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Abstract: This paper proposes the influence analysis of silicon carbide (SiC) MOSFET’s parasitic
output capacitance on a dual active bridge (DAB) converter. Power converters are required for DC
grids and energy storage. Because SiC metal-oxide-semiconductor FETs (MOSFETs) have lower
on-state resistance and faster reverse recovery time than Si MOSFETs, they can be controlled with
lower losses and higher frequencies. MOSFETs have a parasitic capacitance. Because of the output
parasitic capacitance, the switch voltage does not rise instantaneously during switching but has a
delay. The output parasitic capacitance of the switch depends on its drain-to-source voltage, and
this parasitic capacitance affects the output of the DAB converter by delaying the switch voltage. In
this paper, in order to analyze the effect of the parasitic capacitance on the DAB converter output,
the delay time was calculated through a formula, and this value was compared with a simulated
value. In addition, the effect of the parasitic capacitance of the SiC MOSFET on the output of the DAB
converter was presented by comparing the actual output voltage with the ideal output voltage and
analyzing the effect of the output voltage according to the delay.

Keywords: DC–DC converter; DAB converter; SiC MOSFET; parasitic capacitance

1. Introduction

Recently, interest in renewable energy, electric vehicles, and microgrids has increased
owing to environmental issues and carbon-neutral policies. DC power is increasing owing
to the increase in renewable energy sources, and the number of devices using DC is
also increasing; therefore, the demand for DC power distribution and energy storage is
increasing. Power converters, such as bidirectional DC–DC converters, are required for DC
grids and energy storage [1–4].

Dual active bridge (DAB) converters have been proposed for high-power density
high-power conversion systems [5–7], and many studies have been conducted because
of the advantage of performing bidirectional power transfer with a simple structure [8].
A DAB converter consists of a full-bridge switch across a high-frequency transformer. It
has full-bridge switches at both ends, transmits power using the leakage inductance of the
transformer, and uses a series inductor to obtain the necessary inductance [5,9].

The DAB converter transfers power bidirectionally by using the phase shift between
the primary and secondary side switches. Switches use metal–oxide–semiconductor field
effect transistors (MOSFETs) or insulated-gate bipolar transistors [10,11]. A high switching
frequency is required for high-efficiency, high-density power conversion. Silicon carbide
(SiC) MOSFETs, which are SiC-based power semiconductors, have attracted attention as
next-generation semiconductors, along with gallium-nitride-based power semiconduc-
tors [12,13]. They have a higher breakdown voltage than conventional Si-based switches
but a low loss because of their low on-resistance (RDS(ON)) and excellent heat dissipa-
tion characteristics, so it is possible to achieve high system efficiency and density using
high frequencies [14].
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The phase control of the DAB converter uses single-phase-shift (SPS) control for ease
of control. The SPS method also helps achieve zero-voltage switching (ZVS) over a wide
area when the input/output voltage ratio is 1 [15–18].

A MOSFET has a structure in which an oxide film and a PN junction are formed,
and a diode is embedded. Parasitic capacitance exists between the gate, drain, and source
owing to the capacitances of the oxide film and PN junction. This parasitic capacitance
affects electromagnetic emission and the drain–source voltage rise and fall times [19].
Parasitic capacitors cause switch turn-on and turn-off transients and considerably increase
switching energy losses [20]. Additionally, improved dynamic performance is required
when controlling power flow in aerospace applications [21,22].

Therefore, in this paper, the effect of parasitic capacitance on the output is analyzed
when the DAB converter is controlled by the commonly used SPS method. First, an equation
for calculating the delay time of switch voltage change caused by parasitic capacitance and
leakage reactance resonance is presented, and the results are compared with the result of
the simulation. In addition, the effect of the parasitic capacitance on the DAB output is
compared and analyzed through simulation and experiment. The results analyzed through
this paper can be applied as considerations for precisely controlling DAB and reducing loss.

Section 2 describes the DAB converter operating characteristics. Section 3 discusses
the parasitic capacitance of switches. Section 4 reports the switch parasitic capacitance
analysis simulation results and experimental results. Section 5 presents the conclusion.

2. Operation Characteristics of DAB Converter

Figure 1 shows a DAB converter circuit. The DAB converter is an isolated bidirectional
DC–DC converter that consists of a full-bridge switch and an additional series inductor
across a high-frequency transformer. All switches of the DAB converter use a 50% duty
ratio and transfer bidirectional power using the phase shift (φ) between the primary and
secondary side voltages [23]. If the phase of the primary side is faster than that of the
secondary side, power is transferred from the primary to the secondary side. If the phase
of the secondary side is faster, power is transferred from the secondary to the primary side.
The voltage difference caused by the phase shift is applied to the inductor, which stores
energy and delivers power based on the phase shift.
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Figure 1. DAB converter circuit.

Figure 2 shows the operating waveform according to the SPS switch control of the DAB
converter [5]. The SPS control method is widely used as the simplest method for transferring
power with only a phase shift between the primary- and secondary-side switches.
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Figure 2. SPS control DAB converter operation waveform.

3. Parasitic Capacitance of Switches

Figure 3 shows the parasitic components of the MOSFET. In MOSFETs, the gate, drain,
and source are insulated by an oxide film, and there is a freewheeling diode between the
drain and source. When the switch is off, the energy stored in the inductor flows through
the freewheeling diode. The parasitic components are divided into the input parasitic
capacitance (Ciss = Cgs + Cgd), output parasitic capacitance (Coss = Cds + Cgd), and return
parasitic capacitance (Crss = Cgd). Because of the parasitic capacitance, the voltage across
the switch does not instantaneously rise or fall during switching but changes with a delay
owing to the effect of the parasitic capacitance.
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Figure 4 shows the equivalent circuit according to the switching operation of the DAB
converter when the parasitic capacitance in the SiC MOSFET is considered. The full-bridge
switch of the DAB converter operates in a complementary manner. If the switches of the
legs are turned on at the same time, the switches can burn out and have dead time. During
the dead time, all switches are turned off, and the parasitic capacitance of the switch is
charged and discharged because of the energy stored in the inductor in the previous state.
The parasitic capacitors of switches Q2 and Q3 are charged such that the voltage across the
switch becomes equal to the input voltage. The parasitic capacitors of switches Q1 and Q4
are discharged, the diode is turned on, and the voltage across the switch is kept close to 0 V.
With this operation, the DAB converter achieves ZVS.
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In the equivalent circuit in Figure 4b, during dead time, the output capacitance (CQ) of
the SiC MOSFET is in series resonance with the leakage inductance (LL), and the resonance
frequency (fr) is as follows.

fr =
1

2π
√

LLCQ
(1)

The current flowing by the leakage inductance charges and discharges the parasitic ca-
pacitance of the switching element during the dead time. When all the parasitic capacitances
of the switching elements are the same and the loss is ignored, the relationship between the
current (IL) flowing through the leakage inductance and the current (IC) flowing through
the parasitic capacitance is as follows.

IL =
1
2

IC (2)
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The energy stored in the leakage inductance must be equal to or greater than the
energy required to charge and discharge the parasitic capacitance during the dead time
for ZVS operation. Therefore, the relationship between the energy stored by the leakage
inductance and the energy supplied to the parasitic capacitance can be expressed using
Equation (3). Here, K is the number of switches, ILp is the peak value of the inductor
current, and VQp represents the peak value of the voltage across the parasitic capacitance.

1
2

ILI2
Lp ≥ K

1
2

CQV2
Qp (3)

In the DAB converter, leakage inductance current changes as follows. If the ratio of
the primary voltage and the secondary voltage considering the K = Vp/nVs is set to 1 for
the efficiency and wide ZVS range of the DAB converter, Equation (5) becomes 0.

As a result, the change in leakage inductance current is expressed by Equation (4), and
the maximum value of leakage inductance current can be expressed by Equation (6).

0 ∼ φ : ∆IL =
VL

ZL
φ, VL = VP + nVs (4)

φ ∼ (π−φ) : ∆IL =
VL

ZL
(π−φ), VL = Vp −Vs (5)

ILP =
∆IL

2
=

Vp + nVs

ZL × 2
×φ (6)

In general, a DAB converter is configured as a full bridge using four switching elements
on the primary side, so a K of 4 is used. Using the above conditions and Equation (3), the
parasitic capacitance voltage VQp can be obtained as shown in Equation (7).

The parasitic capacitance voltage can be expressed as follows using the resonant
frequency of Equation (1) and the peak voltage of Equation (7).

VQp ≤

√
LL × I2

LP
K×CQ

=

√
LL × I2

LP
4×CQ

(7)

Because the parasitic capacitance voltage is charged up to the input voltage or dis-
charged from the input voltage to 0 during the dead time, when the condition of Equation
(9) is applied to Equation (8), the time for the parasitic capacitance voltage to rise can be
calculated as in Equation (10). The time in Equation (10) eventually becomes a delay time
that impedes the voltage change because the voltage does not change instantaneously and
rises for a certain time.

VQ = VQp sin(2πfr × t) (8)

VQ = Vin (9)

t =
sin−1

(
Vin
VQp

)
2πfr

(10)

Figure 5 shows the voltage characteristics of the DAB converter according to the delay
time. The delay of the primary-side switch voltage decreased the magnitude of the inductor
voltage, but the delay of the secondary-side switch voltage increased the magnitude of the
inductor voltage. So, area A represents the effect of the primary-side parasitic capacitance
on the leakage inductance voltage, and area B appears due to the impact of the secondary-
side parasitic capacitance; when both areas are the same, the effect of the voltage delay due
to the parasitic capacitance can be compensated.
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To satisfy this condition, the delay time due to the secondary-side parasitic capacitance
must be the same as the primary-side delay time, and considering the turns ratio, the
following conditions can be created.

tp =
sin−1

(
Vin

VQpp

)
2πfrp

= ts =
sin−1

(
Vout
VQps

)
2πfs

=

sin−1
(

Vin× 1
n

VQpp× 1
n

)
2πfs

(11)

For tp and ts to be equal, frp and frs must be equal. Using this condition, the optimal
size of the secondary parasitic capacitance based on the primary parasitic capacitance or
the optimal size of the primary parasitic capacitance based on the secondary parasitic
capacitance can be calculated.

frp =
1

2π
√

LL ×CQp
= frs =

1

2π
√

1
n2 LL ×CQs

(12)

CQp =
1

n2 ×CQs or CQs = n2CQp (13)

Figure 6 shows the parasitic capacitance according to the drain–source voltage of the
SiC MOSFET used in this study. Considering the operating voltage of the DAB converter,
the primary-side switch was a Cree C3M0016120K, and the secondary-side switch was
a Cree C3M0030090K. The parasitic capacitance of the MOSFET changes according to
the drain–source voltage of the switch, and the parasitic capacitance decreases as the
voltage increases.
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Figure 6. Parasitic capacitance by drain–source voltage of MOSFET: (a) C3M0016120K; (b) C3M0030090K.

Table 1 lists the output parasitic capacitances of the switch according to the input and
output voltages of the DAB converter. To analyze the effect of parasitic output capacitance,
2 times and 0.5 times of parasitic capacitance were selected based on 1 nF. It was configured
based on the voltages when the parasitic capacitances of the primary-side switch were 2, 1,
and 0.5 nF [24,25].

Table 1. Output parasitic capacitances according to drain–source voltage.

C3M006120K C3M0030090K

VDS Coss VDS Coss

13 V 2 nF 8.125 V 1.5 nF
33 V 1 nF 20.625 V 1.1 nF

133 V 0.5 nF 83.125 V 0.4 nF

4. Effect Analysis of Switch Parasitic Capacitance through Simulation and Experiment

Figure 7 shows the DAB converter simulation circuit, which was configured consider-
ing the dead time and parasitic capacitance of the switch.
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Table 2 lists the simulation conditions and the output capacitances according to the
switch voltages in Table 1.
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Table 2. DAB converter specification.

Parameter Symbol Value

Input voltage Vin(V) 13~33
Output voltage Vout(V) 8.125~83.125

Switching frequency FSW(kHz) 100
Number of turns n(turn) 1.6

Leakage inductance LL(uH) 52
Dead time DT(ns) 380

Primary-side output capacitance CQp(nF) 0.5~2
Secondary-side output capacitance CQs(nF) 0.4~1.5

Load RLoad(Ω) 25

Figure 8 shows the results based on the simulation conditions. It shows the waveform
of the switch of the first leg on the primary side. During the dead time, the energy stored
in the inductor in the previous state charges the parasitic capacitance of the switch, and the
voltage across the switch increases to the input voltage because of the parasitic capacitance.
The voltage does not change instantaneously according to the parasitic capacitance of the
switch; however, the parasitic capacitance is charged and delayed. The delay in the rising
voltage is affected by the parasitic capacitance, which varies with input voltage. The lower
the input voltage, the larger the parasitic capacitance and voltage delay. When the input
voltage is 13 V, it has the largest difference compared with the rated output voltage.
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Table 3 shows a comparison between the delay time calculated using Equation (10)
and the delay time measured through the simulation. The delay time calculated using
Equation (10) and the time measured through the simulation are almost the same.
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Table 3. Delay time calculated using equation.

Vin[V] Calculation Using Equation (10) Simulation

13

φ = π
2 (1−

√
1−( 8×100k×52µ×2.64

1.6×13×8.125 )) = 0.2042π

218 nsfr =
1

2π
√

52×10−6×2×10−9
= 493,518.528Hz

ILp= (13+1.6×8.125)×0.2042π
2×2π×100k×52µ = 0.25525

VQp=
√

52×10−6×0.255252

4×2×10−9 = 20.578

t= sin−1( 13
20.578 )× 2π

360
2π×493,518 = 220.52ns

33 t =
sin−1( 33

73.875 )×
2π
360

2π×697,940 = 105.59ns 106 ns

133 t =
sin−1( 133

421.068 )×
2π
360

2π×987,037 = 51.82ns 52 ns

Table 4 shows the simulation results of the output voltage difference caused by the
parasitic capacitance.

Table 4. Simulation results considering parasitic capacitance.

Input Voltage Ideal
Output Voltage

Simulation
Output Voltage Difference

13 V 8.125 V 7.72 V 4.98%
33 V 20.625 V 20.17 V 2.2%

133 V 83.125 V 81.9 V 1.47%

Figure 9 shows the experimental configuration used in this study, where three experi-
ments were conducted with input voltages of 13, 33, and 133 V using a DC power supply.
An oscilloscope was used to check the operating waveform and input/output voltage, and
a power analyzer was used.
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𝐟𝐫 = 𝟏𝟐𝛑√𝟓𝟐 × 𝟏𝟎 𝟔 × 𝟐 × 𝟏𝟎 𝟗 = 𝟒𝟗𝟑, 𝟓𝟏𝟖. 𝟓𝟐𝟖𝐇𝐳 𝐈𝐋𝐩 = (𝟏𝟑 + 𝟏. 𝟔 × 𝟖. 𝟏𝟐𝟓) × 𝟎. 𝟐𝟎𝟒𝟐𝛑𝟐 × 𝟐𝛑 × 𝟏𝟎𝟎𝐤 × 𝟓𝟐𝛍 = 𝟎. 𝟐𝟓𝟓𝟐𝟓 

𝐕𝐐𝐩 = 𝟓𝟐 × 𝟏𝟎 𝟔 × 𝟎. 𝟐𝟓𝟓𝟐𝟓𝟐𝟒 × 𝟐 × 𝟏𝟎 𝟗 = 𝟐𝟎. 𝟓𝟕𝟖 

t = sin 1320.578 × 2π3602π × 493,518 = 220.52ns 

33 t = sin 3373.875 × 2π3602π × 697,940 = 105.59ns 106 ns 

133 t = sin 133421.068 × 2π3602π × 987,037 = 51.82ns 52 ns 

Table 4 shows the simulation results of the output voltage difference caused by the 
parasitic capacitance. 

Table 4. Simulation results considering parasitic capacitance. 

Input Voltage Ideal 
Output Voltage 

Simulation 
Output Voltage 

Difference 

13 V 8.125 V 7.72 V 4.98% 
33 V 20.625 V 20.17 V 2.2% 
133 V 83.125 V 81.9 V 1.47% 

Figure 9 shows the experimental configuration used in this study, where three exper-
iments were conducted with input voltages of 13, 33, and 133 V using a DC power supply. 
An oscilloscope was used to check the operating waveform and input/output voltage, and 
a power analyzer was used. 

 

Figure 9. DAB converter experimental setup.

Figure 10 shows the waveforms of the experimental results and the voltage waveforms
between the high- and low-side gate–source of the first leg of the primary side and the
drain–source voltage of the first switch. During the dead time, the voltage of the switch
rises to the input voltage, and a delay in the rising voltage appears because of the parasitic
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capacitance. The lower the voltage input to the switch, the more delay that occurs because
of the influence of the output capacitor. The higher the input voltage, the shorter the
delay time.
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Table 5 lists the input and output voltages based on the experimental conditions. The
lower the input voltage, the greater the difference from the rated output voltage; the higher
the input voltage, the smaller the difference.

Table 5. Experiment results.

Input Voltage Ideal
Output Voltage

Experiment
Output Voltage Difference

13 V 8.125 V 7.06 V 13.1%
33 V 20.625 V 18.86 V 8.55%

133 V 83.125 V 79.84 V 3.95%



Electronics 2023, 12, 182 12 of 15

When DAB is controlled only with the parasitic capacitance of the primary and
secondary SiC MOSFETs, the output voltage has an error with the rated value. In order
to solve this problem, it is necessary to adjust the first or second value to the size of
the optimal parasitic capacitance suggested in the paper. Table 6 shows the capacitance
additionally required on the secondary side when considering the optimum parasitic
capacitance condition.

Table 6. Optimum parasitic capacitance condition.

Input Voltage CQp CQs Optimal CQs Add CQc

13 V 2 nF 1.5 nF 5.12 nF 3.62 nF
33 V 1 nF 1.1 nF 2.56 nF 1.46 nF

133 V 0.5 nF 0.4 nF 1.28 nF 0.88 nF

Figure 11 shows the voltage response characteristics of the DAB converter when
the secondary-side parasitic capacitance is set to the optimum capacitance. When the
secondary side parasitic capacitance is set to an optimal value, the primary-side delay
time and the secondary-side delay time appear identical. Table 7 shows the output voltage
comparison when set to the optimum parasitic capacitance. When the secondary-side
parasitic capacitance is optimally set, there is almost no difference between the secondary-
side rated voltage and actual voltage.
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Table 7. Simulation results by optimum parasitic capacitance.

Input Voltage Ideal
Output Voltage

Simulation
Output Voltage Difference

13 V 8.125 V 8.152 V 0.33%
33 V 20.625 V 20.641 V 0.07%

133 V 83.125 V 83.129 V 0.005%

5. Conclusions

The output characteristics of the DAB converter were analyzed according to the
parasitic capacitance, which varies according to the voltage applied to the switch.

The MOSFET used in the DAB converter has a parasitic capacitance; therefore, the
voltage of the switch does not rise instantaneously but rises with a delay. It was confirmed
that the output voltage was lower than the rated output voltage owing to the delay in the
switch voltage rise. A difference occurred according to the voltage applied to the switch:
the larger the parasitic capacitance, the larger the voltage difference.

The experiment confirmed that a maximum voltage difference of 13.1% occurred over
the rated output voltage for a 13 V input. It was proved that, in the DAB converter, a
difference in output voltage resulting from the parasitic capacitance according to the input
voltage occurs, and it must be considered.

Future plans include studying the compensation of the output characteristics owing
to the delay in the voltage rise of the switch caused by the parasitic capacitance.
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