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Abstract: This paper presents a supervised learning scheme that employs key-frame extraction to
enhance the performance of pre-trained deep learning models for object detection in surveillance
videos. Developing supervised deep learning models requires a significant amount of annotated
video frames as training data, which demands substantial human effort for preparation. Key frames,
which encompass frames containing false negative or false positive objects, can introduce diversity
into the training data and contribute to model improvements. Our proposed approach focuses on
detecting false negatives by leveraging the motion information within video frames that contain
the detected object region. Key-frame extraction significantly reduces the human effort involved in
video frame extraction. We employ interactive labeling to annotate false negative video frames with
accurate bounding boxes and labels. These annotated frames are then integrated with the existing
training data to create a comprehensive training dataset for subsequent training cycles. Repeating
the training cycles gradually improves the object detection performance of deep learning models to
monitor a new environment. Experiment results demonstrate that the proposed learning approach
improves the performance of the object detection model in a new operating environment, increasing
the mean average precision (mAP@0.5) from 54% to 98%. Manual annotation of key frames is reduced
by 81% through the proposed key-frame extraction method.

Keywords: object detection; video surveillance; key-frame extraction; interactive labeling; deep learning

1. Introduction

Video surveillance systems are widely used for detecting objects or events of interest
in various applications, including evaluating traffic density [1], checking the safety of
public buildings [2], and monitoring abnormal behaviors in cattle barns [3]. In traditional
approaches, human operators must pay attention to video surveillance monitor screens
24/7 since events of interest can occur at any time. In cases, such as public safety, quickly
detecting events of interest is essential to provide an early alert, ensuring prompt response.

Intelligent video surveillance systems utilize advances in artificial intelligence and
computer vision techniques to achieve their stated goal automatically and autonomously.
Deep learning models are often used as the basis for these systems, and typically require an
initial step of identifying an object of interest to detect. This task involves encapsulating the
object inside the video frame with a tight bounding box. Currently, the most accurate and
real-time feasible approach is supervised learning-based deep learning algorithms, such
as YOLO [4], which require labeled data of at least 1500 images per class, with each class
instance appearing at least 10,000 times. Several public datasets, such as MS COCO [5]
and ImageNet [6], are available to help create pre-trained YOLO models, which can extract
common features, such as edges, textures, and contours, through the convolution process.
However, these pre-trained models may not perform well when detecting objects in target
surveillance videos that were not seen during training. Fine-tuning the pre-trained model
with new data from a new surveillance video can help achieve the expected accuracy,
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but the accuracy of the tuned model may significantly drop when deployed to monitor
another scene.

There are several approaches to improve the annotation process, including weakly
supervised learning, Mechanical Turk, and interactive learning. In weakly supervised
learning [7], object detection is trained using image-level class labels instead of detailed
bounding box annotations, simplifying and expediting the annotation process. However,
this method is only suitable when there is a single object in the image. Mechanical Turk [6]
is an annotation solution that outsources tasks to external parties, enabling faster annotation
by involving a larger number of people. However, this approach may not be suitable for
handling confidential data. On the other hand, interactive learning [8] combines human
and AI efforts in the annotation process, reducing human workload by annotating only the
data that AI fails to annotate accurately. While interactive learning has been successfully
applied in image segmentation data preparation [9], its application in object detection
remains relatively unexplored.

This paper presents a key-frame extraction method for collecting training images from
a surveillance video stream to improve the performance of a pre-trained deep learning
model in object detection. The proposed key-frame extraction scheme aims to effectively
reduce false positives of the object detection model in a new operating environment.
Key-frame extraction replaces human effort in screening important image frames for
training from the new video stream to build custom datasets. This module compares object
movement detection results using the optical flow algorithm [10] with the detection of
the deep learning model. Static surveillance cameras operate on the same background,
which is utilized by using optical flow because the object of interest will have movement in
the video surveillance scene. The key-frame extraction is followed by interactive labeling,
which labels the collected image frames with minimal human effort. Interactive labeling is
inspired by the success of interactive learning in building models in domains that require
an expert to annotate the data [11]. The proposed method uses an image classifier as
a human annotator assistant in annotating object interests. The human annotator only
needs to provide a bounding box with two points. The image is then cropped for each
bounding box, and the image classifier predicts which class the object in the bounding box
belongs to. The process is repeated several times until the retrained model achieves the
desired performance. Experiment results show that the proposed scheme improves the
performance of the object detection model in a new operating environment from 54% to
98%, measured via mAP@0.5, and reduces human effort by 81% compared to fully manual
annotation of the key frames.

This paper presents three main contributions: (1) A key-frame extraction scheme
to collect additional training images from surveillance videos to effectively reduce false
negatives of the retrained object detection model in a new operating environment; (2) An
interactive labeling scheme to annotate the collected images by incorporating an image clas-
sifier as a class labeling assistant, reducing human effort in the process; and (3) Evaluation
of the proposed key-frame extraction and interactive labeling schemes through quantitative
accuracy improvement experiments, applied to the YOLO real-time object detection model
in surveillance videos.

2. Related Work

Inspired by the way the human eye works, CNN models [12] automatically find fea-
tures in the image for object detection [13,14]. However, the drawback of deep learning
methods is the requirement for a large amount of labeled data. The accuracy and consis-
tency of annotations significantly impact the performance of these techniques. Therefore,
extending them to scenarios with many classes would be labor-intensive.

To address this problem, researchers proposed weakly supervised learning for object
detection [7]. The data needed to train the object detector based on deep learning is not
a bounding box with a label, but only the label of the object in the image. This method
generally uses two models, the pre-trained model and the target model, both of which have
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the same architecture. The pre-trained model has been trained with massive datasets, such
as COCO or ImageNet. This model can be a CNN-based model [15,16] or a transformer-
based model [14]. The target model then tries to learn from the results of the pre-trained
detection plus other modules. However, this method is limited to cases where there is only
one salient object in the image.

Videos have a special characteristic where the contents of neighboring frames are
similar. However, object detection in the video is not different from images, thanks to
the development of the YOLO [17,18] and RCNN [19,20] methods, which achieve high
accuracy and fast inference time. Thus, the remaining problem of how to scale the object
detection algorithm is about efficiently obtaining annotated data with low human effort
to feed the training of the object detection model. One way to address the problem is to
outsource the data annotation task, such as through Mechanical Turk [6]. There is no need
to design the best method for annotating data [21], including quality control [22]. However,
this method is not an option when the data to be annotated is confidential, as in animal
behavior or medical data.

Interactive learning [8] incorporates human-in-the-loop. This involves gradually
annotating data so that the annotator does not need to put in too much effort until the
model reaches the target accuracy. The method of selecting the next data to be annotated is
based on the level of error generated in the prediction results. The image with the highest
error is given priority for annotation for further learning. This approach is significant in
the case of image segmentation [9], as annotating image segmentation takes a long time per
image. A framework for interactive annotation [8] in object detection is less efficient as it
checks all the images in the dataset.

3. Key-Frame Extraction for Object Detection Model Training

The additional training method incorporates the concepts of incremental and active
learning. To improve the process of acquiring annotated data for fine-tuning object detection
models, key-frame extraction is used. The key-frame filtering process consists of three sub-
processes: motion detection (MD), object detection (OD), and false negative (FN) detection.
The input to the motion detection is two consecutive frames (frames X(t) and X(t + 1)) from
the target video stream, and the output is the bounding box of the moving object BMD(t)
within the frame. The input to the object detection process is a frame X(t), and the output
is the bounding box of the object of interest BOD(t) within the frame, along with its class
label. The FN detection process compares the intersection over union (IOU) between the
results of BMD(t) and BOD(t) to determine whether X(t) contains any FNs created via the
object detection model. A video frame that contains at least one FN object is marked as
XFN for interactive labeling. Figure 1 shows the flow of the key-frame extraction process.
During interactive labeling, the false negatives XFN are labeled by both a human annotator
and a trained image classifier (IC) working together to produce the ground-truth bounding
box, denoted as BGT.
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Figure 1. Overall diagram of key-frame extraction: (1) Additional training to improve the deep
learning-based object detection model using data on the VS database, (2) key-frame filtering to
collect the frames containing false negatives, and (3) interactive labeling for data annotation with less
human effort.

3.1. Key-Frame Filtering

Key-frame filtering aims to replace human effort in finding key frames, which are
frames in the video stream that have the potential to increase the accuracy of the object
detection model. Key frames are collected to form a dataset with high variability to cover
all possibilities that may occur later. This is a task that humans typically have to perform
manually with a video stream. To find this data automatically, we propose using a pre-
trained object detection model, such as YOLOv5, that has been tuned using the video
stream database. This tuned model can detect parts of the object of interest, but there is still
a high possibility that it may generate FP or FN results. FPs occur when the object detection
model predicts a wrong detection, while FNs occur when the object detection model fails
to find the object of interest. In this module, we focus on finding FNs by utilizing the
characteristics of the object of interest that moves in the scene captured via the surveillance
camera. We use dense optical flow (OF) [10] as the motion detector to compute M(t), which
includes the direction Md(t) and magnitude Mm(t) of the movement of each pixel from two
consecutive frames, specifically frames at time t and (t + 1) seconds:

Md(t) + Mm(t) = OF(X(t), X(t + 1)) (1)

The amount of 1 s depends on frame rate. For example, in a video stream with a frame
rate of 15 fps (frames per second), the frames at t and (t + 1) seconds correspond to frame
#1 and #16, and #16 and #31, etc. The amount of movement per pixel is then filtered using
a threshold θFil to separate pixels with moving objects and those without. This process will
generate a binary movement map BM(t):

BMi,j(t) =

{
1 if Mi,j

m (t) > θFil
0 else

(2)

With the binary map, we then use contour finding (CF) to localize moving parts that
have the possibility of containing objects of interest BMD(t):

BMD(t) = CF(BM(t)) (3)

The CF function used is based on the implementation by [23], which can be called
in Python 3 by invoking cv2.findContours from the OpenCV library. Figure 2 shows an
example of the results of each step. To determine whether the frame obtained by OF is false
negative or not, we compare it with the detection results from the object detection model
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which is denoted as BOD(t). The comparison is conducted by calculating the IOU value
between the two detection results:

IoU =
Area of Overlap
Area of Union

=
BMD(t) ∩ BOD(t)
BMD(t) ∪ BOD(t)

(4)
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Figure 2. Steps of motion detector on filtering the frame from the target VS.

We assume that an FN occurs when a moving object is detected by MD but not by OD.
There are four cases that may arise: (1) Both OD and MD detect the object; (2) OD detects
but not MD; (3) MD detects but not OD; and (4) Neither OD nor MD detects the object.
Of these four cases, only (c) is filtered to be passed to the next process. Cases (1), (2), and
(4) are discarded and no longer used. In one frame, there may be several objects that fall
into categories (c) and (b) at once. Such a frame will still be forwarded to the next process
because it indicates that there is at least one FN object in the frame. These collected FN
frames are then labeled using an interactive labeling process before being included in the
video stream database.

3.2. Interactive Labeling

Human annotators are typically tasked with localizing objects by drawing bounding
boxes and assigning class labels to those boxes. Interactive labeling aims to automate the
task of assigning class labels by using an image classifier model. The human annotator’s
only task is to provide a bounding box in the form of two points: the top-left and bottom-
right corners. The interactive labeling speeds up the annotation process and reduce human
effort to assign class labels when multiple objects of interest appeared in one frame. Figure 3
illustrates the interactive labeling process. We design the process so that the human
annotator is the first to annotate the object’s location. This is because OF bounding boxes
usually do not tightly capture the object due to its movement, making it slower to revise
the box than to create a new one. For revising, the human annotator will need to perform
four tasks: click the top-left corner of the bounding box, slide it to the correct location, click
the bottom-right corner of the bounding box, and slide it to the correct location. Creating a
new bounding box will only require two tasks: click the top-left corner of the bounding
box and slide it to the bottom-right corner.



Electronics 2023, 12, 2956 6 of 14

Electronics 2023, 12, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Steps of motion detector on filtering the frame from the target VS. 

We assume that an FN occurs when a moving object is detected by MD but not by 
OD. There are four cases that may arise: (1) Both OD and MD detect the object; (2) OD 
detects but not MD; (3) MD detects but not OD; and (4) Neither OD nor MD detects the 
object. Of these four cases, only (c) is filtered to be passed to the next process. Cases (1), 
(2), and (4) are discarded and no longer used. In one frame, there may be several objects 
that fall into categories (c) and (b) at once. Such a frame will still be forwarded to the next 
process because it indicates that there is at least one FN object in the frame. These collected 
FN frames are then labeled using an interactive labeling process before being included in 
the video stream database. 

3.2. Interactive Labeling 
Human annotators are typically tasked with localizing objects by drawing bounding 

boxes and assigning class labels to those boxes. Interactive labeling aims to automate the 
task of assigning class labels by using an image classifier model. The human annotator’s 
only task is to provide a bounding box in the form of two points: the top-left and bottom-
right corners. The interactive labeling speeds up the annotation process and reduce hu-
man effort to assign class labels when multiple objects of interest appeared in one frame. 
Figure 3 illustrates the interactive labeling process. We design the process so that the hu-
man annotator is the first to annotate the object’s location. This is because OF bounding 
boxes usually do not tightly capture the object due to its movement, making it slower to 
revise the box than to create a new one. For revising, the human annotator will need to 
perform four tasks: click the top-left corner of the bounding box, slide it to the correct 
location, click the bottom-right corner of the bounding box, and slide it to the correct lo-
cation. Creating a new bounding box will only require two tasks: click the top-left corner 
of the bounding box and slide it to the bottom-right corner. 

 
Figure 3. Interactive labeling process flow. Preliminary annotation and class revision is conducted 
by human (H) while class labeling is conducted by image classifier (IC), a ResNet18 model. 

Figure 3. Interactive labeling process flow. Preliminary annotation and class revision is conducted by
human (H) while class labeling is conducted by image classifier (IC), a ResNet18 model.

The first interaction with humans is called preliminary annotation. The output is the
bounding box of each object of interest in the XFN without a label.

Then, XFN is cropped according to the bounding box BGTα, producing images with
a single object inside. These images are passed to the image classifier to determine the
class of those objects, producing a bounding box with a preliminary class label BGTβ. The
image classifier used is a multi-class classifier with a ResNet18 [24] architecture, tuned
using a cropped image based on annotations in the VS database. The image classifier is also
fine-tuned in each iteration, producing IC-x, where x denotes the period number discussed
in detail in Section 3.3. The human annotator checks the class label of BGTβ and revises it if
necessary to finalize the newly annotated data used for additional training, which is XFN
and its ground truth label BGT.

3.3. Additional Training

Additional training (AT) refers to the process of adding well-annotated frames as
additional data for iterative fine-tuning of the model, as the training process is repeated
multiple times with an increasing amount of data until the desired level of accuracy is
achieved. Figure 4 illustrates how the amount of data increases with each training cycle.
Initially, the base model is created by training the object detector with the base dataset
(DB0), resulting in the base model. DB0 is a collection of images that have been manually
annotated in previous versions of VS, with the exception of the target VS. The database
already includes examples of the objects of interest, allowing the OD model’s total output
to be customized to the number of classes of interest. This process occurs during the
D(0) period.
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AT is carried out during the D(1) period. The length of the day intervals between D(1)
and D(0) may vary depending on the frequency of the object’s appearance in the VS. If the
object appears frequently, then the interval may be one day, but if the object rarely appears,
the interval may be longer than one day. During the time interval between D(0) and D(1),
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the trained OD model is used for inference on the target VS along with OF in the key-frame
filtering process. The results of the data obtained and annotated by the interactive labeling
process are then combined with DB0 to create a new VS database, DB1.

DB1 = DB0 + X1
FN (5)

In the D(1) period, we hypothesize that a large number of data will be successfully
added because the model has never seen new data in the target VS, thus generating many
false negatives. The new VS database is then split into training, validation, and testing sets.
Using the new data, the object detector and image classifier are fine-tuned again, resulting
in the AT-1 and IC-1 models, respectively. These models are then used to perform inference
on the target VS at an interval of D(1) to D(2). This process continues, where the base data
for the period from D(k − 1) to D(k) follows the same steps.

DBk = DBk−1 + Xk
FN (6)

That is how the additional training process is repeated until D(N) with final database
as DBN. The AT-N model has reached the desired accuracy target.

4. Experiment Results
4.1. Datasets

The data used to test the effectiveness of the key-frame extraction are from video
surveillance in two different locations during the daytime. Both locations have the same
task of detecting seven types of objects of interest: (1) tractor, (2) human, (3) bike, (4) truck,
(5) loader car, (6) car, and (7) delivery car. The first location has 740 annotated images, with
540 for training, 100 for validation, and 100 for testing. Each image is an RGB image with a
size of 1920 × 1080. The seven objects of interest were introduced in 540 training images,
which were then used as base dataset (DB0). Table 1 shows the distribution of each object’s
occurrence in each set. The other surveillance video is intended as a target VS simulation.
The video consists of frames with a rate of 15 FPS with a resolution of 1920 × 1080. Data
were recorded for 12 days, from 6 AM to 5 PM. Due to network instability, we only managed
to get continuous data records for a minimum duration of 5 s during the day, with a total
duration, as shown in Table 2. There can be multiple occurrences of objects of interest in
a scene.

Table 1. Distribution of object occurrences (number of instance) in base data.

No Class Train Val Test

1 Tractor 38 62 11
2 Human 307 9 251
3 Bike 33 9 19
4 Truck 20 3 4
5 Loader Car 125 18 266
6 Car 106 22 52
7 Delivery Car 76 28 263

Total 712 189 862

4.2. Experiment Setup

The experiment was divided into three stages to test the two methods: filtering,
annotating, and training. In the manual method, human annotators filter the frames with
high variability from the video recordings. The human annotators filter videos taken for
three days, which corresponds to D(0) to D(1). In parallel, the key-frame extraction method
performs key-frame filtering on the same video. Before filtering, the base model, which
is a YOLOv5 model, is trained using the base dataset. The human effort required for the
first method is recorded to later compare the efficiency of the key-frame filtering module.
After filtering, the data obtained using each method is annotated. The data obtained via



Electronics 2023, 12, 2956 8 of 14

the first method is manually annotated by giving bounding boxes and labels to each object
that appears in the frame, using the Computer Vision Annotation Tools (CVAT). The data
obtained via the key-frame extraction method is annotated using the interactive labeling
method. Before annotating, the image classifier is trained using the base data. The time
taken by humans to complete annotations in both methods is recorded.

Table 2. Target vs. Record Duration.

Day 1 2 3 4 5 6 7 8 9 10 11 12 Total

Total Video Duration (h) 8.3 11.1 5.3 5.7 11.7 12.3 11.2 11.8 11.4 8.7 8.6 12.1 118.1
Number of videos 37 41 23 12 26 23 24 24 28 49 17 23 327

The annotated data are then randomly split into training, validation, and testing sets
with a percentage ratio of 70:15:15 for manually gathered data and 75:25:0 for key-frame
extraction. This ratio is based on the number of images and object occurrences of each
class. The data obtained using key-frame extraction is not split into the test set because
the accuracy of the model with key-frame extraction data will be tested using the testing
set on the manually annotated data, which has more diverse data as it includes both FN
and FP data. The split data are then merged with duplicates from the base data to create
two databases: VSD-M(1) for the base data merged with annotations obtained via the
manual method, and VSD-K(1) for the base data merged with annotations obtained using
the key-frame extraction method. The base model is then fine-tuned using the VSD-M and
VSD-K data to produce the AT-M-1 and AT-K-1 models, respectively, which are tested using
the test set on VSD-M(1). The fine-tuning process is the same for both models, running
the training for 100 epochs with early stop using the same loss function and optimization
method used by the YOLOv5 author. The results obtained via the AT-M-1 and AT-K-1
models are then compared by calculating the mean average precision (mAP) with an IOU
threshold of 0.5. This metric is widely used to test the accuracy of the object detection
model [4,8,20] using the following:

mAP =
1
n

k=n

∑
k=1

APk (7)

where, n represents the number of classes. We set n to seven in the experiment. The filtering,
annotating, and additional training processes are then repeated three times, carried out
on the 20th–22nd, 23rd–25th, and 26th–28th of October. The accuracy improvement is
recorded for each period, along with the human effort required to complete the cycle.

4.3. Results and Analysis

Table 3 shows the results of our experiments as described in the scenario in Section 4.2.
There are four D(x) periods, and each key-frame extraction cycle required a total of 5.2 times
less human effort or reduced manual effort by 81% (Figure 5). We calculate this duration by
focusing only on the parts that cannot be replaced by humans, such as filtering important
frames from surveillance video and annotating selected frames. Processes that can be
automated, such as organizing files, starting the model training, and testing the model,
are ignored.

Table 3. Total human effort used using manual and the key-frame extraction method on each cycle.

D(x)
Manual Key-Frame

Extraction (m)Filtering (m) Annotating (m) Total (m)

1 122.4 80.5 202.9 63.8
2 133.9 105.7 239.6 36.8
3 179.6 133.1 312.7 50.8
4 126.7 89.7 216.4 34.1
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For the manual method, the filtering and annotating processes take time. Our exper-
iment results show that the filtering process takes longer than annotating. The filtering
process is carried out at a video speed of 25×, and the goal is to crop the part of the video
that has at least one object of interest. The time it takes depends on the duration of the video
and how many objects pass through the scene during that period. This can be seen in D(1)
and D(4), which require longer filtering than D(2) and D(3), because the video duration
during those periods is longer. We found that the average time required for manual filtering
was 4.8 min per hour of video recording. On the other hand, the annotating process is also
highly dependent on how many frames were successfully filtered during that period. The
more frames that need to be annotated, the longer the annotation process will be. This
does not depend on the duration of the video to be filtered, but only on how many objects
pass through the video surveillance. We found that the average time required for manual
annotating was 21.6 s per frame.

The key-frame extraction method requires only the annotating process, as the filtering
process is carried out automatically by the key-frame filtering module, and therefore does
not require human effort. Our experimental results show that the average time needed for
interactive labeling is 17.3 s per frame, which means a reduction of 20% in the annotation
process time. The details of this time calculation will be discussed in Section 5.3.

Figure 6 shows the accuracy of the YOLOv5 nano model trained with VSD-M(x) and
VSD-K(x) data resulting in the AT-M-x and AT-K-x models, respectively. We measured
the accuracy based on the mAP metric with a threshold of 0.5. Our experimental results
show that the accuracy obtained between AT-M and AT-K is quite similar. The comparison
between the accuracy of AT-M-x with the corresponding AT-K-x shows only a 0.2–0.3%
difference. This indicates that the key-frame extraction method does not lead to a decrease
in accuracy. The accuracy values of the two models are also significantly higher than
the base model that was not trained with data from the target VS. This highlights the
importance of introducing new data in the use of supervised learning-based models, such
as YOLOv5.
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Our experiments also show that there is a decreasing trend in the accuracy of the
model as the amount of data increases. As seen, both AT-M-1 and AT-K-1 have lower
accuracy in the fourth cycle. This is because the amount and variability of the data are
getting higher so that the accuracy drops again. This indicates that additional learning is
necessary until we achieve a high accuracy. We also observed a change in trend between
D(3) and D(4), where the accuracy of each model AT-M-x and AT-K-x from 1–2 showed an
increase in accuracy. This is due to the increase in data in D(4), which has many similarities
with the data taken in D(1) and D(2), leading to an increase in the number of similar test
cases. Consequently, both models report a slight increase in accuracy.

5. Ablation Study
5.1. Key-Frame Filtering Effect

We also recorded the number of frames that were collected and finally annotated for
use in the training process. The amount of data collected is not the same as the amount
annotated because there are consecutive frames that are still too similar to be used in the
training process. Cases like these are very common in frames that are collected using
the manual method (Figure 7). This is because in the manual frame filtering process, the
method used is to crop videos with objects of interest moving in them and then take frame
pieces every 1 s. For objects of interest, such as motorcycles and various types of cars, 1 s is
long enough to provide many different conditions, whereas for objects, such as humans,
which tend to have slower movement, the frames will still be similar. Experimental results
show that for the manual case, the ratio of collected and annotated data is close to 10:1.

The data collected via key-frame filtering is much smaller. The ratio between manually
collected frames and key-frame filtering is close to 13:2. The small amount of data that
needs to be annotated also contributes to reducing human effort in the overall key-frame
extraction process compared to manual filtering. This shows the effectiveness of key-
frame filtering in capturing only important frames without involving human intervention.
However, not all captured frames are suitable for annotation. Some frames may contain
movement of objects that are not part of the object of interest, such as birds, dogs, and the
movement of tree leaves. This is expected since the key-frame filtering module is designed
to capture all movements in the video surveillance scene. From the experimental results,
the ratio between frames collected and annotated with our key-frame filtering method
is 11:4.
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5.2. Classifier Evolution

We tested the accuracy of the interactive labeling tool that we used in every cycle. The
accuracy is calculated using a simple metric, which is the number of correct predictions
without correction from the human annotator compared to all predictions. Figure 8 shows
the accuracy of the interactive labeling tool. As the amount of data increases in the next
cycle, there is a downward trend in the accuracy of the IC. Similar to YOLOv5, the IC-1,
which is not trained using data from the target VS, has a low accuracy in this case, below
60% in each cycle. However, on IC-2, the accuracy increases to 95%, although it drops again
when used in D(3) and D(4). This shows that ResNet18 as an IC also requires additional
training, similar to YOLOv5. However, this additional training process does not require
additional human effort, as all processes, such as frame extraction for additional ResNet18
training, can be conducted automatically using a scripted command.
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5.3. Interactive Labeling Breakdown

We provide details on the distribution of human effort in the interactive labeling
process. In Section 3.2, interactive labeling is divided into two phases: preliminary and
revision. Figure 9 shows the amount of human effort spent on each phase in each cycle.
Experiments show that the preliminary phase requires more effort, on average nearly three
times the time required for the revision phase. This is expected because in the preliminary



Electronics 2023, 12, 2956 12 of 14

process, the human annotator requires more interaction since they have to move the cursor
to each position of objects that are not close together. In the case of revision, the position of
the changed class is not far away since there are only seven selected classes. We hypothesize
that this time distribution may change depending on the number of classes of the object
of interest.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 8. Accuracy of the image classifier during the interactive labeling. 

5.3. Interactive Labeling Breakdown 
We provide details on the distribution of human effort in the interactive labeling pro-

cess. In Section 3.2, interactive labeling is divided into two phases: preliminary and revi-
sion. Figure 9 shows the amount of human effort spent on each phase in each cycle. Ex-
periments show that the preliminary phase requires more effort, on average nearly three 
times the time required for the revision phase. This is expected because in the preliminary 
process, the human annotator requires more interaction since they have to move the cur-
sor to each position of objects that are not close together. In the case of revision, the posi-
tion of the changed class is not far away since there are only seven selected classes. We 
hypothesize that this time distribution may change depending on the number of classes 
of the object of interest. 

 
Figure 9. The amount of human effort spent on each phase in each cycle. 

Our experiments also show that there is a downward trend in the time required for 
revision. In D(1), the ratio between the preliminary and revision time is 2:1. Then, it de-
creased significantly in D(2) to 3.7:1 and decreased gradually to 4.2:1 in D(4). This is be-
cause the new IC is trained using target VS data in D(2). As the amount and variability of 
the data used to train ICs increases, the accuracy also gets better so that the time required 
for revision tends to decrease. This result is related to the evolution of the image classifier. 

Figure 9. The amount of human effort spent on each phase in each cycle.

Our experiments also show that there is a downward trend in the time required for
revision. In D(1), the ratio between the preliminary and revision time is 2:1. Then, it
decreased significantly in D(2) to 3.7:1 and decreased gradually to 4.2:1 in D(4). This is
because the new IC is trained using target VS data in D(2). As the amount and variability of
the data used to train ICs increases, the accuracy also gets better so that the time required
for revision tends to decrease. This result is related to the evolution of the image classifier.

5.4. Training Breakdown

Using the key-frame extraction method reduces the training duration of YOLOv5.
The training duration consistently had an upward trend in each cycle, which is due to the
increasing amount of data in each cycle (Figure 10). However, in terms of the duration
comparison between manual and key-frame extraction, there is a significant gap. At D(1),
the key-frame extraction takes only 11.5% less time than manual, but this gap further
increases linearly to 29.1% in D(4).

Electronics 2023, 12, x FOR PEER REVIEW 13 of 15 
 

 

5.4. Training Breakdown 
Using the key-frame extraction method reduces the training duration of YOLOv5. 

The training duration consistently had an upward trend in each cycle, which is due to the 
increasing amount of data in each cycle (Figure 10). However, in terms of the duration 
comparison between manual and key-frame extraction, there is a significant gap. At D(1), 
the key-frame extraction takes only 11.5% less time than manual, but this gap further in-
creases linearly to 29.1% in D(4). 

 
Figure 10. Training duration of the YOLOv5 models. 

The training duration is reduced on average by 21.9% since the amount of data fil-
tered and successfully annotated in the manual process is the same, while in key-frame 
extraction, this is reduced because it uses key-frame filtering. The IoU comparison module 
in key-frame extraction discards many frames as the YOLOv5 becomes better. The small 
number of frames makes the additional training process faster because it takes less time 
to complete one epoch. This reduced training duration is beneficial for scaling object de-
tection systems since fewer resources are needed to meet the demands. 

6. Conclusions 
This paper presents a framework for reducing human effort in building object detec-

tion models for video surveillance, making them more scalable. The framework consists 
of two components: key-frame filtering and interactive labeling. These components help 
prepare new data for use in the fine-tuning process with less human effort. The fine-tuning 
process is carried out periodically. The key-frame filtering component replaces the need 
for manual frame filtering by using the static background and moving objects of interest 
present in video surveillance. The interactive labeling component reduces the human ef-
fort required for annotating object detection data by using an image classifier to determine 
the class label, while the human annotator is tasked only with providing bounding boxes. 

We tested the effectiveness of key-frame extraction by conducting experiments on a 
dataset consisting of video surveillance data taken from two different locations. We com-
pared the human effort required to train the YOLOv5 model to perform object detection 
at the second location, given that the model has been trained from the data at the first 
location. Experiment results showed that key-frame extraction reduced human effort by 
81% compared to the manual method. The accuracy of mAP with a threshold of 0.5 from 
the two models also showed a slight difference of 0.2–0.3%. We also conducted ablation 
studies to see the effect of the key-frame extraction. We found that key-frame filtering 

Figure 10. Training duration of the YOLOv5 models.



Electronics 2023, 12, 2956 13 of 14

The training duration is reduced on average by 21.9% since the amount of data filtered
and successfully annotated in the manual process is the same, while in key-frame extraction,
this is reduced because it uses key-frame filtering. The IoU comparison module in key-
frame extraction discards many frames as the YOLOv5 becomes better. The small number
of frames makes the additional training process faster because it takes less time to complete
one epoch. This reduced training duration is beneficial for scaling object detection systems
since fewer resources are needed to meet the demands.

6. Conclusions

This paper presents a framework for reducing human effort in building object detection
models for video surveillance, making them more scalable. The framework consists of two
components: key-frame filtering and interactive labeling. These components help prepare
new data for use in the fine-tuning process with less human effort. The fine-tuning process
is carried out periodically. The key-frame filtering component replaces the need for manual
frame filtering by using the static background and moving objects of interest present in
video surveillance. The interactive labeling component reduces the human effort required
for annotating object detection data by using an image classifier to determine the class label,
while the human annotator is tasked only with providing bounding boxes.

We tested the effectiveness of key-frame extraction by conducting experiments on
a dataset consisting of video surveillance data taken from two different locations. We
compared the human effort required to train the YOLOv5 model to perform object detection
at the second location, given that the model has been trained from the data at the first
location. Experiment results showed that key-frame extraction reduced human effort by
81% compared to the manual method. The accuracy of mAP with a threshold of 0.5 from the
two models also showed a slight difference of 0.2–0.3%. We also conducted ablation studies
to see the effect of the key-frame extraction. We found that key-frame filtering succeeded in
selecting fewer frames, which is 2:13 compared with the data filtered manually, thereby
reducing human effort during annotation. The time required to train the model using the
key-frame extraction method is 25% less than the manual method.
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