
Citation: Lee, S.; Park, D. Robust

Embedded PID Control Software

Execution Based on Automatic

Malfunction Profile Feedback.

Electronics 2024, 13, 1526. https://

doi.org/10.3390/electronics13081526

Academic Editors: Alexander

Barkalov, Larysa Titarenko, Dariusz

Kania and Remigiusz Wiśniewski

Received: 28 March 2024

Revised: 14 April 2024

Accepted: 16 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Robust Embedded PID Control Software Execution Based on
Automatic Malfunction Profile Feedback
Sanghoon Lee 1 and Daejin Park 2,*

1 Software Disaster Research Center, Kyungpook National University, Daegu 41566, Republic of Korea;
tonightparty@knu.ac.kr

2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
* Correspondence: boltanut@knu.ac.kr; Tel.: +82-53-950-5548

Abstract: As the information technology (IT) industry advances, embedded systems are being
applied in various industrial sectors. With the expansion of application areas, there is a growing
demand for high-precision, high-specification embedded systems, leading to the increased complexity
of embedded software. Consequently, software errors can cause system malfunctions, resulting in
accidents such as airplane crashes and the sudden acceleration of cars, leading to significant loss of life
and property damage. Therefore, measures to ensure the safety and stability of increasing embedded
systems malfunctions are necessary. This paper proposes a system that monitors the operation of
target embedded systems in real-time and compares the extracted normal operation current/voltage
patterns with the current/voltage data of a target embedded system (TES). It compares the operation
data of the TES with automatically generated normal operation patterns by forcibly exposing them. It
suggests algorithms for immediately detecting and efficiently recovering from the TES malfunctions.
The proposed system applies two algorithms. (a) Monitoring TES current: When a malfunction
is detected, a monitoring embedded systme (MES) resets the TES to restore normal operation.
If malfunctions persist, it controls TES by using an algorithm to shut it down. Additionally, a
proportional integral derivation (PID) control is applied to stabilize the current state. (b) Monitoring
TES voltage: If a voltage drop occurs, the MES immediately stops the TES operation to minimize
damage. The proposed algorithms were validated through experiments. For a normal TES consuming
up to 95 mA, an error detection rate of 20% was applied. The TES was reset if it consumed over
114 mA. It was confirmed that the TES was stopped upon detecting the third malfunction. Regarding
voltage, when the normal operating voltage of the system was around 5 V, if the TES operating
voltage dropped below 4.3 V, it was detected as a malfunction, and the algorithm to stop the TES
operation was validated.

Keywords: embedded system; software errors; system malfunction; malfunction monitoring;
malfunction detection; real-time pattern comparison

1. Introduction

Due to the rapid advancement in the information technology (IT) industry, embedded
systems are being developed with high performance and specifications. They are being
rapidly expanded and applied across various heterogeneous industries, experiencing
widespread usage. Embedded systems are controlled based on embedded software, and the
complexity of the software varies according to the specifications required. In recent years,
there has been a trend towards increasing complexity of system software in industries such
as automotive and healthcare, where high precision and high specifications are demanded.
With the increasing complexity, issues regarding system protection and safety against
software errors in embedded systems arise. Due to the difficulty in analyzing the causes of
errors in system software, the recovery period of the system becomes prolonged, resulting in
astronomical recovery and loss costs [1–3]. Therefore, there is a need for technology that can

Electronics 2024, 13, 1526. https://doi.org/10.3390/electronics13081526 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081526
https://doi.org/10.3390/electronics13081526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3764-1122
https://orcid.org/0000-0002-5560-873X
https://doi.org/10.3390/electronics13081526
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081526?type=check_update&version=1

Electronics 2024, 13, 1526 2 of 22

rapidly detect and respond to system malfunctions caused by software errors. Additionally,
alternatives and enhancements such as the prevention of information transmission errors
and deactivation of control operations in the system are essential [4].

An embedded system’s code-based malfunctions always occur during run-time. As
a result, debugging at the software code level, excluding the system, is impossible to
reproduce in operation, and modeling for static error verification of software is not easy.
Furthermore, detecting run-time errors in software and hardware before operation is not
easy, and the difficulty of reproduction leads to high verification costs. Therefore, it is
essential to apply software directly to the system to verify the impact and phenomena of
its operation.

Adding additional code for inspection and verification in the software will inevitably
bring about changes in the functionality of the existing embedded software. Inserting
additional code for verification within the main code leads to the creation of unnecessary
code and an increase in the codebase. Since there is a possibility of introducing further issues
due to the inserted code, the system relies on using the core code without modification
and employs supplementary methods, such as side channels, from the outside to detect
errors [5–8]. Detecting and addressing malfunctions caused by internal software errors in
the system requires developing strategies and measures [9–11].

This paper proposes a system for detecting system malfunctions caused by errors in
embedded software in embedded systems that require high levels of safety and reliability.
The proposed system utilizes an additional embedded system to monitor the real-time
current/voltage-levels of a target embedded system (TES) that will be operational. By
monitoring and comparing the current/voltage-levels, the system promptly detects mal-
functions. A monitoring embedded system (MES) detects normal operation or malfunctions
of the TES through state analysis. It controls the system to recover normally from malfunc-
tions or, in preparation for the worst-case scenario of system destruction, stops the system
operation. This system, by monitoring current/voltage externally during run-time without
modifying internal code, can detect malfunctions safely without introducing additional
malfunction factors into the system. Additionally, in the event of a malfunction in the
current state, there are benefits such as alerting about malfunction detection and stabilizing
the current through a proportional integral derivation (PID) control.

This paper is structured as follows: Section 2 describes related research on software
error analysis and correction methods related to the proposed system. Section 3 introduces
the configuration of the entire system and the current/voltage monitoring methods for
software errors. Additionally, Section 4 explains algorithms for comparing current/voltage
patterns of the monitoring methods in Section 3 to detect malfunctions and recover mal-
functioning systems. Section 5 presents the experimental results and analysis of monitoring,
malfunction detection, and recovery of embedded systems in operation from a run-time
perspective. Finally, Section 6 concludes the paper.

2. Related Works

Embedded systems can employ a variety of software ranging from simple embedded
software to more complex ones, depending on the specifications. Applied software may
indeed be completely defect-free, but it can also harbor software errors arising from mis-
takes such as coding syntax errors or typos made by developers, as well as discrepancies
between the software’s functionality and its requirements [10,12]. Simple coding errors can
indeed lead to critical flaws in the system. Given the uncertainty regarding how coding
errors may impact embedded systems, ongoing research on error verification in software
aims to facilitate error correction and recovery [13,14].

To analyze and address safety issues related to system malfunctions, research is
being conducted not only on software self-verification but also on applying separate
error protection techniques to critical code and ensuring the development of secure
software [15,16].

Electronics 2024, 13, 1526 3 of 22

Run-time errors are challenging to detect at the software code level, involve inserting
code for pre-error situation checks, and are difficult to reproduce run-time error scenarios.
Due to the increasing demand for run-time error detection, methods such as injecting
arbitrary software faults are also used to reproduce malfunctions in embedded systems
caused by software errors.

Injected faults disrupt data control and flow, creating situations where information is
lost, making it crucial to analyze the impact of errors on the system [17–19].

Software verification, error detection, correction, and improvement are all essential
processes. However, when it comes to responding to software errors, we cannot rely solely
on software.

Recently, various industries have been applying methods to detect malfunctions.
On the hardware side, methods to detect issues such as communication failures, sensor
malfunctions, and device errors are being used. Additionally, techniques utilizing neural
networks to predict and measure these issues are being implemented [20]. Furthermore,
methods such as analyzing power waveforms according to operational modes to detect
malfunctions, and using machine learning to recover sensors that malfunction are also
being researched to enhance the reliability of systems [6,21]. Furthermore, it is crucial to
research prediction algorithms and systems for the maintenance of embedded systems,
applying them to efficiently manage systems at low cost and low voltage [22,23]. Therefore,
it is absolutely necessary to research technical countermeasures for error detection and
recovery in the hardware aspect of embedded systems as a proposed system of Figure 1
and complementary error countermeasures of the additional software and the hardware
through continuous research [24,25].

TES´

MES

(1)

(3) (2)
Supply

Volt.

PD
Data Measurement

Run-time
Data

Code

Dump

Ref. Data

SW
Errors

Pseudo

Data

Data Comp. MCU with DR

① Recovery
through RST

Detection of Malfunction
Emergency

② Protection
through Shutdown

Figure 1. Recovery and protection after detected malfunction: (1) Target embedded system controlled
by the proposed protection systems, (2) power debugger (PD) gathering the power profile indicating
the status of systems (3) monitoring embedded system with the expected patterns.

Table 1 summarizes the related work on the error detection methods and strategies
followed.

Table 1. Summary of related work.

Work Field Method Application

[10,12] Software Predict Malfunction Embedded SystemAnalysis

[13,14] Software Program Repair Program
Correction Embedded System

[15,16] Software Error Protection Embedded System

Electronics 2024, 13, 1526 4 of 22

Table 1. Cont.

Work Field Method Application

[17–19] Software Error Checking Embedded System

[20] Network Malfunction Monitoring PV System

[6,21] System Malfunction Detection IoT System
Power Analysis Microcontroller

[22,23] System Predictive Maintenance Embedded System

[24,25] Software Performance Monitoring Embedded System

This work System Current/Voltage Monitoring Embedded System

3. Proposed System Structure and Implementation

If the software code of the embedded system contains errors, it is expected that the
embedded system will exhibit different patterns of current/voltage levels in its operational
state due to the errors. To detect malfunctions in embedded systems caused by software
errors, the MES monitors the current/voltage levels of the TES in real-time. The entire
system for detecting malfunctions is composed of the following components as shown
in Figure 2: (1) the TES, which loads the operating software, (2) a power debugger (PD)
used to measure the current/voltage-level of the TES operating state, and (3) the MES,
which receives real-time current/voltage-level data from the PD and performs the data
comparison, analysis, malfunction detection, and recovery, (4) The host machine performs
continuous data logging via communication.

UART

TES

MES

Data Logging

(1)

(3) (2)

(4)

Supply
Volt.

SW
Errors

PD

PC

Date Measurement

SW with Errors

UART

Monitoring TES

Run-time
Data

Figure 2. Block diagram of power monitoring system.

The MES compares the abnormal data pattern of malfunctions with the reference data
pattern of normal operation to detect and identify malfunctions, then responds to recover
the malfunctioning TES. Detecting errors in a system by directly coding specific conditions
based on a developer’s various experiences and intuitions is extremely difficult. The error
detection coding method devised by developers requires a significant amount of effort
in analyzing and directly modifying conditions over an extended period whenever the
normal pattern changes. The proposed system automatically creates an error condition
with an initial dump of the current/voltage-level pattern data in the normal operating state
without a developer’s direct description. By forcibly exposing the normal operation data of
the system to error conditions, the normal or malfunction state is detected by monitoring
the response pattern of the system or chip to errors and failure conditions. In case of any
changes in the normal operation pattern, the system also has the advantage of being able to

Electronics 2024, 13, 1526 5 of 22

quickly reapply by extracting and automatically generating the pattern dump through a
simple method, which can be applied in a short time. However, the one-time data dump
serves a greater purpose for real-time comparison, focusing on efficient error detection
and learning, rather than solely relying on error detection accuracy based on sequential
data from normal operation. Furthermore, as mentioned earlier, to achieve efficient error
detection, the environment is constructed by restricting it to systems with linear and regular
current states, and then applying malfunction detection algorithms. Therefore, systems
with non-linear and irregular current states are excluded from this paper, as they require
further research to explore potential applications.

3.1. Extraction and Comparison of Normal/Malfunction Data
3.1.1. Extraction of Data

The proposed malfunction detection and pattern comparison system extracts data from
the normal operation state to automatically generate reference current/voltage patterns.
The generated pattern is then compared in real-time with the current/voltage levels to
detect the system’s malfunctioning state. As shown in Figure 3, the PD applies the operating
voltage to the TES, which is downloaded with error-free software.

The PD measures and outputs in real-time the voltage, current, and power consump-
tion applied to the TES. The data output (DTotal) from the PD, sampled at intervals of
100 ms, is transmitted to the MES using the universal asynchronous receiver/transmitter
(UART) communication. Upon receiving DTotal , the MES stores the data in real-time. After
10 s, the MES simultaneously dumps a dataset (DR), consisting of a set of 100 data (voltage
[VS], current [IS], and power consumption [WS]), to the microcontroller unit (MCU) as
shown in Table 2.

TES MES(1) (3)

(2)
Supply

Volt.

PD
Data Measurement

Downloaded Normal SW
Run-time

Data

Code Dump

Ref. Data

Once
-only

Sampling Data (DTotal)

Run-time Data (V, I, W)
Extraction from TES

Ref. Data (DR) Dump

Figure 3. Extractionand dump of normal operating data: (1) Target embedded system controlled by
the proposed protection systems, (2) power debugger (PD) gathering the power profile indicating the
status of systems (3) monitoring embedded system with the expected patterns.

The TES and TES′ are physically identical systems. The TES, as shown in Figure 4a, is a
system where error-free software is downloaded and operates normally. TES′, as shown in
Figure 4b, is a system where software with errors is downloaded and operates erroneously.
In reality, it is impossible to determine whether the actual system is the TES or TES′ based
solely on the presence or absence of software errors. If the actual system is downloaded

Electronics 2024, 13, 1526 6 of 22

with software of integrity without errors, it will function properly like the TES. Conversely,
if the downloaded software contains errors, the system will malfunction like the TES′.

Table 2. Sampled dataset of normal operation.

No. Sec. VOp IOp WOp

1 0.0 4.991 0.089 0.444
2 0.1 4.988 0.091 0.453
3 0.2 4.988 0.088 0.438
4 0.3 4.988 0.086 0.428
5 0.4 4.990 0.090 0.449
...

...
...

...
...

96 9.5 4.988 0.080 0.399
97 9.6 4.989 0.080 0.399
98 9.7 4.990 0.080 0.399
99 9.8 4.989 0.080 0.399

100 9.9 4.988 0.088 0.439

MCU

TES

Code

Downloaded Normal SW
MCU

TES´

Code

Downloaded Pseudo SW

SW
Errors

(b)(a)
Figure 4. Classification of TES and TES′. (a) TES downloaded normal software. (b) TES′ downloaded
pseudo software with errors.

After generating and storing DR, pseudo software with errors, as shown in Figure 5,
is loaded into the TES′. It is anticipated that the TES′ with the pseudo software loaded
will output malfunctioning data different from the TES with the originally installed error-
free software.

TES´ MES(1) (3)

(2)
Supply

Volt.

PD
Data Measurement

Downloaded
Pseudo SW

Run-time
Data

Code Dump

Ref. Data

Sampled Pseudo Data (D´Total)

Run-time Data (V´, I´, W´)
Extraction from TES´

Comparing with D´P & DR
Calculating D´Diff & D´Int

SW
Errors

Pseudo

Data

Pseudo
Data (D´P) MCU with DR

Figure 5. Comparison of extracted data in normal operation (reference) and malfunction (pseudo):
(1) Target embedded system controlled by the proposed protection systems, (2) power debugger (PD)
gathering the power profile indicating the status of systems (3) monitoring embedded system with
the expected patterns.

Electronics 2024, 13, 1526 7 of 22

The malfunctioning data from the TES′ are transmitted in real-time from the PD to
the MES using the same method as DTotal . The MES receives the sampled data (D′

Total :
voltage [V′

S], current [I′S] and power consumption [W ′
S]) from the malfunctioning TES′,

and converts them into malfunctioning current/voltage data (D′
P) using feature points,

differential data (D′
Di f f), and integral data (D′

Int) over the same sampling interval as DR.
The data output from each module is as follows, according to Table 3. D′

Di f f and D′
Int

include the voltage comparison data (V′
Di f f /V′

Int), current comparison data (I′Di f f /I′Int),
and power consumption comparison data (W ′

Di f f /W ′
Int) between DR and D′

P.

Table 3. Output data through PD of TES and TES′.

TES
DTotal VS, IS, WS

DR VOp, IOp, WOp

TES′

D′
Total V′

S, I′S, W ′
S

D′
P

V′
Mal , I′Mal , W ′

Mal , D′
Di f f , D′

Int

D′
Di f f V′

Di f f , I′Di f f , W ′
Di f f

D′
Int V′

Int, I′Int, W ′
Int

3.1.2. Comparison of Data

The MES infinitely repeats data from DR.0 to DR.99 using the dumped dataset DR and
compares them with D′

P of the TES′ in real-time to generate the error data D′
Di f f and D′

Int.
Taking current as an example as shown in ((1)), the MES compares the dumped normal

operation current (IOp.0−99) of the TES and the malfunction current (I′Mal) of the TES′ and
calculates the error between the two current data (I′Di f f).

Here, I′Di f f represents the difference or error between the two current datasets:

I′Di f f .n = IOp.0−99 − I′Mal.n (1)

Because the negative (–) value of I′Di f f is lower than the normal operation data, it is

classified as malfunction data by converting it to an absolute value (
∣∣∣I′Di f f

∣∣∣). An error rate
(∆Di f f) in (2) specifies the normal operating range using the error as a ratio and value of
the reference data IOp.

Here, ∆Di f f represents the error rate, which is calculated by dividing the absolute
value of I′Di f f by IOp and multiplying by 100 to express it as a percentage:

∆Di f f = IOp∗∆R (2)

A specific instantaneous current value
∣∣∣I′Di f f .n

∣∣∣ and the set ∆Di f f are compared as
shown in (3); if it is outside the normal operating range, it is considered the malfunction.

Here,
∣∣∣I′Di f f .n

∣∣∣ represents the absolute value of the current difference at a specific
moment, and ∆Di f f represents the threshold or limit for determining whether the data fall
within the range of the normal operation:∣∣∣I′Di f f .n

∣∣∣ > ∆Di f f (3)

As shown in Table 4, assuming that a maximum current (IOp.Max) in the normal
operation is 90 mA, the MES sets the error rate ∆R to 10%. If I′Mal of the TES′ exceeds 99 mA,
which is IRe f , it can be detected as the malfunction.

Electronics 2024, 13, 1526 8 of 22

Table 4. Error range of IOp.Max.

IOp.Max
Error

Error Range (IRe f)
Rate (∆R) Value (∆Di f f)

90 mA

10% 9 mA >99 mA

20% 18 mA >108 mA

30% 27 mA >117 mA

...

50% 45 mA >135 mA

...

100% 90 mA >180 mA

3.2. System Recovery and Protection

As shown in Figure 1, if the results based on real-time data from the functioning TES′

indicate a malfunction, the TES′ is controlled by the MES malfunction recovery algorithms
for either recovery or shutdown.

There are two methods to restore the TES′: (1) The first method is to detect malfunc-
tions by monitoring the current of the TES′ in the MES and restore the system through a
reset (RST) function for an internal disturbance of the TES′. (2) The second method is to
detect malfunctions by monitoring changes in the operating voltage of the system due to
the internal disturbance of the TES′ and prevent an external disturbance that destroys the
system by blocking the driving voltage.

3.2.1. Internal Disturbance

Software-induced malfunctions in the TES′ are likely to occur intermittently, irregu-
larly, and temporarily during operation. Upon detecting such internal disturbances caused
by software, the MES monitors the current level of the TES′ as shown in Figure 6. The MES
compares the reference current data IOp with the malfunctioning current data I′Mal .

Malfunction
Detection

Standby
& RST

Recovery

MES

Current
Date (I´)

TES´
Code

SW
Errors

Figure 6. Extraction and dump of normal operating data.

Upon confirming the TES′ to be malfunctioning, the MES issues a reset signal to restore
it to its pre-error state, facilitating normal operation. Furthermore, the system notifies that
the software causing the malfunction has errors, allowing time to secure the error correction
and verification.

3.2.2. External Disturbance

From a hardware perspective, software errors render the MCU and peripheral compo-
nents inoperable, leading to system malfunction. As a result, they cause external distur-
bances such as issues with the system’s operating voltage. If the normally supplied voltage

Electronics 2024, 13, 1526 9 of 22

drops to a low voltage (VLow) due to the destruction of components inside the system, the
MES considers the TES′ as a system malfunction and an emergency situation, providing a
notification accordingly. To minimize the risk of system destruction and damage as shown
in Figure 7, the clock of the TES′ is stopped, and the internal power of the MCU is blocked
using a barrier function.

Standby

MES

Voltage
Date (V´)

TES´
Code

SW
Errors

Detection &
Expected

Emergency

Supply
Shutdown

Figure 7. Protection method for external disturbance.

4. Scenarios of System Recovery and Protection

Typically, MCUs feature three power-saving modes: sleep, stop, and standby. In
this system, the standby mode, which shuts off power to the MCU and all peripheral
devices while halting operation of a static random access memory (SRAM) and registers, is
employed for system recovery and protection scenarios.

4.1. Scenario 1: Current Monitoring of Internal Disturbance

In the normal operating state, the system consumes a steady current. However, if a
malfunction state consuming more than the reference current (IRe f), as shown in Figure 8, is
detected, the MES triggers the TES′ to enter standby mode. System operation is temporarily
halted, and a warning message is displayed. After a certain period, if the current of the
TES′ returns to normal operation following RST and monitoring, the MES continues to
monitor it. However, if the same malfunction repeats, the previous process is repeated.
If the TES′ continues to malfunction even after several system RSTs, the MES deems it
irrecoverable and outputs a message indicating that TES′ is irrecoverable while in standby
mode, without further attempts to reset it.

Malfunction Region
A

I´Mal

t

Normal
Operation

Region

Malfunction & Recovery
Region

Detection of Malfunction

RST RST

IRef

Entered Standby Mode

∆I.Diff

Figure 8. Expected current change of malfunction state: Malfunction (red colored signal) can be
mitigated with the proposed protection recoverty systems (entering blue colored signal).

Electronics 2024, 13, 1526 10 of 22

Algorithm 1, as shown in Figure 8, describes the scenario of internal disturbance
current monitoring, detection of malfunctions, entering standby mode, recovery through
RST, and stopping the system with a third RST.

As mentioned above, detecting malfunctions through the first current monitoring and
resetting the system is also a method of system recovery. Moreover, when malfunctions
are detected through current monitoring as shown in Figure 9, another method involves
suppressing the malfunctioning current of TES′ using the PID control.

As shown in Figure 10, to protect the system, the current in the malfunctioning state is
stabilized to move out of the malfunctioning region, while notifying that the system is in
the malfunctioning state.

TES´

MES

(1)

(3) (2)
Supply

Volt.

PD
Data Measurement

Run-time
Data

Code

Dump

Ref. Data

SW
Errors

Pseudo

Data

Data Comp. MCU with DR

PID Control
for Current Stabilization

Detection of Malfunction
Emergency

Figure 9. Current monitoring using PID control.

Malfunction Region
A

I´Mal

t

Normal
Operation

Region

Malfunction & Recovery
Region

IRef

∆I.Diff

Figure 10. PID control for current stabilization.

Electronics 2024, 13, 1526 11 of 22

Algorithm 1: Algorithm of current monitoring system.

1 IOp: Current under the normal operation of TES
2 I′Mal : Current under the malfunction of TES′

3 I′Di f f : Difference value between IOp and I′Mal

4 ∆I.R: Error rate of compared current
5 ∆I.Di f f : Error value of compared current
6 ECI : Error count of current
7 EDI : Error detect of current
8 RTI : Time for RST of TES′

9 RCI : The number for RST of TES′

10 Initialization: ECI = 0, EDI = 0, RTI = 0, RCI = 0

Input: IOp, I′Mal
11 Function Currnet_monitoring_system(IOp, I′Mal):
12 I′Di f f = IOp − I′Di f f

13 ∆I.Di f f = IOp ∗ ∆I.R

14 if
∣∣∣I′Di f f

∣∣∣ > ∆I.Di f f then
15 if ECI > 10 then
16 EDI = 1
17 Standby_mode()

18 ECI = ECI + 1

19 else
20 ECI = 0

21 if EDI == 1 then
22 Error_message()
23 if RCI < 2 then
24 if RTI ≥ 3 then
25 EDI = 0
26 RTI = 0
27 Reset_mode()
28 RCI = RCI + 1

29 else
30 RTI = RTI + 1

4.2. Scenario 2: Voltage Monitoring of External Disturbance

During the monitoring of the TES′ voltage, if the internal or external components of
the MCU are damaged due to system malfunction, there is a possibility of short-circuit and
system destruction. As shown in Figure 11, if V′

Mal due to malfunction drops below the
reference voltage level (V′

Re f), the MES considers the voltage state of the TES′ as VLow and
immediately enters standby mode to halt operation for system protection.

Algorithm 2 is a scenario where a warning message for system shutdown is displayed
if the operating voltage drops below 4.3 V to prevent hardware damage and system
destruction, aiming to minimize damage.

Electronics 2024, 13, 1526 12 of 22

t

A

V

Under VRef

Entered
Standby Mode

VRef

I´Mal

t
Normal

Operation
Region

Malfunction
Region

IMin

VLow

V´Mal

Figure 11. Expected voltage change of malfunction state.

Algorithm 2: Algorithm of voltage monitoring system.

1 V′
Mal : Voltage under the malfunction of TES′

2 EDV : Error detect of voltage

3 Initialization: EDV = 0

Input: V′
Mal

4 Function Voltage_monitoring_system(V′
Mal):

5 if V′
Mal < 4.3V then

6 EDV = 1
7 Standby_mode()

8 if EDV == 1 then
9 Error_message()

5. Experiment Environment and Evaluation
5.1. Experiment Environment

The TES (=TES′), and the MES, in the proposed current/voltage-level monitoring
system utilize the same module based on the Cortex-M4 core from STMicroelectronics,
specifically the STM32F407G-DISC1. The characteristics of the STM32F407G-DISC1 module
are as follows as listed in Table 5.

Table 5. Specification of STM32F407G-DISC1.

MCU STM32F407VGT6
Core 32-bit ARM Cortex-M4 with FPU
Flash 1 Mbyte
RAM 192 Kbyte
Freq. ∼169 MHz

Electronics 2024, 13, 1526 13 of 22

To measure the data (voltage, current, and power consumption) of the TES′, we
configured the experimental environment using ODROID’s Smart Power 3 for the PD as
shown in Figure 12.

Power
Debugger

(PD)

Target
Embedded

System (TES)

Monitoring
Embedded

System (MES)

Figure 12. Setup of proposed system.

In the configured experimental environment, when the TES′ operates using the power
supplied from the PD as shown in Figure 13, the MES compares it with the dumped DR. (1)
Depending on the current state due to internal errors, the MES applies a hardware reset
control signal to the TES′ negative reset (NRST) port from a general-purpose input/output
(GPIO). (2) If a voltage drop is detected that could lead to system damage due to internal
errors, the MES enters standby mode to minimize power supplied internally to the TES′

and applies control signals through UART communication from GPIO.

TES´

PD

Data
(UART)MES

Pseudo
Data

Run-time
Data

Extraction

NRST

Dump
Ref. Data

GPIOGPIO

GPIO

Data

Code

SW
Errors

float dump_data[100][4] = {
{ 0.0, 4.987, 0.088, 0.438 },
{ 0.1, 4.989, 0.090, 0.449 },
{ 0.2, 4.989, 0.091, 0.454 },
{ 0.3, 4.987, 0.090, 0.448 },
{ 0.4, 4.989, 0.089, 0.444 },
{ 0.5, 4.988, 0.087, 0.434 },
{ 0.6, 4.988, 0.090, 0.448 },

︙
};

int main (void) {
bool error_detect = false;
int V = 0, I = 0, W = 0, t = 0;
Device_Init();
while(1) {

Data_Parsing(&V, &I, &W);
diff_I = I – dump_data[t++][2];
Monitoring(V, diff_I, &error_detect);
Control_and_Message(error_detect);
if (t > 100) t = 0;

}
}

<main.c>

Supply Volt.

Recovery (H/W
 RST)

Protection (UART)

Figure 13. Diagram and code of setup environment.

5.2. Result of Data Extraction

DR of the normal operating state was extracted, and IOp was sampled at 100 ms
intervals to show the feature points of the current level as shown in Figure 14. Although

Electronics 2024, 13, 1526 14 of 22

only a few feature points are shown in Figure 14, the actual data for normal operation are
distributed in the range of 75 to 95 mA.

0.091

0.088
0.086

0.090 0.090 0.089 0.088 0.087

0.07

0.08

0.09

0.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Cu
rre

nt
 (A

)

Time (sec)

I_Op

Figure 14. Feature point extraction of current level.

Similarly to Figure 14, Figure 15 also shows the comparison between the extracted
feature points of TES′’s I′Mal and the associated error I′Di f f . The feature points of normal
operation data are represented in blue, those of malfunctioning data in red, and the gray
points indicate the difference between the two datasets.

0.029 0.030 0.032 0.027
0.035 0.041 0.042 0.108

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cu
rre

nt
 (A

)

Time (sec)

I_Op

I _́Mal

I _́Diff

Figure 15. Comparison of feature point.

Additionally, the current data in Figure 15 are represented as shown in Table 6, and
the feature points of voltage and power consumption data can also be extracted using the
same method.

Table 6. Comparison of current data.

No. Sec. IOp I′Mal I′Di f f

1 0.1 0.091 0.120 0.029
2 0.2 0.088 0.118 0.030
3 0.3 0.086 0.118 0.032
4 0.4 0.090 0.117 0.027
5 0.5 0.090 0.125 0.035
6 0.6 0.089 0.130 0.041
7 0.7 0.088 0.130 0.042
8 0.8 0.087 0.129 0.042
...

...
...

...
...

Electronics 2024, 13, 1526 15 of 22

5.3. Experiment Evaluation

The experiment is divided into two main parts: (1) system recovery experiment for
internal disturbance through current monitoring, and (2) system protection experiment for
external disturbance through voltage monitoring.

5.3.1. Result of Internal Disturbance Experiment

The internal disturbance experiment validates the detection of system malfunctions
through current monitoring and verifies the system’s recovery process.

For reliable malfunction detection, the experiment assumed that if 10 or more con-
secutive malfunction detection data points are output, it is considered the malfunction.
As shown in Figure 16, when malfunction detection data occur intermittently, the system
confirms that it does not consider them to be the malfunction.

The requirement for 10 consecutive malfunction datasets is a system-defined value,
so reducing the number of datasets is acceptable. However, if the number of malfunction
datasets is reduced, it may mistakenly detect 2∼3 intermittent normal operation datasets
as malfunctions. Therefore, it is necessary to dynamically adjust the number of datasets
based on the state of the system when applying the algorithm.

00:00.0 [Device Inform] 4.987 V 0.078 A I_diff: −0.003
00:00.1 [Device Inform] 4.989 V 0.088 A I_diff: 0.007
00:00.2 [Device Inform] 4.986 V 0.145 A I_diff: 0.065
00:00.3 [Device Inform] 4.985 V 0.120 A I_diff: 0.040
00:00.4 [Device Inform] 4.987 V 0.120 A I_diff: 0.041
00:00.5 [Device Inform] 4.985 V 0.119 A I_diff: 0.038
00:00.6 [Device Inform] 4.990 V 0.089 A I_diff: 0.001
︙
00:01.5 [Device Inform] 4.988 V 0.106 A I_diff: 0.019
00:01.6 [Device Inform] 4.989 V 0.109 A I_diff: 0.028
00:01.7 [Device Inform] 4.988 V 0.109 A I_diff: 0.029
00:01.8 [Device Inform] 4.987 V 0.113 A I_diff: 0.035
00:01.9 [Device Inform] 4.988 V 0.137 A I_diff: 0.058
00:02.0 [Device Inform] 4.988 V 0.080 A I_diff: −0.003
︙
00:02.8 [Device Inform] 4.986 V 0.083 A I_diff: −0.007
00:02.9 [Device Inform] 4.986 V 0.132 A I_diff: 0.041
00:03.0 [Device Inform] 4.984 V 0.135 A I_diff: 0.045
00:03.1 [Device Inform] 4.985 V 0.127 A I_diff: 0.038
00:03.2 [Device Inform] 4.985 V 0.124 A I_diff: 0.037
00:03.3 [Device Inform] 4.987 V 0.079 A I_diff: −0.011
00:03.4 [Device Inform] 4.986 V 0.080 A I_diff: −0.008

Normal
Operation

Malfunction
Detection

Malfunction
Detection

Normal
Operation

Normal
Operation

Malfunction
Detection

Normal
Operation

Figure 16. Continuous output of malfunction data.

Figure 17a shows the waveform of the current during normal operation, and as men-
tioned earlier in Figure 16, Figure 17b shows a waveform that does not detect intermittent
transient current spikes as malfunctions. Following the sequence, it was confirmed that the
first current spike was not detected as the malfunction with four datasets, the second with
five datasets, and the subsequent ones with four, five, six, and five datasets. Figure 17c
compares the waveform of normal operation (IOp) with the current waveform during
malfunction (I′Mal), setting the error margin to approximately 20%. When TES′ is in normal
operation (=TES), the system’s IOp consumes approximately 75 to 95 mA. However, during
malfunction, the current I′Mal increases to around 115 to 130 mA. Since I′Di f f was detected
to be over 20 mA, and it exceeded the 20% error range of the maximum current during
normal operation, IOp.Max, which is 95 mA, by reaching 114 mA, it was detected as the
malfunction.

The MES, detecting the TES′ as malfunctioning, displayed the message “Error Detec-
tion!(Waiting RST)” as shown in Figure 18 and temporarily put the TES′ into standby mode
to halt the malfunction. The system was reset to restore it to the state before malfunction,
and when the normally functioning system malfunctioned again, the previously performed
recovery process was repeated. When the system, after two attempts at recovery, malfunc-
tions for the third time, it is considered irrecoverable, and the TES′ is put into standby mode

Electronics 2024, 13, 1526 16 of 22

for system protection. Additionally, the “System Error!(Over Amp.)” message indicating
the shutdown is displayed, confirming that no further attempts at RST will be made.

The experiment involved malfunction detection through a one-to-one comparison of
each feature point. Through algorithm validation experiments, the possibility of applying
additional algorithms using the correlation factor of datasets over time for more accurate
malfunction detection and defense measures was confirmed.

No Detection
in Malfunction Region

No Detection

0

20

40

60

80

100

120

140

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

00
.0

01
.0

02
.0

03
.0

04
.0

05
.0

06
.0

07
.0

08
.0

09
.0

10
.0

Cu
rre

nt
 (m

A)

Vo
lta

ge
 (V

)

Time (sec)

Voltage (V)

Current (mA)

0
20
40
60
80
100
120
140

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

00
.0

05
.0

10
.0

15
.0

20
.0

25
.0

30
.0

35
.0

40
.0

45
.0

Cu
rre

nt
 (m

A)

Vo
tla

ge
 (V

)

Time (sec)

Voltage (V)

Current (mA)

5V

1st Malfunction
Detection

Recovery
through RST

Entered
Standby Mode

2nd Malfunction
Detection

3rd Malfunction
Detection

0

20

40

60

80

100

120

140

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

00
.0

01
.0

02
.0

03
.0

04
.0

05
.0

06
.0

07
.0

08
.0

09
.0

10
.0

Cu
rre

nt
 (m

A)

Vo
lta

ge
 (V

)

Time (sec)

Voltage (V)

Current (mA)

5V

Current of Normal Operation

(a)

(b)

(c)

Figure 17. Comparison of current and voltage according to operating state. (a) Normal operating state.
(b) Operating state in which temporary changes in current are not detected an malfunctions. (c) State
in which malfunctions are detected and recovered due to a continuous current rise of 10 points
or more.

Electronics 2024, 13, 1526 17 of 22

00:00.0 [Device Inform] 4.988 V 0.079 A I_diff: 0.000
︙
00:04.8 [Device Inform] 4.988 V 0.088 A I_diff: −0.002
00:04.9 [Device Inform] 4.985 V 0.129 A I_diff: 0.040
︙
00:05.8 [Device Inform] 4.986 V 0.120 A I_diff: 0.039
00:05.9 [Error detect!(Waiting RST)] 4.986 V 0.120 A I_diff: 0.040
︙
00:06.8 [Error detect!(Waiting RST)] 4.986 V 0.130 A I_diff: 0.043
00:06.9 [Error detect!(Waiting RST)] 4.988 V 0.129 A I_diff: 0.038
︙
00:09.8 [Error detect!(Waiting RST)] 5.012 V 0.034 A I_diff: −0.046
00:09.9 [Device Inform] 5.012 V 0.035 A I_diff: −0.043
︙
00:10.8 [Device Inform] 5.010 V 0.049 A I_diff: −0.039
00:10.9 [Device Inform] 4.986 V 0.086 A I_diff: −0.003
︙
00:23.1 [Device Inform] 4.989 V 0.084 A I_diff: −0.007
00:23.2 [Device Inform] 4.987 V 0.127 A I_diff: 0.037
︙
00:24.1 [Device Inform] 4.985 V 0.119 A I_diff: 0.038
00:24.2 [Error detect!(Waiting RST)] 4.986 V 0.117 A I_diff: 0.036
︙
00:25.1 [Error detect!(Waiting RST)] 4.986 V 0.127 A I_diff: 0.037
00:25.2 [Error detect!(Waiting RST)] 4.986 V 0.131 A I_diff: 0.042
︙
00:28.1 [Error detect!(Waiting RST)] 5.014 V 0.034 A I_diff: −0.046
00:28.2 [Device Inform] 5.011 V 0.036 A I_diff: −0.044
︙
00:29.1 [Device Inform] 5.011 V 0.047 A I_diff: −0.041
00:29.2 [Device Inform] 4.988 V 0.074 A I_diff: −0.014
︙
00:34.5 [Device Inform] 4.987 V 0.091 A I_diff: 0.010
00:34.6 [Device Inform] 4.988 V 0.125 A I_diff: 0.045
︙
00:35.5 [Device Inform] 4.986 V 0.119 A I_diff: 0.033
00:35.6 [Error detect!(Waiting RST)] 4.989 V 0.116 A I_diff: 0.031
︙
00:36.5 [Error detect!(Waiting RST)] 4.987 V 0.127 A I_diff: 0.048
00:36.6 [Error detect!(Waiting RST)] 4.988 V 0.126 A I_diff: 0.045
︙
00:39.5 [Error detect!(Waiting RST)] 5.013 V 0.035 A I_diff: −0.054
00:39.6 [System Error!(Over Amp.)] 5.012 V 0.033 A I_diff: −0.054
︙

Normal
Operation

1st Malfunction
Detection (10ea)
for 2 sec

Standby for 3 sec
(Ignore Idiff)

RST for 1 sec
(Ignore Idiff)

Normal
Operation

2nd Malfunction
Detection (10ea)
for 2 sec

Standby for 3 sec
(Ignore Idiff)

RST for 1 sec
(Ignore Idiff)

Normal
Operation

3rd Malfunction
Detection (10ea)
for 2 sec

Standby for 3 sec
(Ignore Idiff)
Shutdown

Figure 18. Message output of malfunction and recovery.

The second method for system recovery, as mentioned in Section 4.1, is to stabilize the
current state of malfunction using the PID control. The experiment involved stabilizing
the malfunctioning current state to the normal operating current state through the PID
control when an increase in current was detected in the normally operating system to
prevent system errors. As shown in Figure 19, when a current exceeding approximately
110 mA, set as the malfunctioning state, was detected continuously for 10 iterations, the
system determined that it was in the malfunctioning state. After this determination, it was
observed that the system stabilized to the normal operating state through the PID control.

However, stabilizing the current state alone does not necessarily mean that the system
has fully recovered to normal operation. Therefore, to allow administrators or users to
analyze the system’s status, messages such as “Error Detection!” and “Under PID Control”
are displayed, as shown in Figure 20, to notify of the occurrence of system malfunctions.

Electronics 2024, 13, 1526 18 of 22

0
20
40
60
80

100
120
140
160

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

11
.0

12
.0

13
.0

14
.0

Cu
rre

nt
 (m

A)

Time (sec)

Current (mA)
Malfunction

Detection

Recovery
through PID

Normal
Operation

Malfunction
Region

Figure 19. Malfunction detection and recovery through PID control.

00:00.0 [Device Inform] 4.985 V 0.098 A
︙
00:03.5 [Device Inform] 4.989 V 0.098 A
00:03.6 [Error detect!] 4.986 V 0.140 A
00:03.7 [Error detect!] 4.985 V 0.145 A
00:03.8 [Error detect!] 4.989 V 0.143 A
00:03.9 [Error detect!] 4.988 V 0.135 A
00:04.0 [Error detect!] 4.988 V 0.138 A
00:04.1 [Error detect!] 4.986 V 0.147 A
00:04.2 [Error detect!] 4.984 V 0.135 A
00:04.3 [Error detect!] 4.99 0 V 0.128 A
00:04.4 [Error detect!] 4.984 V 0.136 A
00:04.5 [Error detect!] 4.986 V 0.123 A
00:04.6 [Under PID Control] 4.988 V 0.127 A
00:04.7 [Under PID Control] 4.987 V 0.127 A
00:04.8 [Under PID Control] 4.987 V 0.138 A
00:04.9 [Under PID Control] 4.988 V 0.143 A
00:05.0 [Under PID Control] 4.987 V 0.147 A
︙
00:14.6 [Under PID Control] 4.987 V 0.100 A
00:14.7 [Under PID Control] 4.985 V 0.097 A
00:14.8 [Under PID Control] 4.997 V 0.075 A
00:14.9 [Under PID Control] 4.989 V 0.107 A
00:15.0 [Under PID Control] 4.985 V 0.081 A

Malfunction
Detection (10ea)

Normal
Operation

Stabilization
though
PID Control

Figure 20. Message output of malfunction and recovery through PID control.

5.3.2. Result of External Disturbance Experiment

The external disturbance experiment verifies the prevention and protection of system
damage due to the influence of the system’s voltage status. This experiment follows the
same method as the internal disturbance experiment, allowing for the comparison of
voltage levels. However, it is expected that there will be minimal or negligible voltage
changes due to malfunctions in the system’s operating voltage. Minor voltage fluctuations
were excluded from the experiment, and it was conducted considering cases of voltage
drops that could occur in actual systems.

The external disturbance experiment compared the voltage VOp in the normal operat-
ing state with the voltage V′

Mal in the malfunctioning state. When the TES′ is in the normal
operating state, VOp remains at 5 V, but if internal disturbance occurs and damages the
system components, the voltage will decrease. Therefore, if the system voltage drops below

Electronics 2024, 13, 1526 19 of 22

the threshold low voltage VLow of 4.3 V while operating at 5 V, as shown in waveform in
Figure 21, the TES′ transitions into standby mode.

To activate the system after it enters standby mode due to the detection of low voltage,
it is designed to require hardware initialization. This is done to allow users or engi-
neers to analyze the cause of the error, verify it, and make corrections before initializing
the hardware.

When VOp decreased to VLow as shown in Figure 21, it was confirmed that the system
status triggers the message “System Error!(Under Volt.)” as shown in Figure 22.

0
20
40
60
80
100
120
140

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

15
.0

16
.0

17
.0

18
.0

19
.0

20
.0

Cu
rre

nt
 (m

A)

Vo
lta

ge
 (V

)

Time (sec)

V I
17.8 sec

4.3V

Entered
Standby Mode

Figure 21. Shutdown of system by voltage drop.

00:17.6 [Device Inform] 4.989 V 0.088 A
00:17.7 [Device Inform] 4.987 V 0.079 A
00:17.8 [Device Inform] 4.987 V 0.079 A
00:17.9 [Device Inform] 4.285 V 0.078 A
00:18.0 [System Error!(Under Volt.)] 4.286 V 0.051 A
00:18.1 [System Error!(Under Volt.)] 4.285 V 0.036 A
00:18.2 [System Error!(Under Volt.)] 4.306 V 0.036 A
00:18.3 [System Error!(Under Volt.)] 4.309 V 0.036 A

Figure 22. Message output by voltage drop.

When applied in a real environment, the output data of the message can be converted
into an emergency alert signal and conveyed to the user through devices such as LEDs or
sirens to communicate the situation.

6. Conclusions

This paper proposes a system for monitoring current/voltage levels to detect system
malfunctions caused by software errors in embedded systems.

Embedded system software code-based malfunctions occur during run-time, making
it impossible to reproduce system behavior solely through verification of the software code
level, excluding the system itself. Furthermore, static error modeling and reproduction
of run-time errors are challenging, leading to increased costs associated with verification
testing. Indeed, the process of loading embedded software directly onto the system and
verifying its impact and behavior is essential. By applying the proposed malfunction moni-
toring system in this paper, it is possible to detect malfunctions caused by software errors
through current/voltage level monitoring alone on the hardware where the software is
loaded. Therefore, it was confirmed that it is possible to reduce the developer’s verification
period and costs.

The MES monitoring the malfunction extracts the current/voltage data pattern during
normal system operation. The extracted pattern, generated automatically with just one
dump, compares the data with the TES′ in real-time, enabling the immediate detection of

Electronics 2024, 13, 1526 20 of 22

normal or malfunction states. Upon detecting a malfunction, the recovery and protection al-
gorithms are utilized to initialize the TES′ for normal operation, thereby preventing system
damage or destruction caused by malfunctions. The research confirmed the potential of
ensuring the safety by controlling and preventing malfunctions caused by software errors
in embedded systems through monitoring and comparing the patterns and changes in the
current/voltage level characteristics.

The possibility of further applying algorithms utilizing the correlation factor of
datasets for improved malfunction detection and recovery strategies was confirmed for
future enhancements. Additionally, the intention to leverage an artificial intelligence (AI)
technology using using a Tiny Machine Learning (TinyML), suitable for the limited re-
sources of MCUs, is planned. However, applying the algorithms proposed in this paper
universally to all systems poses challenges. While systems consuming linear current can
readily adopt these algorithms, systems with non-linear current consumption require ongo-
ing research using advanced malfunction detection methods such as the correlation factor
algorithm and AI technology mentioned earlier.

This paper validated the malfunction monitoring system based on TES (MCU)–MES
(MCU). In the future, research will focus on implementing malfunction monitoring systems
based on field-programmable gate array (FPGA) embedded systems such as TES (FPGA)–
MES (MCU), and TES (FPGA)–MES (FPGA). Additionally, there will be a need for research
on efficient malfunction defense and power consumption reduction through power block
control and system clock speed control in embedded systems. Establishing interfaces for
stable system implementation across heterogeneous systems, transferring fault detection
and monitoring algorithms and systems to the TES, and optimizing them are essential.
Furthermore, we plan to enhance the safety and stability of systems in high-risk industries,
such as automotive and medical fields, where complex software is prevalent.

Author Contributions: S.L. designed the entire architecture and performed the hardware/software
implementation and experiments. D.P. had his role as corresponding author and the principle
investigator for this research. All authors have read and agreed to the published version of the
manuscript.

Funding: This study was supported by the BK21 FOUR project (4199990113966), the Basic Science
Research Program (NRF-2018R1A6A1A03025109, 10%), (NRF-2022R1I1A3069260, 10%) through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education, and
(2020M3H2A1078119) by Ministry of Science and ICT. This work was partly supported by an Institute
of Information and communications Technology Planning and Evaluation (IITP) grant funded by
the Korean government (MSIT) (No. 2021-0-00944, Metamorphic approach of unstructured valida-
tion/verification for analyzing binary code, 20%) and (No. 2022-0-01170, PIM Semiconductor Design
Research Center, 20%) and (No. RS-2023-00228970, Development of Flexible SW-HW Conjunctive
Solution for On-edge Self-supervised Learning, 30%). The EDA tool was supported by the IC Design
Education Center (IDEC), Korea. This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A5A1021944, 10%).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IT Information technology
TES Target embedded system
MES Embedded system for monitoring
PID Proportional Integral Derivation
PD Power debugger
DTotal Output data from PD transmits data

Electronics 2024, 13, 1526 21 of 22

UART Universal asynchronous receiver/transmitter
DR Dumped dataset
VS Voltage of TES
IS Current of TES
WS Power consumption of TES
MCU Microcontroller unit
D′

Total Sampled data of TES′

V′
S Voltage of TES′

I′S Current of TES′

W ′
S Power consumption of TES′

D′
P Malfunctioning current/voltage data of TES′

D′
Di f f Differential data of TES′

D′
Int Integral data of TES′

V′
Di f f /V′

Int Voltage comparison data of TES′

I′Di f f /I′Int Current comparison data of TES′

W ′
Di f f /W ′

Int Power consumption comparison data of TES′

IOp.0−99 Dumped normal operation current of TES
I′Mal Malfunction current of TES′

I′Di f f Compared current data of TES′∣∣∣I′Di f f

∣∣∣ Absolute value of TES′

∆Di f f Error rate
IOp.Max Maximum current level of TES
RST Reset
SRAM Static random access memory
VLow Low voltage level
IRe f Reference current level
VRe f Reference voltage level
GPIO General-purpose input/output
NRST Negative reset
AI Artificial intelligence
TinyML Tiny machine learning
FPGA Field-programmable gate array

References
1. Kane, S.; Liberman, E.; DiViesti, T.; Click, F.; MacDonald, M. Update Report: Toyota Sudden Unintended Acceleration; Technical

Report; Safety Research & Strategies, Inc.: Rehoboth, MA, USA, 2010.
2. Travis, G. How the Boeing 737 Max Disaster Looks to a Software Developer; Technical Report; IEEE Spectrum: New York, NY, USA,

2019.
3. Gottlich, P.; Reuss, H.C. Work-in-Progress: Physics-Based Software Analysis for Safety-Critical Embedded Applications. In

Proceedings of the 2019 International Conference on Embedded Software (EMSOFT), New York, NY, USA, 13–18 October 2019;
pp. 1–2. [CrossRef]

4. Chang, J.; Oh, S.; Park, D. Work-in-Progress: Accuracy-Area Efficient Online Fault Detection for Robust Neural Network
Software-Embedded Microcontrollers. In Proceedings of the 2022 International Conference on Embedded Software (EMSOFT),
Shanghai, China, 7–14 October 2022; pp. 1–2. [CrossRef]

5. Fellner, D.; StrasserThomas, T.I.; Kastner, W. The DeMaDs Open Source Modeling Framework for Power System Malfunction
Detection. In Proceedings of the 2023 Open Source Modelling and Simulation of Energy Systems (OSMSES), Aachen, Germany,
27–29 March 2023; pp. 1–6. [CrossRef]

6. Hasegawa, K.; Yanagisawa, M.; Togawa, N. Detecting the Existence of Malfunctions in Microcontrollers Utilizing Power Analysis.
In Proceedings of the 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS), Platja
d’Aro, Spain, 2–4 July 2018; pp. 97–102. [CrossRef]

7. Liu, Y. The malfunction diagnosis and monitoring of power transformer. In Proceedings of the 2011 6th International Forum on
Strategic Technology, Harbin, China, 22–24 August 2011; Volume 1, pp. 403–405. [CrossRef]

8. Teymouri, A.; Mehrizi-Sani, A. Sensor Malfunction Detection and Mitigation Strategy for a Multilevel Photovoltaic Converter.
IEEE Trans. Energy Convers. 2020, 35, 886–895. [CrossRef]

9. Lockhart, J.; Purdy, C.; Wilsey, P.A. Error Analysis and Reliability Metrics for Software in Safety Critical Systems. In Proceedings
of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August
2018; pp. 512–515. [CrossRef]

http://doi.org/10.1145/3349568.3351550
http://dx.doi.org/10.1109/EMSOFT55006.2022.00008
http://dx.doi.org/10.1109/OSMSES58477.2023.10089746
http://dx.doi.org/10.1109/IOLTS.2018.8474113
http://dx.doi.org/10.1109/IFOST.2011.6021050
http://dx.doi.org/10.1109/TEC.2020.2973421
http://dx.doi.org/10.1109/MWSCAS.2018.8624052

Electronics 2024, 13, 1526 22 of 22

10. Yongjie, L.; Yong, Q.; Meifang, D. Predict Malfunction-Prone Modules for Embedded System Using Software Metrics. In
Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 16–18 August
2007; pp. 2-539–2-542. [CrossRef]

11. Horikoshi, H. Preventing Method of Malfunctions by implemeting Fingerprint Reader Active Signal to NFC Controller. In
Proceedings of the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 15–18 October 2019;
pp. 1016–1017. [CrossRef]

12. Lutz, R.R. Analyzing software requirements errors in safety-critical, embedded systems. In Proceedings of the 1993 IEEE
International Symposium on Requirements Engineering, San Diego, CA, USA, 4–6 January 1993; pp. 126–133. [CrossRef]

13. Goues, C.L.; Pradel, M.; Roychoudhury, A.; Chandra, C. Automatic Program Repair. IEEE Softw. 2021, 38, 22–27. [CrossRef]
14. Farazmand, N.; Fazeli, M.; Miremadi, S.G. FEDC: Control Flow Error Detection and Correction for Embedded Systems without

Program Interruption. In Proceedings of the 2008 Third International Conference on Availability, Reliability and Security,
Barcelona, Spain, 4–7 March 2008; pp. 33–38. [CrossRef]

15. Sadi, M.S.; Myers, D.G.; Sanchez, C.O. A Design Approach for Soft Error Protection in Real-Time Embedded Systems. In
Proceedings of the 19th Australian Conference on Software Engineering (ASWEC 2008), Perth, Australia, 25–28 March 2008;
pp. 639–643. [CrossRef]

16. Chen, Z.; Li, G.; Pattabiraman, K.; DeBardeleben, N. BinFI: An Efficient Fault Injector for Safety-Critical Machine Learning
Systems. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
New York, NY, USA, 17–22 November 2019. [CrossRef]

17. Pardo, J.; Campelo, J.C.; Serrano, J.J. Robustness study of an embedded operating system for industrial applications. In
Proceedings of the 28th Annual International Computer Software and Applications Conference, COMPSAC 2004, Hong Kong,
28–30 September 2004; Volume 2, pp. 64–65. [CrossRef]

18. Gold, R. Work-in-progress: Combining control flow checking for safety and security in embedded software. In Proceedings of
the 2017 International Conference on Embedded Software (EMSOFT), Seoul, Republic of Korea, 15–20 October 2017; pp. 1–2.
[CrossRef]

19. Thati, V.B.; Vankeirsbilck, J.; Pissoort, D.; Boydens, J. Hybrid Technique for Soft Error Detection in Dependable Embedded
Software: A First Experiment. In Proceedings of the 2019 IEEE XXVIII International Scientific Conference Electronics (ET),
Sozopol, Bulgaria, 12–14 September 2019; pp. 1–4. [CrossRef]

20. Yildiz, T.; Gol, M. A Malfunction Detection Method for PV Systems. In Proceedings of the 2019 IEEE Milan PowerTech, Milan,
Italy, 23–27 June 2019; pp. 1–6. [CrossRef]

21. Tsai, F.K.; Chen, C.C.; Chen, T.F.; Lin, T.J. Sensor Abnormal Detection and Recovery Using Machine Learning for IoT Sensing
Systems. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA),
Tokyo, Japan, 12–15 April 2019; pp. 501–505. [CrossRef]

22. Franco1, I.T.; de Figueiredo, R.M. Predictive Maintenance: An Embedded System Approach. J. Control Autom. Electr. Syst. 2022,
34, 60–72. [CrossRef]

23. Papaioannou, A.; Dimara, A.; Kouzinopoulos, C.S.; Krinidis, S.; Anagnostopoulos, C.N.; Ioannidis, D.; Tzovaras, D. LP-OPTIMA:
A Framework for Prescriptive Maintenance and Optimization of IoT Resources for Low-Power Embedded Systems. Sensors 2024,
24, 2125. [CrossRef] [PubMed]

24. Kanbara, H.; Kinjo, R.; Toda, Y.; Okuhata, H.; Ise, M. Dependable embedded processor core for higher reliability. In Proceedings
of the 2009 IEEE 13th International Symposium on Consumer Electronics, Kyoto, Japan, 25–28 May 2009; pp. 819–822. [CrossRef]

25. Ahmad, H.A.H.; Sedaghat, Y. Software-based Control-Flow Error Detection with Hardware Performance Counters in ARM
Processors. In Proceedings of the 2022 CPSSI 4th International Symposium on Real-Time and Embedded Systems and Technologies
(RTEST), Tehran, Iran, 30–31 May 2022; pp. 1–8. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICEMI.2007.4350736
http://dx.doi.org/10.1109/GCCE46687.2019.9015216
http://dx.doi.org/10.1109/ISRE.1993.324825
http://dx.doi.org/10.1109/MS.2021.3072577
http://dx.doi.org/10.1109/ARES.2008.199
http://dx.doi.org/10.1109/ASWEC.2008.4483256
http://dx.doi.org/10.1145/3295500.3356177
http://dx.doi.org/10.1109/CMPSAC.2004.1342678
http://dx.doi.org/10.1145/3125503.3125563
http://dx.doi.org/10.1109/ET.2019.8878497
http://dx.doi.org/10.1109/PTC.2019.8810946
http://dx.doi.org/10.1109/IEA.2019.8715215
http://dx.doi.org/10.1007/s40313-022-00949-4
http://dx.doi.org/10.3390/s24072125
http://www.ncbi.nlm.nih.gov/pubmed/38610337
http://dx.doi.org/10.1109/ISCE.2009.5157061
http://dx.doi.org/10.1109/RTEST56034.2022.9850096

	Introduction
	Related Works
	Proposed System Structure and Implementation
	Extraction and Comparison of Normal/Malfunction Data
	Extraction of Data
	Comparison of Data

	System Recovery and Protection
	Internal Disturbance
	External Disturbance

	Scenarios of System Recovery and Protection
	Scenario 1: Current Monitoring of Internal Disturbance
	Scenario 2: Voltage Monitoring of External Disturbance

	Experiment Environment and Evaluation
	Experiment Environment
	Result of Data Extraction
	Experiment Evaluation
	Result of Internal Disturbance Experiment
	Result of External Disturbance Experiment

	Conclusions
	References

