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Abstract: Federated learning (FL) is a highly promising collaborative machine learning method that
preserves privacy by enabling model training on client nodes (e.g., mobile phones, Internet-of-Things
devices) without sharing raw data. However, FL is vulnerable to Byzantine nodes, which can disrupt
model performance, render training ineffective, or even manipulate the model by transmitting
harmful gradients. In this paper, we propose a Byzantine fault-tolerant FL algorithm called federated
learning with trustworthy data and historical information (FLTH). It utilizes a small trusted training
dataset at the parameter server to filter out gradient updates from suspicious client nodes during
model training, which provides both Byzantine resilience and convergence guarantee. It further
introduces a historical information-based credibility assessment scheme such that the client nodes
performing poorly over the long-term have a lower impact on the aggregation of gradients, thereby
enhancing fault tolerance capability. Additionally, FLTH does not compromise the training efficiency
of FL because of its low time complexity. Extensive simulation results show that FLTH achieves
higher model accuracy compared to state-of-the-art methods under typical kinds of attack.

Keywords: federated learning; Byzantine fault tolerance; gradient aggregation

1. Introduction

Federated learning (FL) is emerging as a widely adopted and distributed, privacy-
preserving machine learning (ML) framework, wherein multiple client nodes cooperatively
train an ML model with assistance from a parameter server [1,2]. With the proliferation
of edge devices like mobile devices and Internet-of-Things (IoT) devices, FL enables effi-
cient utilization of their local data and computational resources, thereby enhancing their
capabilities [3,4]. The training process of FL consists of multiple rounds. In each round,
the parameter server first broadcasts a global model to all client nodes. Then, each client
node computes the gradient with the model on their local data, and sends it to the pa-
rameter server. Finally, the parameter server aggregates these gradients and updates the
global model.

However, due to its distributed nature, some edge devices may be malicious; such
malicious devices are commonly termed as Byzantine nodes. FL is vulnerable to Byzantine
nodes, which can disrupt model performance, render training ineffective, or even manip-
ulate the model by transmitting harmful gradients instead. For example, for the classic
federated averaging (FedAvg) method [1] for gradient aggregation, it has been shown that
the model can be arbitrarily manipulated even if there is only one Byzantine node but with
an omniscient capability [5].

Many efforts have been devoted to design Byzantine fault-tolerant aggregation al-
gorithms for FL. In Krum [5], Bulyan [6], RFA [7], and FLAME [8], the parameter server
aggregate the gradients by finding a gradient that is close to majority gradients through
clustering. In [9,10], the gradients are aggregated by combining common statistical methods
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such as Median and Trimmed Mean. Moreover, refs. [11–15] address the evaluation and
aggregation of client nodes over a historical perspective. They combine information from
all previous rounds during every evaluation to counter Byzantine nodes. However, all
these methods cannot guarantee effectiveness when more than a half of the client nodes are
Byzantine, and most of them incur significant computational overhead.

Some recent work including Zeno [16,17], FLTrust [18], and Siren [19] has considered
the introduction of trustworthy data. Among them, ref. [17] and FLTrust generate a
reference gradient at parameter server and use the reference gradient to judge the accuracy
of the gradients of client nodes, while Zeno and Siren directly evaluate gradients of client
nodes on trustworthy data. These methods can be effective even if most of the client
nodes are Byzantine. However, in all these methods, the evaluation of gradients of client
nodes in each round is independent of the evaluations in other rounds. In other words,
if the gradient of a client node passes the evaluation in the current round, it will be
indiscriminately adopted for aggregation, no matter how the client node performs in the
past rounds.

In this paper, we propose a fault-tolerant FL algorithm FLTH (federated learning with
trustworthy data and historical information), which improves the existing trustworthy
data-based methods by leveraging historical information to provide a more comprehensive
assess of client nodes. Specifically, FLTH utilizes a small trusted training dataset at the
parameter server to filter out gradient updates from suspicious client nodes during model
training, which provides both Byzantine resilience and a convergence guarantee. It further
introduces a historical information-based credibility assessment scheme such that the client
nodes performing poorly over the long-term have a lower impact on the aggregation of
gradients, thereby enhancing fault tolerance capability. The main contributions of this
paper are as follows:

• We introduce FLTH, which provides Byzantine fault tolerance by assessing client
nodes from a historical perspective based on trustworthy data.

• We show that FLTH has a low time complexity, which does not compromise the
training efficiency, and establish its convergence result under mild assumptions.

• We conduct extensive simulations to evaluate the performance of FLTH. The simula-
tion results show that FLTH achieves higher model accuracy compared to state-of-the-
art methods under typical kinds of attack.

The reminder of the paper is organized as follows: In Section 2, we discuss the related
work. In Section 3, we introduce the FL framework. In Section 4, we introduce FLTH and
give the guarantee and convergence performance of our FLTH. In Section 5, we conduct
the simulation and analyze the results. Finally, Section 6 concludes the whole paper.

2. Related Work

In this section, we first introduce some typical Byzantine attacks on FL, and then
present a brief overview of existing Byzantine fault-tolerant algorithms for FL.

2.1. Attacks on Federated Learning

Due to the distributed feature of FL, each client node could potentially be malicious.
These Byzantine nodes may adopt various attack methods to disrupt the model training
process. With regard to the attacks that occur in the FL process, we mainly divide them into
untargeted attacks and targeted attacks. The purpose of untargeted attacks is to undermine
the accuracy of the model after aggregation, making the entire FL system unable to proceed
normally or reducing the convergence speed of the model and the performance of the final
converged model. The purpose of targeted attacks is not to undermine accuracy but to make
the model produce specific errors in specific classifications, or to make the model output
the results that the attacker wants after inputting data with specific features. Untargeted
attacks mainly include Label-Flipping attack, Sign-Flipping attack, etc. Label-Flipping
attack reverses the data labels during model training, for example, changing the labels of ‘0’
to ‘9’ in the MNIST dataset to ‘9’ to ‘0’, i.e., the label of ‘0’ is ‘9’, the label of ‘1’ is ‘8’, and
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so on. Sign-Flipping attack reverses the sign of the gradient after training, for example,
reversing the gradient of [1, −2, 3] to [−1, 2, −3]. Previous work [20–24] proposed various
targeted attack methods. These attacks may deliberately steer the gradient purposefully
in a certain direction or try to inject backdoor information into the model. For example,
ref. [20] proposes a targeted attack with the concept of concealed and adversarial alternating
minimization, which causes the model to misclassify on specific labels. Ref. [21] enables all
Byzantine nodes to shift uniformly in a specific direction within a reasonable error range of
the gradient.

2.2. Fault-Tolerant Algorithms

Clustering-Based Fault-Tolerant Approaches: The core of most fault-tolerant ap-
proaches lies in how to cluster and find results that are close to majority of the gradients.
For example, methods like Krum [5], Bulyan [6], Median [9], RFA [7], etc., can find an
appropriate aggregation result when the number of Byzantine nodes is less than n/2, where
n is the number of client nodes, ensuring that the final result within a certain distance from
the gradients of honest client nodes. However, these methods fail to tackle the scenario
where the number of Byzantine nodes is more than n/2, and the time complexity of these
algorithms is typically an order of magnitude higher than FedAvg.

Trustworthy Data-Based Fault-Tolerant Approaches: In fault-tolerant approaches
based on trustworthy data, the key lies in how to utilize trustworthy data, which provides
a fundamental guarantee for the aggregation. One method involves using a trusted dataset
to directly evaluate the gradients returned by each client node. For example, Zeno [16]
computes the loss value of the returned gradient under the trusted dataset and combines
it with the gradient size to assign a score to each client node, thus assessing the trustwor-
thiness of each client node. Based on this assessment, a certain number of gradients are
selected for average aggregation according to their ranking. Similarly, Siren [19] employs
the performance of the gradient under the trusted dataset to evaluate both the parameter
server and the client node. The parameter server discards gradients with low accuracy,
and the client node can also opt not to accept updates from the parameter server. Another
method is to train a gradient in parallel using a trusted dataset on the parameter server. The
returned gradients are indirectly evaluated based on the gradient trained by the trusted
dataset. For example, ref. [17] trains the gradient on the parameter server, excludes those
gradients whose distance exceeds the threshold from the gradient trained by the trusted
dataset, and performs average aggregation on the remaining gradients. FLTrust [11] mea-
sures the cosine similarity between the returned gradient and the parameter server gradient
and exclude some client nodes from aggregation. However, the existing approach using
trustworthy data only measures the gradient in one round of training results and does not
fully utilize the information brought by trustworthy data. Additionally, ref. [11] highlights
issues arising from neglecting historical data usage.

History-Based Fault-Tolerant Approaches: The utilization of historical information
introduces a historical perspective on fault tolerance within the federated training process.
Various approaches exist for leveraging historical information. For example, ref. [13]
regresses the gradient in the global model and employs the predicted values as a reference
for the gradient. Moreover, refs. [11,12] utilize gradient momentum as an aggregation
value to combat Byzantine nodes. However, these works have not significantly enhanced
fault tolerance capabilities. Nevertheless, leveraging historical data represents a promising
perspective for fault tolerance.

Unlike these existing works, in this paper we propose FLTH, which proposes a novel
approach to leverage the advantages of both trustworthy data and historical information.
Compared to the above clustering-based fault-tolerant approaches, FLTH can tolerate more
than 50% Byzantine nodes and has a lower time complexity, while compared to the above
trustworthy data based approaches, FLTH achieves a better fault tolerance capability by
introducing a historical information-based credibility assessment scheme.
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3. Problem Formulation

In this section, we first introduce the FL framework and then introduce both the attack
model and the defender’s ability.

3.1. Federated Learning Framework

As shown in Figure 1, we consider an FL system consisting of a parameter server
and a set of n client nodes, and the client nodes communicate to the parameter server.
The parameter server maintains a trusted dataset D0, and each client node i, i = 1, . . . , n
possesses its own dataset Di, where each data point in D0,D1, . . . ,Dn is drawn from an
unknown distribution X . The aim of this FL system is to collaboratively train a machine
learning model w ∈ Rd that minimizes the following expected loss function:

F(w) = ED∼X [ f (w,D)],

where f (w,D) denotes the loss function of the model w corresponding to dataset D. Since
the distribution X is unknown and the expectation is hard to evaluate exactly, the FL system
usually seeks a model w that minimizes f (w,D) instead in practice, where D = ∪n

i=1Di.

...

Parameter server

Client nodes

Figure 1. An illustration of FL framework.

The training process is executed in an iterative manner. More specifically, each t-th
training round, t = 1, 2, . . . , consists of the following three steps:

• First, the parameter server broadcasts the current global model wt−1 to every client node.
• If a client node is honest, it then computes its local model gradient gt

i = ∇ f (wt−1,Di)
and sends gt

i to the parameter server. If otherwise, it sends an arbitrary vector
gt

i instead.
• After collecting every gt

i , i = 1, . . . , n, the parameter server finally employs an aggre-
gation algorithm Aggr to obtain an aggregated gradient update Aggr(gt

1, . . . , gt
n), and

subsequently utilizes the learning rate η to achieve a new global model wt as follows:

wt = wt−1 − ηAggr(gt
1, . . . , gt

n),

where the function Aggr plays a vital role.

3.2. Attack Model

Here, we primarily focus on scenarios where client nodes are malicious or manipulated
by attackers. Malicious nodes may possess varying levels of capability, ranging from having
knowledge limited to their local dataset and the globally transmitted model to being fully
aware, meaning they have knowledge of all models and gradient information from all
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client nodes but cannot directly influence the operations of the parameter server. Instead,
they can only indirectly impact the model aggregation results of the parameter server by
controlling the actions of client nodes. Additionally, malicious nodes can collude with each
other to exert influence on the parameter server. We refer to these malicious client nodes as
Byzantine nodes.

3.3. Defender’s Ability

The parameter server has no permission to access the data of individual client nodes.
It can only obtain gradient information transmitted by each client node. Moreover, it lacks
information about which client nodes in the FL system might be malicious. However,
similar to [16–19], we assume that the parameter server maintains a trusted dataset D0 that
follows the distribution X as mentioned earlier, and has no intersection with the datasets
of individual client nodes. Hence, the parameter server can also conduct model training
using its own dataset D0 during each training round, which can be leveraged to defend
against the Byzantine attack.

4. Federated Learning with Trustworthy Data and Historical Information

In this section, we introduce a novel algorithm named FLTH (federated learning with
trustworthy data and historical information), which can mitigate the impact of Byzantine
nodes. The convergence performance of FLTH is also provided.

4.1. Algorithm Description

In contrast to clustering-based fault tolerance methods, we introduce a novel algorithm
known as FLTH. The core concept of FLTH is to establish and maintain a trusted dataset
within the context of FL, aiming to enhance the trustworthiness of training and the quality
of the model. We will evaluate in conjunction with the historical performance of the
client nodes, so as to carry out comprehensive aggregation. In traditional FL, client nodes
conduct model training solely based on their local data and then send the model gradient
parameters to the parameter server for global model updates. However, in FLTH, we
introduce additional data to ensure the security and effectiveness of FL.

Next, we will specifically introduce our FLTH algorithm. Our method is grounded in
the following core principles:

Introducing Trustworthy Reference Gradients: In each t-th training round, the param-
eter server utilizes its computational resources to compute a gradient gt

0 = ∇ f (wt−1,D0)
using its own trusted dataset D0. This gradient gt

0 represents reliable gradient information,
serving as a reference point for evaluating the credibility of the gradients of client nodes.
Henceforth, in the following, we will refer to gt

0 as the reference gradient.
Filtering: The gradient of each honest client node usually exhibits certain similarity

with the reference gradient provided by the parameter server in a same training round.
This implies that, if the gradient of some client node is quite dissimilar with the reference
gradient gt

0, the client node is suspected to be Byzantine. In order to avoid the potential
influence of gradients sent by possible Byzantine nodes on the aggregation, we exclude the
gradients that are quite dissimilar with the reference gradient from the aggregation process.
More specifically, we use the widely adopted Euclidean distance to measure the similarity
between gradients. If the gradient of client node i satisfies

∥gt
i − gt

0∥ > k∥gt
0∥,

where k is a fixed constant referred to as filtering parameter, then client node i will be
excluded from the aggregation process in this training round. We denote the set of the
client nodes that are not excluded by St.

Inverse Distance Weighting: In order to evaluate the impact of the gradient gt
i of each

client node i on the aggregation in the t-th round, we first introduce a credibility value r̃t
i

for each client node i. Generally speaking, if a gradient exhibits higher similarity with the
reference gradient, a higher credibility value should be assigned. To guarantee this property,
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we employ an inverse distance weighting approach [25]. Specifically, if i /∈ St, then we set
r̃t

i = 0. Otherwise, the credibility value r̃t
i is set as the p-th power of the reciprocal of the

Euclidean distance, i.e.,

r̃t
i =

(
1

∥gt
i − gt

0∥

)p

,

where p is a constant parameter used for adjusting the sensitivity of the credibility value
in this round to the distance. The larger p is, the greater the role of gradient with higher
similarity will play, further limiting the malicious ability of Byzantine nodes, but it will
also affect the role of gradients with lower similarity but coming from honest client nodes
in the aggregation. Therefore, by adjusting the power exponent p, we can achieve different
levels of fault tolerance.

Normalization of Node Trustworthiness: To eliminate the discrepancy in the credibil-
ity values between different rounds and facilitate the utilization of historical information
later, we normalize the credibility value r̃t

i of each client node i to a value rt
i in the interval

[0, 1], given by

rt
i =

r̃t
i

∑n
j=1 r̃t

j
.

Historical Perspective: One straightforward aggregation method is to use ∑i∈St rt
i g

t
i

as the aggregation result, which can provide a certain fault-tolerant capability. However,
the normalized credibility value of a single round cannot fully reflect the long-term perfor-
mance of client nodes, making the aggregation method less useful to distinguish Byzantine
nodes from honest client nodes. Hence, the fault-tolerant capability of this method is lim-
ited. To overcome this drawback, our idea is to penalize client nodes with poor historical
performance so their influence on the aggregation result is restricted. For this purpose, we
introduce the utilization of the historical information of credibility values of client nodes in
each round to evaluate each client node from the long-term perspective. More specifically,
we leverage the common exponential moving average r̄t

i of r1
i , r2

i , . . . , rt
i , referred to as

historical credibility value, i.e.,

r̄t
i = βr̄t−1

i + (1 − β)rt
i ,

where r̄0
i = 0, and β is a parameter that balances the historical credibility value and the

normalized credibility value of the current round.
Weighted Average Aggregation of Model: Now we can have the following basic

aggregation method

Aggr0(g
t
1, . . . , gt

n) = ∑
i∈St

r̄t
i

Rt
gt

i ,

where Rt = ∑i∈St r̄t
i is a parameter such that the sum of coefficients of gt

i is equal to 1.
Note that the reference gradient gt

0 is ignored by the above aggregation method, which
is wasteful. To integrate gt

0, we introduce the following improved aggregation method:

Aggr(gt
1, . . . , gt

n) =
1

|St|+ 1
gt

0 +
|St|

|St|+ 1
Aggr0(g

t
1, . . . , gt

n),

where the weight of gt
0 is set to be inversely proportional to the number of participating

nodes including the parameter server.
The following result shows that FLTH is computationally efficient. In particular, it has

the same time complexity as the well-known FedAvg aggregation algorithm, which does
not provide Byzantine fault tolerance.

Proposition 1. The time complexity of our FLTH algorithm is O(nd).
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Proof. Clearly, the time cost of calculating the credibility value of each client node is O(d).
Hence, obtaining the historical credibility values of all n client nodes requires O(nd) time.
Furthermore, the weighted average aggregation requires O(nd) time. Therefore, the whole
time cost of FLTH is O(nd).

The whole pseudocode of FLTH algorithm is given in Algorithm 1.

Algorithm 1 FLTH Algorithm

Input:
client nodes number n, initial model w0, learning rate η
momentum parameter β, filter parameter k
training round T, fault tolerance parameter p

Initialize:
client nodes global credibility value r̄0

i = 0(i = 1, . . . , n)
Output:

Global model wT
for t = 1 to T do

parameter server send model wt−1 to all client nodes

Client node:
for i = 1 to n do

client node i calculates gt
i = ∇F(wt−1,Di)

send gt
i to parameter server

end for

Parameter Server:
parameter server calculates gt

0 = ∇F(wt−1,D0)
let St = {}
for i = 1 to n do

if ∥gt
i − gt

0∥ ≤ k∥gt
0∥ then

calculate client node i’s credibility value rt
i = ( 1

∥gt
i−gt

0∥
)

p

St = St ∪ {i}
else

client node i’s credibility value r̃t
i = 0

end if
end for
for i = 1 to n do

client node credibility value normalization rt
i =

r̃t
i

∑n
j=1 r̃t

j

end for
for i = 1 to n do

calculate client node i’s global credibility value r̄t
i = βr̄t−1

i + (1 − β)rt
i

end for
calculate sum of global credibility value Rt = ∑i∈St r̄t

i

wt = wt−1 − η( 1
|St |+1 gt

0 +
|St |

|St |+1 ∑i∈St

r̄t
i

Rt
gt

i)

end for
return wT

4.2. Convergence Result

For the convergence analysis of our proposed FLTH algorithm, we start with some
assumptions that have been also used in [17,18].
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Assumption 1. The expected loss function F is M-strongly convex and its gradient is L-Lipschitz
in the space Θ, so we have:

F(w′) ≥ F(w) + ⟨∇F(w), w′ − w⟩+ M
2
∥w′ − w∥2

∥∇F(w′)−∇F(w)∥ ≤ L∥w′ − w∥

where w, w′ denotes any vector in Θ, ∥ · ∥ denotes l2 norm, and ⟨·, ·⟩ denotes the inner product of
two vectors.

Assumption 2. There exist positive constants σ1 and α1 such that for any unit vector v, ⟨∇ f (w,D),
v⟩ is sub-exponential with σ1 and α1, i.e.,

supE[exp(λ⟨∇ f (w,D), v⟩)] ≤ exp(
σ2

1 λ2

2
) ∀|λ| ≤ 1

α1

Assumption 3. The gradient difference h(w,D) ≜ ∇ f (w,D)−∇ f (w∗,D) for any w ∈ Θ is
bounded. Formally, there exist positive constants σ2 and α2 such that for any w ∈ Θ with w ̸= w∗

and any unit vector v, we have:

supE[exp(
λ⟨h(w,D)−E[h(w,D)], v⟩

∥w − w∗∥ )] ≤ exp(
σ2

2 λ2

2
) ∀|λ| ≤ 1

α2

Assumption 4. The empirical loss function f (w,D) is L′-Lipschitz with high probability, i.e., for
any δ ∈ (0, 1), there exists L′ = L′(δ) such that:

Pr

{
sup

w,w′∈Θ,w ̸=w′
∥∇ f (w,D)−∇ f (w′,D)∥ ≤ L′∥w − w′∥

}
≥ 1 − δ

3

Assumption 5. The root dataset D0 and each client node dataset Di(i = 1, . . . , n) are indepen-
dently sampled from distribution X .

The convergence result of the FLTH algorithm is given in the following theorem.

Theorem 1. Under Assumptions 1–5 and Θ ⊂ {θ : ∥θ− w∗∥} ≤ r
√

d for some r > 0, setting
learning rate η = M

L2 , it is guaranteed with at least a probability of 1 − δ that:

∥wt − w∗∥ ≤ (1 − ρ)t∥w0 − w∗∥+ 4η∆1(1 + k)/ρ,

where

ρ = 1 −
√

1 − M2/L2 + 8η∆2(1 + k) + ηkL

∆1 =
√

2σ1

√
d log 6 + log ( 3

δ )

|D0|

∆2 =
√

2σ2

√
γ1 + γ2

|D0|

γ1 = d log 18 + d log(
max{L, L′}

σ2
)

γ2 = 0.5d log
(
|D0|

d

)
+ log

(
3
δ

)
+ log

(
2rσ2

2

√
|D0|

α2σ1

)

and d is the dimension of the model.
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Proof. This convergence result of our FLTH algorithm is based on the convergence result of
the methods proposed in [17,18]. In the method proposed in [17,18], the parameter server
also maintains a trusted dataset, trains reference gradients based on the dataset, and also
excludes the received gradients of client nodes far from the reference gradient in terms of
Euclidean distance from aggregation, which are the same methods as our FLTH. The only
difference between the method and our FLTH is that the weights of aggregated gradients
are different. Specifically, FLTH leverages the historical information to obtain weights while
the former does not. However, we observe that the convergence result presented in [17,18]
is unrelated to the weights in essence. So, we can obtain the convergence result of FLTH by
following the same lines in [17,18]. The details are omitted here.

5. Performance Evaluation

In this section, we evaluate the performance of our proposed FLTH algorithm under
several typical types of attacks.

5.1. Experiment Setup

We consider a scenario consisting of a parameter server and 20 client nodes. We
conduct experiments on the MNIST [26] and CIFAR-10 [27] datasets. The MNIST dataset
contains 60,000 gray-scale images for training and 10,000 gray-scale images for testing. The
CIFAR-10 dataset contains 50,000 color images for training and 10,000 color images for
testing. All client nodes and parameter servers will distribute data from the dataset in an
average and i.i.d. manner. For MNIST, we train a convolutional neural network (CNN)
with a learning rate η = 0.01. For CIFAR-10 we train ResNet [28] with a learning rate
η = 0.05.

5.2. Attacks

Similar to [11], we consider different kinds of attacks including both untargeted attack
and targeted attack. Two typical untargeted attacks are considered as follows:

• Sign-Flipping attack: where each parameter of the gradient sent to the parameter
server by a Byzantine node is set to be the opposite value of the training gradient.

• Label-Flipping attack: For Label-Flipping, since both the MNIST and CIFAR-10
datasets have only the labels ‘0’ to ‘9’, we will modify their labels to range from ‘9’ to
‘0’, respectively.

The targeted attack is considered as follows:

• ALIE attack [21]: ALIE is a targeted attack method. It allows all colluding client
nodes to send the same value, causing errors in the final result. In this paper, we
adopt the default settings in [21] as our chosen attack strategy, where all the Byzantine
nodes send Mean({gt

i , i ∈ H})− zmax · Std({gt
i , i ∈ H}). Here, H is the set of honest

client nodes, Std() is standard deviation function, and zmax = arg maxz ϕ(z) < ⌈ n
2 ⌉−1
n− f ,

where ϕ() denotes cumulative standard normal function, and f denotes the number
of Byzantine nodes.

5.3. Fault Tolerance Algorithms for Comparison

We compare our FLTH with FedAvg [1] and four state-of-the-art fault tolerance algo-
rithms: Krum [5], Median [9], FLTrust [18], and CC + Momentum [11], which use different
Aggr functions. The details are given as follows.

Krum [5]: Krum introduces a scoring mechanism. Considering the case where m
Byzantine nodes are present, it calculates the sum of squared Euclidean distances to the
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nearest n − m − 2 client nodes for each client node. Subsequently, the gradient of the client
node with the lowest score is selected as the aggregation result. It can be expressed as:

s = arg min
i

∑
j∈Ni

∥gi − gj∥2
2

Krum(g1, . . . , gn) = gs

where Ni denotes the set of the n − m − 2 nearest client nodes to client node i. In our experi-
ments, we assume that the parameter server knows the exact number m of Byzantine nodes.

Median [9]: Its Aggr function calculates the median value of each parameter in all
client nodes’ gradients as the corresponding parameter value in the aggregation results.

FLTrust [18]: FLTrust computes a reference gradient g0 based on the trusted dataset at
the parameter server, measuring the cosine similarity between transmitted gradients and
parameter server gradients to obtain a trust score, excluding gradients with negative cosine
similarity, and reweighting gradients based on the trust score. It can be expressed as:

TSi = max(0,
⟨gi, g0⟩

∥gi∥2 · ∥g0∥2
)

FLTrust(g1, . . . , gn) =
n

∑
i=1

TSi · gi ·∥g0∥2
∥gi∥2

∑n
j=1 TSj

CC + Momentum [11]: CC + Momentum consists of two parts: CC (centered clip-
ping) and Momentum. CC is implemented at the parameter server, while Momentum is
implemented at each honest client node. Honest client nodes send their gradients with
momentum instead of the original gradients. It can be expressed as:

mt
i = (1 − β)gt−1

i + βmt−1
i

wt = CC(mt
1, . . . , mt

n) = wt−1 +
1
n

n

∑
i=1

(mt
i − wt−1)min(1,

τ

∥mt
i − wt−1∥2

)

where all parameters in m0
i (i = 1, 2, . . . , n) are 0. β is the momentum parameter set by

parameter server. τ is the radius hyperparameter set by parameter server, which is set as
0.1 in our experiments.

The fault-tolerant methods including Krum [5], Median [9], and CC + Momentum [11]
can only tolerate less than 50% of Byzantine nodes. On the other hand, the method of
FLTrust can tolerate over 50% and even a higher proportion as demonstrated in [18]. In
order to compare with these methods fairly, we consider two proportions of Byzantine
nodes in our experiments, namely 40% and 80%.

Furthermore, in FLTH, we set β = 0.5 and k = 1 to achieve a balance between
robustness and the retention of valuable information from honest client nodes. The default
value of parameter p is set to be 2.

5.4. Experimental Results

The experimental results in Table 1 and Figures 2–7 show the performance of various
algorithms under different attacks and varying proportions of Byzantine nodes. We utilize
top-1 accuracy on the test sets as the evaluation metric. Subsequently, we will analyze our
results across various attacks.
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(a) 40% Sign-Flipping (b) 80% Sign-Flipping

Figure 2. MNIST dataset in 20 clients with Sign-Flipping attack.

(a) 40% Sign-Flipping (b) 80% Sign-Flipping

Figure 3. CIFAR-10 dataset in 20 clients with Sign-Flipping attack.

(a) 40% Label-Flipping (b) 80% Label-Flipping

Figure 4. MNIST dataset in 20 clients with Label-Flipping attack.

(a) 40% Label-Flipping (b) 80% Label-Flipping

Figure 5. CIFAR-10 dataset in 20 clients with Label-Flipping attack.
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(a) 40% ALIE attack (b) 80% ALIE attack

Figure 6. MNIST dataset in 20 clients with ALIE attack.

(a) 40% ALIE attack (b) 80% ALIE attack

Figure 7. CIFAR-10 dataset in 20 clients with ALIE attack.

Table 1. Top-1 accuracy comparison of different aggregation methods under different circumstances.

FedAvg Krum Median CC+
Momentum FLTrust FLTH

40%
Byzantine
nodes

MNIST

Sign-Flipping 0.9077 0.0980 0.9665 0.8880 0.9824 0.9775

Label-Flipping 0.2963 0.9830 0.9757 0.9505 0.9800 0.9870

ALIE 0.9841 0.9735 0.8771 0.9688 0.9279 0.9779

CIFAR-10

Sign-Flipping 0.2791 0.4228 0.4319 0.1108 0.6046 0.6170

Label-Flipping 0.6070 0.4296 0.6159 0.1178 0.6113 0.6558

ALIE 0.5423 0.2515 0.1000 0.1180 0.5045 0.5652

80%
Byzantine
nodes

MNIST

Sign-Flipping 0.0980 0.0980 0.0980 0.1135 0.8956 0.9669

Label-Flipping 0.0182 0.0032 0.0014 0.0023 0.9602 0.9704

ALIE 0.0980 0.0980 0.0980 0.0980 0.9029 0.9787

CIFAR-10

Sign-Flipping 0.1000 0.1092 0.1000 0.1049 0.5187 0.5428

Label-Flipping 0.1623 0.0773 0.0619 0.1167 0.1293 0.6485

ALIE 0.1000 0.1283 0.1000 0.1000 0.4804 0.5132

Results on Sign-Flipping attack: The performances of the algorithms on the MNIST
and CIFAR-10 datasets under the Sign-Flipping attack with 40% and 80% Byzantine nodes
are shown in Figure 2 and Figure 3, respectively.

• In the MNIST dataset, under the condition of 40% Byzantine nodes, except for Krum,
all algorithms exhibit high accuracy. Among them, FLTH, FLTrust, and Median
perform well. Additionally, FedAvg also demonstrates fault tolerance capabilities. We
believe this is because Byzantine nodes only send gradients opposite to the original
gradients, allowing a large proportion of honest client nodes to partially offset the
influence of these Byzantine nodes. Although CC + Momentum is fault-tolerant, it
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lags behind most methods to some extent. Under the condition of 80% Byzantine
nodes, only FLTH and FLTrust demonstrate fault tolerance capabilities, with FLTH
being approximately 6% higher in accuracy compared to FLTrust.

• In the CIFAR-10 dataset, under the condition of 40% Byzantine nodes, only FLTH
and FLTrust perform well, while Median and Krum are significantly disrupted by
Byzantine nodes. Under the condition of 80% Byzantine nodes, only FLTH and FLTrust
demonstrate fault tolerance capabilities, with FLTH being approximately 2.5% higher
in accuracy compared to FLTrust.

Results on Label-Flipping attack: The performances of the algorithms on the MNIST
and CIFAR-10 datasets under the Label-Flipping attack with 40% and 80% Byzantine nodes
are shown in Figure 4 and Figure 5, respectively.

• In the MNIST dataset, all methods except FedAvg exhibit fault tolerance with 40%
Byzantine nodes, showing little difference in performance. The reason for this is
that the gradients of the Byzantine nodes differ significantly from those of honest
client nodes’ gradients. Under the condition of 80% Byzantine nodes, only FLTH
and FLTrust demonstrate fault tolerance capabilities, with no significant difference in
accuracy performance.

• In the CIFAR-10 dataset, under the condition of 40% Byzantine nodes, FLTH and Me-
dian perform well, while other fault-tolerant methods are affected on different levels.
Under the condition of 80% Byzantine nodes, only FLTH achieves fault tolerance.

Results on ALIE attack: The performances of the algorithms on the MNIST and
CIFAR-10 datasets under the ALIE attack with 40% and 80% Byzantine nodes are shown in
Figure 6 and Figure 7, respectively.

• In the MNIST dataset, under the condition of 40% Byzantine nodes, all methods are
minimally affected in terms of accuracy, with Median being the most affected. We
attribute this to the ALIE attack, which causes smaller but more definite gradient
shifts. Under the condition of 80% Byzantine nodes, FLTH and FLTrust demonstrate
fault tolerance, with FLTH achieving approximately 8% higher accuracy compared to
FLTrust. We believe FLTrust is impacted significantly because it evaluates nodes in
each round of aggregation independently.

• In the CIFAR-10 dataset, under the condition of 40% Byzantine nodes, FLTH, FedAvg,
and FLTrust perform well, while other methods are significantly impacted. Under
the condition of 80% Byzantine nodes, only FLTH and FLTrust exhibit fault tolerance,
with FLTH achieving approximately 3% higher accuracy compared to FLTrust.

Effect of parameter p in FLTH: Here, we set p with three different values of 1, 2, and
4. The performances of FLTH on the MNIST and CIFAR-10 datasets under three types of
attack with 40% and 80% Byzantine nodes and different values of parameter p are shown
in Table 2.

• For the MNIST dataset, FLTH with p = 2 performs slightly better than that with p = 1
and p = 4 in all circumstances.

• For the CIFAR-10 dataset, FLTH with p = 2 performs slightly better than that with
p = 1 and p = 4 in most cases. One exception is that FLTH with p = 1 achieves a low
accuracy when there are 80% Byzantine nodes performing the Label-Flipping attack,
where p = 1 cannot provide sufficient fault tolerance capability.

These results suggest that p = 2 is a satisfactory choice.
In summary, our method FLTH performs best among these methods under all three

kinds of attacks, and can achieve a high model accuracy even when 80% of the client nodes
are Byzantine. Additionally, the accuracy performance of FLTH oscillated less during the
training process compared to other methods, leading to a smoother convergence.
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Table 2. Top-1 accuracy comparison of FLTH under different parameter p.

FLTH, p = 1 FLTH, p = 2 FLTH, p = 4

40%
Byzantine
nodes

MNIST

Sign-Flipping 0.9702 0.9775 0.9705

Label-Flipping 0.9696 0.9870 0.9706

ALIE 0.9709 0.9779 0.9699

CIFAR-10

Sign-Flipping 0.6230 0.6170 0.6174

Label-Flipping 0.5291 0.6558 0.6205

ALIE 0.5477 0.5652 0.5936

80%
Byzantine
nodes

MNIST

Sign-Flipping 0.9632 0.9669 0.9643

Label-Flipping 0.9701 0.9704 0.9704

ALIE 0.9700 0.9787 0.9698

CIFAR-10

Sign-Flipping 0.5443 0.5428 0.5303

Label-Flipping 0.2058 0.6485 0.5927

ALIE 0.5131 0.5132 0.5142

6. Concluding Remarks

In this paper, we introduce FLTH, a fault-tolerant FL method, by providing a compre-
hensive assessment of client nodes based on trustworthy data and historical information.
FLTH exhibits fault tolerance even in the presence of a high proportion of malicious
nodes, and has a low computation cost. Simulation results show that FLTH achieves
better performance in terms of both model accuracy and training stability compared to
state-of-the-art methods.

Recall that we assumed the datasets of clients as well as the trusted dataset maintained
by the parameter server follow the same unknown data distribution. When the datasets
are not independently and identically distributed, especially when the data collected by
the parameter server are over specialized, our algorithm FLTH may struggle to accurately
reflect the trustworthiness of different client nodes. This will be further investigated in
the future. Additionally, we would also like to further optimize the credibility assessment
algorithm, enhance anomaly detection strategies, and explore the historical behavior of
client nodes during multi-round training processes in greater depth.
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