assigned to
β. Thus, by plotting the function given in (16), as shown in Figure 15, one can appreciate
how the system behaves for values β ̸= 8/3. In addition, one can see that point A
on the graph represents the value of β = 8/3. In order to guarantee that the CMOS
design of Lorenz systems based on biquadratic filters remains oscillating with chaotic
behavior, a value of β = 15 is chosen in order to modify its behavior over time. As a
result, the SPICE simulations of the CMOS and OTA-C-based Lorenz systems are shown in
Figures 16 and 17.
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Figure 15. Plot of δ given in (16) as a function of β.

Figure 16. Time series of Lorenz system designed with 180 nm CMOS integrated circuit technology
from the OTA-C-based design shown in Figure 11.

(a) Perspective on X − Y. (b) Perspective on X − Z. (c) Perspective on Y − Z.

Figure 17. Phase portraits of Lorenz system designed with OTA-C topologies, in which the damping
factor of the biquadratic filter is tuned by setting β = 15.
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5. Chaotic Masking Using OTA-C Filters

As described above, chaotic masking based on two synchronized systems in a master–
slave topology can be performed as shown in Figure 5, where it can be appreciated that state
variable Y is used to mask a signal. First, the simulation results of synchronizing two CMOS
Lorenz systems using the Pecora and Carroll technique are shown in Figure 18a for state
variable Y, whose are lower than 300 mV, and in Figure 18b for state variable Z, whose
amplitudes are lower than 800 mV. The synchronization results can also be appreciated
by plotting both state variables of the master and slave systems. So, Figure 19a shows the
synchronization result for state variables Y, and Figure 19b shows the synchronization
result for state variables Z. A good related work on synchronizing a numerical solution
in a computer with an analog circuit can be found in [35]; other authors show how to
reconstruct a system from data estimating additional members in resulting equations [36].
In this work, the original equations are scaled to allow the amplitudes of the state variables
to be within ±1; then, they are synthesized by OTA-C topologies. Figure 20 shows the syn-
chronization errors of the CMOS designs for state variables Y and Z of the master and slave
systems. In each case, the root mean squared errors (RMSEs) are RMSEY = 67.94 × 10−6

and RMSEZ = 101.68 × 10−6.

(a) Time series corresponding to Ym and Ys. (b) Time series corresponding to Zm and Zs.

Figure 18. Time-series results of two CMOS Lorenz systems designed with OTA-C active filters.

(a) Synchronization between Ym and Ys. (b) Synchronization between Zm and Zs.

Figure 19. Synchronization results of two CMOS Lorenz systems designed with OTA-C active filters.
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(a) Synchronization error between Ym and Ys. (b) Synchronization error between Zm and Zs.

Figure 20. Errors of the synchronization of two CMOS Lorenz systems designed with OTA-C
active filters.

By designing two CMOS Lorenz systems with OTA-C topologies, as detailed in
Section 4, a whole CMOS secure communication system is developed from Figure 11.
The master and slave systems provide chaotic times series taken from their state variables
Ym and Ys, respectively. In the case of the CMOS design proposed herein, the transmitted
signal (A(t)) is a sinusoidal one and is masked with Ym to generate signal B(t), i.e., the
channel that encrypts the input signal. As the slave system is well synchronized with the
master one, the original signal can be recovered by subtracting the chaotic time series,
obtaining C(t) = B(t)− Ys = (A(t)− Ym)− Ys. Finally, as Ys = Ym, C(t) = A(t). This can
be appreciated in Figure 21, where A(t) = V(VIN), B(t) = V(VY), and C(t) = V(OUT).
It can be seen that during the transient behavior, one can see a pretty small difference
between V(VIN) and V(OUT), but after about 0.6 µs, the error is almost zero, indicating
that the recovered signal is the same as the transmitted one, while the encrypted one is
masked in the chaotic time series.

Figure 21. Chaotic masking of a sinusoidal signal with chaotic time series by using the scheme shown
in Figure 5 and designing the whole system with 180 nm CMOS integrated circuit technology.
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Further research can be performed considering the secrecy analysis of the proposed
communication system, as done in the recent works [37–39], showing resistance to various
attacks.

6. Conclusions

We here show the design of Lorenz systems using OTA-C active filters implemented
with 180 nm CMOS integrated circuit technology. As a particular case, the CMOS design
consists of implementing three first-order low-pass filters and one biquadratic filter, whose
damping factor is tuned to guarantee chaotic behavior, so that coefficient β in the original
Lorenz system is updated from 8/3 to 15, as detailed in Section 4.

A secure communication system is simulated by using the original values of the
Lorenz systems that are simulated in Simulink. Afterwards, the mathematical model is
scaled to allow for CMOS design that requires the amplitudes of the state variables to be
bounded between ±1 Volt. The chaotic masking achieved by using two Lorenz systems
synchronized in a master–slave topology and designed with CMOS OTA-C blocks shows
its appropriateness for real applications in secure communications that require low-voltage
supply, instead of using embedded systems as field-programmable gate arrays, which
require higher voltage levels and power supply.
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