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Abstract: Foreign objects on power transmission lines carry a significant risk of triggering large-scale
power interruptions which may have serious consequences for daily life if they are not detected
and handled in time. To accurately detect foreign objects on power transmission lines, this paper
proposes a TL-Yolo method based on the Yolov8 framework. Firstly, we design a full-dimensional
dynamic convolution (ODConv) module as a backbone network to enhance the feature extraction
capability, thus retaining richer semantic content and important visual features. Secondly, we present
a feature fusion framework combining a weighted bidirectional feature pyramid network (BiFPN)
and multiscale attention (MSA) module to mitigate the degradation effect of multiscale feature
representation in the fusion process, and efficiently capture the high-level feature information and the
core visual elements. Thirdly, we utilize a lightweight GSConv cross-stage partial network (GSCSP)
to facilitate efficient cross-level feature fusion, significantly reducing the complexity and computation
of the model. Finally, we employ the adaptive training sample selection (ATSS) strategy to balance the
positive and negative samples, and dynamically adjust the selection process of the training samples
according to the current state and performance of the model, thus effectively reducing the object
misdetection and omission. The experimental results show that the average detection accuracy of the
TL-Yolo method reaches 91.30%, which is 4.20% higher than that of the Yolov8 method. Meanwhile,
the precision and recall metrics of our method are 4.64% and 3.53% higher than those of Yolov8. The
visualization results also show the superior detection performance of the TL-Yolo algorithm in real
scenes. Compared with the state-of-the-art methods, our method achieves higher accuracy and speed
in the detection of foreign objects on power transmission lines.

Keywords: power transmission line; foreign-object detection; Yolov8; attention mechanism;
feature fusion

1. Introduction

Transmission lines, as critical conduits for electric energy in power grid system, are
negatively affected by foreign objects. The secure and reliable transmission of electric power
requires the exclusion of foreign objects along these lines. With the accelerated construction
of China’s power grid and the increasingly complex and dense erection of transmission
lines [1], traditional manual inspections are proving inadequate due to their operation risks
and huge workload. In the real environment, the traditional manual inspection is limited
by safety risks and efficiency problems. Indeed, devices like drones somehow guarantee
operation safety and work efficiency, but on-board algorithms lack real-time detection
capabilities and unbiased training data support, which greatly hinder their adaption to
complex situations [2]. Therefore, more intelligent detection methods are required for
efficiently combining the inspection and detection tasks, to meet the actual needs of the
power grid construction [3].
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1.1. Traditional Foreign Objects Detection Methods

To detect foreign objects on transmission lines, Li et al. [4] provided a comprehen-
sive overview of Uncrewed Aerial Vehicle (UAV) inspection applications, highlighting
their potential for revolutionizing inspection processes. The UAV inspection provides a
more intelligent and efficient way than before. Furthermore, Li et al. [5] utilized a SWOT-
PEST analysis to scrutinize the opportunities and challenges in globally promoting the
standardized UAV inspection protocols in China. Jiang et al. [6] innovated an oblique
photogrammetry system for outdoor data acquisition using UAVs, featuring a cost-effective
dual-camera setup and a dual-frequency GNSS receiver. Zhong et al. [7] focused on the de-
ployment of multi-wing UAVs in transmission line inspection, noting their agility and vast
coverage capabilities, which markedly diminish inspection duration. Jin et al. [8] refined
the OTSU method for image background segmentation, differentiating the foreground and
background, and then employed the gradient operators and Hough transform algorithms
to precisely identify the transmission line contours. Wang et al. [9] proposed an innovative
method for transmission line extraction and foreign body detection. Based on line detection
and the parallel characteristics of transmission lines, this method combines image process-
ing and computer vision technology to realize the automatic detection of foreign objects in
transmission lines. Hayal et al. [10] investigated and improved a relay-assisted free-space
optical (FSO) optical wireless communication (OWC) system for unmanned aerial vehicles
(UAVs) under the influence of pointing error (PE) and atmospheric turbulence (AT). It
is proposed to incorporate UAVs as interference-assisted mobile relays in conventional
FSO (CFSO) relay-assisted systems in order to improve the performance of pointing errors
through AT.

1.2. Deep-Learning-Based Foreign Objects Detection Methods

With the rapid advancement of high-performance computation and artificial intelli-
gence, the intelligent and automated detection of foreign objects on transmission lines has
emerged as a significant area of research. Zhang et al. [11] proposed the RCNN4SPTL, a spe-
cialized deep-learning network for identifying stationary foreign objects on transmission
lines. The RCNN4SPTL leverages a Region Proposal Network (RPN) to produce candidate
frames that precisely align with the dimensions of such objects. Wang et al. [12] conducted a
comprehensive analysis of the Single-Stage Detector (SSD) in detecting foreign objects. The
SSD’s performance was assessed against traditional detection methods like DPM and Faster
R-CNN, demonstrating its effectiveness. Dou et al. [13] addressed the challenge of limited
or unbalanced data in foreign object detection by proposing a data augmentation technique
utilizing Generative Neural Networks (GANs) which can create high-quality synthetic sam-
ples to enhance sample diversity and recognition of rare categories. Li et al. [14] developed
a regional convolutional neural network algorithm with an emphasis on region-of-interest
mining for the automated detection of specific foreign objects, achieving higher average
accuracy and F1 scores than conventional methods. Xia et al. [15] investigated the adapta-
tion of the YOLOv3 network by fine-tuning the pre-trained model parameters on a large
dataset. Qiu et al. [16] selected the YOLOv4-tiny network for its lightweight structure and
rapid processing, enabling real-time detection in limited-resource settings. Shen et al. [17]
introduced an innovative neural network architecture, termed TLFODNet (Transmission
Line Foreign Object Detection Net) which has been specifically designed for the detection
of foreign objects on transmission lines. This new structural approach has demonstrably
enhanced the performance and expedited the speed of detection. Wu [18] further advanced
the field by refining the YOLOX model. This approach augments the YOLOX detection
framework by incorporating Atrous Spatial Pyramid Pooling (ASPP) to heighten sensitivity
across varying scales of foreign objects, integrating a convolutional block attention module
to bolster model precision, and employing GIoU loss to optimize performance. Yu et al. [19]
developed a composite detection technique that merges multi-network feature fusion with
a Random Forest(RF) algorithm. This method applies Otsu’s binarization thresholding
coupled with morphological processes to delineate the target area of foreign objects subse-
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quently amalgamated using a tandem fusion strategy. Li et al. [20] proposed a lightweight
model tailored for embedded devices in the detection of foreign objects on transmission
lines. Mobilenetv2 is utilized as the foundational framework instead of Darknet-53, and
leveraging depth-separable convolutions as opposed to standard 3 × 3 convolutions. This
leads to a substantial reduction in network parameter size. Li et al. [21] introduced the
DF-YOLO that was refined based on YOLOv7-Tiny by using the Focal-DIoU loss function.
In addition, this algorithm further combines the Deformable Convolution Networks (DCN)
module and the SimAM attention mechanism to enhance its performance. Wang et al. [22]
unveiled an augmented detection model for foreign objects on transmission lines based on
Yolov8. This model incorporates a global attention module into the backbone architecture to
concentrate on obscured foreign objects. The SPPCSPC module supplants the SPPF module
to amplify the model’s capacity for multi-scale feature extraction. Zhang et al. [23] provided
an improved YOLOv5 technique for detecting foreign objects in transmission lines. The
method first reduces computation and memory consumption by introducing the RepConv
structure, and then further improves the detection accuracy and speed of the model by
embedding the C2F structure. Finally, the method further optimizes the neural network
through the Meta-ACON activation function. Liu et al. [24] propose a deep learning-
assisted object detection method, YOLO-CSM, combining two attentional mechanisms
(Swin transformer and CBAM) and an additional detection layer. The proposed model can
efficiently capture global information and key visual features, and improve its ability to
identify small defects and distant objects in the field of view. Tang et al. [25] proposed an
improved foreign object detection method (ST2Rep-YOLOX) based on Swin Transformer
V2 and YOLOX. The feature extraction layer ST2CSP constructed in the original backbone
network using Swin Transformer V2 is used to extract global and local features, and the
Hybrid Spatial Pyramid Pool (HSPP) is designed to expand the receptive field and retain
more feature information. Yu et al. [26] proposed a deep learning-based foreign object
recognition algorithm for unmanned inspection of transmission lines. The algorithm is
based on the YOLOv7 algorithm, combined with hyperparameter optimization based on
Genetic Algorithm (GA) and Space-Profile Depth (SPD) convolution, to accomplish foreign
object recognition on transmission line UAV images.

Of all the algorithms above, the convolution neural networks exhibit inadequate fea-
ture extraction capabilities for irregular and small foreign objects on transmission lines,
leading to inaccurate detection and false positives for small targets. Moreover, exist-
ing methodologies inadequately address the efficiency of foreign object detection under
complex environments, resulting in subpar generalization capabilities. To address the afore-
mentioned issues, this paper presents TL-Yolo to detect foreign objects on transmission
lines by refining Yolov8. The contributions of this work are as follows:

1. Adopting Omni-Dimensional Dynamic Convolution (ODConv) as the feature extract-
ing module to capture richer semantic information.

2. Designing an improved weighted bidirectional feature pyramid module with a Multi-
Scale Attention (MSA) mechanism to fuse multiscale features and thereby mitigate
representation degradation in fusion operation.

3. Using a lightweight cross-platform partial network, the GSConv Cross Stage Partial
Network (GSCSP), to facilitate effective cross-layer feature fusion while markedly
diminishing model complexity.

4. Employing an Adaptive Training Sample Selection (ATSS) strategy to equilibrate the dis-
tribution of positive and negative samples, thereby accelerating algorithm convergence.

2. Materials and Methods
2.1. Yolov8 Algorithm

Yolov8 is a prominent algorithm in the object detection realm. Its backbone network,
Darknet-53, is composed of repeated convolutional modules and residual blocks that are
sequentially stacked four times. The use of C2f configuration in the residual block improves
the gradient flow information of the model through more cross-layer connectivity and



Electronics 2024, 13, 1543 4 of 18

additional split operations. This C2f design further augments the model’s gradient flow
through increased cross-layer connectivity and introduces a stack of 3, 6, 6, and three con-
volutional residual blocks within the backbone to bolster feature extraction capabilities. In
the model’s neck part, the Yolov8 follows the structure of the PANet [27], executing a cross-
layer fusion via up-sampling and down-sampling to ensure comprehensive integration of
contextual feature information. In the model’s head part, it adopts the decoupled-head
structure, effectively bifurcating the classification and detection heads to independently
extract categorical and locational features. Subsequently, each branch employs a singular
1 × 1 convolutional layer to fulfill the tasks of classification and localization. The structure
of the Yolov8 network is shown in Figure 1.

Figure 1. Network structure diagram of Yolov8 algorithm.

2.2. TL-YOLO Algorithms

The improved network framework, TL-Yolo, is depicted in Figure 2. Initially, the
Omni-Dimensional Dynamic Convolution is used, and its seamless integration into the C2f
module is delineated [28]. The new C2f_ODConv structure is introduced to enhance the
capabilities for complex feature extraction. Subsequently, to capture pairwise associations at
the pixel level, an effective Multiscale Attention module should be incorporated to further
aggregate the output features of two parallel branch output features [29]. In the third phase,
cross-layer cascading is utilized to amalgamate semantic information across feature maps
of disparate scales thoroughly. A lightweight, efficient cross-stage feature fusion layer,
predicated on GSConv and GSCSP is engineered to minimize the model’s computational
and parametric demands [30]. Furthermore, an optimized weighted bidirectional feature
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pyramid, the BiFPN, is employed during the feature fusion phase to intensify the depth of
the pyramid [31]. Finally, the Adaptive Training Sample Selection strategy is implemented
to judiciously segregate positive and negative samples [32].

Experimental results show that the average detection accuracy of the TL-Yolo network
has risen by 91.30%, which is 4.20% higher than that of Yolov8. The accuracy and recall
are also improved by 4.64% and 3.53%, respectively. Compared with other state-of-the-art
methods, our TL-Yolo network proffered superior precision in detecting foreign objects on
transmission lines.

Figure 2. Network structure diagram of our TL-Yolo algorithm. Our algorithm employs C2f_ODConv
as the Backbone network to facilitate feature extraction. It uses an improved weighted Bi-Directional
Feature Pyramid as the Neck network to complete the fusion of semantic information between
different feature layers, and balances the positive and negative samples using an Adaptive Training
Sample Selection strategy.

2.2.1. C2f_ODConv

The conventional C2f module is computed using conventional static convolution,
which uses the same convolution kernel for different input information, causing information
loss to a large extent. Omni-Dimensional Dynamic Convolution adopts a multidimensional
attention and parallel strategy, which pays full attention to the input channel dimension,
the output channel dimension, and the spatial dimension of the feature map, as well as
the convolution kernel dimension so that the output feature maps are fully integrated
with the context information, as shown in Figure 3. Specifically, the attention module
includes four branches: channel attention (branch 1), filter attention (branch 2), spatial
attention (branch 3), and kernel attention (branch 4), which correspond to the input channel
dimension of the feature map, the output channel dimension of the feature map, the spatial
dimension of the feature map, and the convolution kernel dimension [33]. In branch 1, we
obtain the attention along the input channel dimension of the feature map, then the input
feature map is multiplied by channel attention to focus on important input feature channels.
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In branch 2, we obtain the attention along the output channel dimension of the feature
map. In branch 3 and branch 4, we obtain two attentions along the spatial dimension of
the feature map and the convolution kernel dimension independently and multiply the
two attention outputs before summarizing them along the first dimension. Finally, the
summarized result is multiplied by the output of branch 2 and then further multiplied by
the output of branch 1 to obtain the final output.

Figure 3. Network structure of ODConv. The ODConv adopts a multidimensional attention and
parallelism strategy, which pays full attention to the number of input channels, the number of output
channels, the dimension and the size of the convolution kernel. This design ensures that the resultant
feature maps are thoroughly amalgamated with contextual data enriching the feature representation.

ODConv is used to replace the traditional convolution in the C2f structure. A new
bottleneck structure, Bottleneck_ODConv, is proposed and incorporated into C2f to obtain
the C2f_ODConv module which can significantly improve the feature extraction capability,
as shown in Figure 4.

Figure 4. The Bottleneck_ODConv (left) and C2f_ODConv (right) structure.

2.2.2. Multi-Scale Attention (MSA)

The Multiscale attention(MSA) mechanism presents an efficient approach for preserv-
ing channel-specific information and emphasizing pertinent spatial details. By partitioning
the channels into several sub-feature groups and rescaling certain dimensions, the MSA en-
sures that critical semantic content is maintained within each group, thereby mitigating the
potential information loss typically associated with convolutional processes. Furthermore,
the MSA facilitates local information exchange across parallel sub-networks and employs a
cross-dimensional spatial learning strategy to amalgamate the output features from these
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branches. This technique effectively discerns pixel-level pairwise associations, which are
illustrated in Figure 5.

Figure 5. MSA structure. The MSA allows spatial semantic features to be uniformly distributed in each
feature group by reshaping some of the channels into batch dimensions and then grouping the channel
dimensions into multiple sub-features, as well as further aggregating the output features of the two
parallel branches through cross-dimensional interactions to capture pixel-level pairwise relationships.

The MSA divides the input feature map into G sub-features along the channel di-
mension to facilitate diverse information learning. It employs a tri-branch structure for
capturing spatial information of the grouped features: two branches operate with 1× 1 con-
volutions, while the third branch utilizes 3 × 3 convolutions. Within the 1 × 1 branches,
global average pooling extracts image features across height and width followed by a non-
linear Sigmoid activation that molds the dual output vectors produced through identical
convolutions. These vectors are then synergistically combined via element-wise multi-
plication, fostering an interaction of channel-wise feature information. The 3 × 3 branch
performs convolution to garner global channel insights, thereby broadening the feature
space. A novel cross-space information fusion procedure is conducted to aggregate the
outputs from both branches, generating two spatial attention maps through global average
pooling, Softmax normalization, and matrix dot product computations. Here, the new cross-
spatial information fusion technology can extract multi-scale features into the attention
mechanism to help detect small or difficult-to-identify objects, thus improving the model’s
detection accuracy. Ultimately, the output feature maps within each group are computed as
an aggregation of the two generated spatial attention weight values, encapsulating all the
contextual details.

2.2.3. Improved Bi-Directional Feature Pyramid Network (BiFPN)

When conventional feature fusion approaches are employed, feature maps of different
scales are weighted equally, resulting in uniform weights being computed for the output
feature maps. This strategy significantly contributes to information loss [34].

The Yolov8 facilitates the PANet approach to fuse features, where information is
transferred through separate top-sampling and bottom-sampling operations, respectively.
Although this technique does leverage the intrinsic information present in the feature
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maps, it necessitates more effective information than what is available through a singular
node design, consequently increasing model complexity. Instead, the TL-Yolo structure
introduces the Bi-Directional Feature Pyramid Network(BiFPN) for feature fusion, which
establishes cross-scale channel connectivity through a weighted bidirectional structure
that operates in top-down and bottom-up directions. This bidirectional structure assigns
varying weights to input features according to their relative importance and is recursively
adopted to bolster feature fusion. This recursive application preserves shallow positional
details while mitigating the loss of deep semantic information. A comparative analysis
between the PANet (left) and BiFPN (right) structures is given in Figure 6.

Figure 6. Structure comparison of PANet (left) and BiFPN (right).

As shown in Figure 7, three feature layers–P3, P4, and P5 are ultimately generated
and then fed into the designed BiFPN. Figure 7 delineates the refined BiFPN, which is
optimized by: (1) eliminating nodes that have a singular input path, since such nodes
contribute minimally to feature fusion, and their removal has a negligible impact on
network performance while concurrently streamlining the architecture. (2) introducing
feature map P2 into the fusion procedure which facilitates up-sampling P2 using standard
convolution techniques. The P2 feature map is introduced into BiFPN for feature fusion
which enhances the expressive ability of the feature pyramid and enables the model to
understand the multi-scale feature information of the image in a more comprehensive way.
With 1 × 1 convolution, the model can achieve feature dimension reduction. Also, the
1 × 1 convolution has fewer parameters and computation. To a certain extent, it improves
the computational efficiency and reduces the training time and inference time of the model.

Figure 7. Improved weighted bidirectional feature pyramid BiFPN.The component GSCSP is designed
for introducing feature map P2 into fusion procedure and adopting Weight Fusion method to achieve
efficient cross-layer cascade information interaction.

The feature fusion is performed using the Weight Fusion method [35], as shown in
Figure 8. Specifically, assuming that the input sample size is (bs, C, H, W), the spatially
adaptive weights of (bs, 3, H, W) are obtained through convolutional cascade as well as
splicing operations, and the weighted summation of the weights can yield an output that
fully fuses the contextual information of each channel.
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Figure 8. The Weight Fusion module. The sampling operations are performed on feature maps at
different levels and the concat operations are performed after convolution by 1 × 1. Here the concat
operations enable to capture and integrate image information at different scales.

A Group Shuffle Convolution (GSConv) based Cross Stage Partial Network (GSCSP)
is designed at each node of the feature fusion. Here, the GSConv is a hybrid convolution
method combining Standard Convolution(SC) and Depth-wise Separable Convolution
(DSC) hybrid convolution method [36].

The input undergoes downsampling through a standard convolution, followed by
the application of a depth-separable convolution. The outputs, preceding and succeeding
the depth-separable convolution are conjoined, culminating in a blending operation. This
operation effectively amalgamates the information processed by both the standard and
depth-separable convolutions. The aim is to align the convolutional output as closely
as possible with that obtained from standard convolution while concurrently curtailing
computational expenses. This approach serves to mitigate the potential adverse effects that
are incurred by the intrinsic limitations of depth-separable convolutions on model training.

The cross-stage partial network, GSCSP, utilizes a singular aggregation approach,
as illustrated in Figure 9. With the progressive deepening of network layers, the feature
map’s channel attributes are optimized. At the same time, spatial information becomes
increasingly sparse, diminishing redundancy. Consequently, further scaling alterations
become unnecessary. In other words, implementing the GSCSP module at this juncture
effectively reduces both computational demand and network complexity, yet maintains
adequate model accuracy.

Figure 9. Network structure of GSCSP.

2.2.4. Adaptive Training Sample Selection (ATSS)

In addition to the architectural design of the network structure, the differentiation
and equilibrium between positive and negative samples are critical considerations that
significantly impact the network performance [37]. Most existing detection networks use
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uniform criteria for positive and negative sampling. This results in unsatisfactory predic-
tions whether using a bounding box or anchor regression. Therefore, our work introduced
an Adaptive Training Sample Selection (ATSS) strategy to automatically categorize the
positive and negative training samples guided by the statistical characteristics (variance
and mean) of the object. This strategy aims at improving the detection performance of the
network without adding any overhead.

The pseudo-code is given in Algorithm 1. Initially, for each level of the FPN layer
around each ground-truth g, the k anchors closest to the center of the specific real frame are
selected to create a candidate pool of positive samples cg. In detail, the Intersection over
Union(IoU) between this candidate positive samples and the ground-truth g are calculated,
from which the mean mg and variance vg of the set of IoUs are derived. At last, the mg plus
vg are used for thresholding in sample classification: candidates cg exceeding this threshold
with center points of anchor box located inside the real box are recognized as positive and
added to the positive sample pool. This process is iteratively applied to each ground-truth
g and to curate the final positive samples.

Algorithm 1 Adaptive Training Sample Selection (ATSS)

Input:
G is a set of ground-truth boxes on the image
L is the number of feature pyramid levels
Ai is a set of anchor boxes from the i-th pyramid levels
A is a complete set of anchor boxes
k is a hyperparameter with a default value of 9

Output:
P is a set of positive samples
N is a set of negative samples

1: for each ground-truth g ∈ G do
2: build an empty set for candidate positive samples of the ground-truth g : Cg ←− ∅;
3: for each level i ∈ [1, 2, ...,L] do
4: Si ←− select k anchors from Ai whose center are closest to the center of ground-

truth based on L2 distance;
5: Cg = Cg ∪ Si;
6: end for
7: compute IoU between Cg and g : Dg = IoU(Cg, g);
8: compute mean of Dg : mg = Mean(Dg);
9: compute standard deviation of Dg : vg = Std(Dg);

10: compute IoU threshold for ground-truth g : tg = mg + vg;
11: for each candidate c ∈ Cg do
12: if IoU(c, g) ≥ tg and center of c in g then
13: P = P ∪ c;
14: end if
15: end for
16: end for
17: N = A−P ;
18: return P ,N ;

3. Results and Discussion
3.1. Dataset

The foreign objects dataset of transmission lines, including kites, bird nests, trash,
and balloons (3156 images). The dataset size is limited, which could potentially result in
underfitting, overfitting, or failure in convergence, therefore, we employ data augmentation
techniques to increase its volume and diversity. In detail, geometric transformations,
brightness adjustments, and noise introduction [38] were utilized to obtain an augmentative
dataset of 8526 images with complex backgrounds under adverse weather conditions and
illumination levels. To enhance the model’s generalization capabilities, the dataset was



Electronics 2024, 13, 1543 11 of 18

partitioned in a ratio of 8:1:1 to create training, validation, and test sets. Some augmented
examples are shown in Figure 10 below. The classes and the number of foreign objects in
the dataset are shown in Table 1.

Figure 10. Illustration of data augmentation. The detection scenarios in different environments is
simulated using data augmentation.

Table 1. The distribution of objects in the dataset.

Classes Number

bird nest 2313
balloon 2146

kite 1970
trash 2097

3.2. Parameter Settings

The experiments of this paper were conducted on the Ubuntu 18.04 system powered
by the platform with an Intel(R) Core(TM) i7-8565U CPU and an NVIDIA GTX-2080 TI
GPU, complemented by 32 GB of RAM. The deep learning framework utilized was Pytorch,
running on Python 3.8, and accelerated by the CUDA 11.2 and cuDNN 8.1.1 libraries for
enhanced computational efficiency.

The optimal configuration of our model parameters is initiated before training, e.g.,
the learning rate is initialized empirically at 0.01 and then subsequently modulated via a
cosine learning rate scheduler. The epoch number of training is fixed at 150. Considering
the experimental environment and hardware configuration, the batch size was set to
32 images. Critical parameters are enumerated in Table 2.

Table 2. Training parameters.

Batch_Size Epochs Learning Rate Momentum

32 150 0.01 0.937

In the experiments, a suite of evaluation metrics was employed to evaluate the efficacy
of model training. This suite encompasses conventional indicators of model performance
including mean Average Precision (mAP), precision, and recall. Additionally, it incorpo-
rates metrics indicative of model complexity and computational efficiency, namely Giga
Floating Point Operations (GFLOPs), which corresponds to the computational resources
and performance requirements required by the model, the total quantity of model parame-
ters (Params) which reflects the parameters to be learned in the model, and the Frames Per
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Second(FPS) evaluate the inference speed and efficiency of deep network models. These
specific formulas are delineated below:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

APi =

i∫
0

P(R)dR(i = 0, 1, 2, . . .) (3)

mAP =
∑N

i=1 APi

N
(4)

where True Positive (TP) represents the count of objects correctly identified as positive
samples. False Positive (FP) denotes the number of objects incorrectly detected as positive
samples when they are, in fact, negative. False Negative (FN) correspond to the objects
that are wrongly classified as negative despite being positive samples. Average Precision
(AP) reflects the prediction accuracy for each class, whereas mean Average Precision
(mAP) averages the APs across all the classes, thereby providing a measure of the model’s
overall accuracy.

3.3. Ablation Experiments

To evaluate the contribution of each component in our method, a series of ablation
experiments are conducted as follows: (1) Integration of the C2f_ODConv module in the
backbone network to bolster the detection capability for small objects. (2) Implementation
of the MSA module enables the rapid concentration on the key area over targets and
filtering of redundant information thereby improving the efficiency and accuracy of this
task. (3) Usage of the improved BiFPN structure to augment the capability of feature fusion
and thereby improve the detection accuracy. (4) Application of the ATSS label-matching
strategy to more equitably divide the positive and negative samples. The results of the
ablation experiments are shown in Table 3.

Table 3. Ablation experiment.

Experiment
Number ATSS C2f_ODConv MSA Improved

BiFPN Params (M) GFLOPs mAP@0.5
(%)

1 - - - - 11.15 28.40 87.10
2 ✓ - - - 11.17 28.56 88.23
3 ✓ ✓ - - 11.68 28.66 89.10
4 ✓ ✓ ✓ - 11.82 28.72 90.44
5 ✓ ✓ ✓ ✓ 12.22 29.13 91.30

The Yolov8 network is chosen as the baseline model for this experiment. The second
experiment is conducted with the ATSS label-matching strategy in the baseline model. The
third experiment is conducted with the C2f_ODConv module while retaining the ATSS
label-matching strategy. The fourth experiment incorporates the MSA attention mechanism.
The fifth experiment additionally employs the improved BiFPN structure. The ablation
study shows that the baseline model achieves an mAP of 87.10%. The second experiment
yields an mAP of 88.23%, marking a 1.13% enhancement over the Yolov8 network. The
third, fourth, and fifth experiments demonstrate incremental mAP improvements of 2.00%,
3.34%, and 4.20%, respectively, over the baseline model. With all the improvements, the
mAP for the TL-Yolo algorithm reached 91.30%, signifying a 4.20% improvement compared
with the baseline model.
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3.4. Comparison with the State-of-the-Art Methods

To validate the performance of our proposed TL-Yolo, we compare our TL-Yolo with
the state-of-the-art methods. The experimental results, from Table 4, show that our TL-Yolo
outperforms the Faster R-CNN [39], SPP-Net [40], Yolov5 [41], Yolov7 [42], and Yolov8 [43]
networks, which shows its improved detection accuracy and superior efficacy.

Table 4. Comparison with the state-of-the-art methods.

Model Recall (%) Precision (%) mAP@0.5 (%) mAP@0.5:
0.95 (%) Params (M) GFLOPs FPS

Faster
R-CNN 67.52 53.68 83.26 56.10 128.70 67.26 23.68

SPP-Net 70.23 66.24 85.93 56.47 84.36 70.39 31.24
Yolov5 81.36 75.28 88.64 58.68 24.66 27.41 98.41
Yolov7 83.26 80.47 88.92 59.36 23.68 29.68 110.36
Yolov8 87.10 83.92 89.25 61.32 11.15 28.40 187.63
TL-Yolo 90.63 88.56 91.30 63.20 12.22 29.13 173.28

Table 3 shows that Faster R-CNN and SPP-Net, as two-stage target detection algo-
rithms, are not suitable for real-time target detection due to their high model complexity,
large number of parameters and slow reasoning speed. Compared with Yolov5 and Yolov7
algorithms, the detection accuracy of the TL-Yolo algorithm is improved to some extent in
mAP@0.5 and mAP@0.5:0.95 evaluation indicators and the detection precision and recall
rate are also higher. Meanwhile, the complexity and number of parameters of the TL-Yolo
algorithm are optimized, which improves the overall detection efficiency of the algorithm.
In addition, we can see that our TL-Yolo outperforms the methods under comparison on
almost all metrics, except Yolov8. Although Yolov8 is better than TL-Yolo on computational
efficiency metrics, the TL-Yolo achieves better detection accuracy than Yolov8. The reason
is that the Omni-Dimensional Dynamic Convolution significantly boosts the backbone
network’s feature extraction capabilities. Simultaneously, the proposed MSA structure au-
tomatically focuses on important features. The weighted BiFPN with a lightweight feature
fusion layer not only augments the model’s precision and adaptability but also substan-
tially reduces computational demands. Besides, the implementation of adaptive training
sample selection harmonizes the ratio of positive to negative samples through strategic
label matching, thus enhancing the model’s performance. It proves the effectiveness of our
TL-Yolo.

3.5. Visualization

We also qualitatively compare the detection results of our proposed TL-Yolo and
the state-of-the-art methods. From Figure 11, we can see that, under the real scenes with
complex backgrounds, the Faster R-CNN misses the kite in the first column and inaccurately
locates the trash though they can effectively locate other kinds of foreign objects. The SPP-
Net also inaccurately locates the trash; however, its detection confidence scores for objects
are relatively low. The Yolov5 wrongly detects a kite on the tower in the second column and
repeatedly detects the trash and the balloon. Although Yolov5, Yolov7, and Yolov8 wrongly
detect a kite on the tower in the second column and repeatedly detect the balloon, they
achieve higher detection confidence. Our TL-Yolo accurately detects foreign objects and
addresses the missed detection, false detection, and repeated detection mentioned above.
It is because our TL-Yolo boosts the detection performance by improving effective feature
extraction, multi-scale feature integration, and cross-layer feature fusion based on Yolov8.

In foggy environments, the images captured by the devices may be blurred and have
low contrast due to the low visibility, which makes it difficult to detect foreign objects on
time. When the surface of foreign objects is wet on rainy days, its color, texture, and other
characteristics tend to change which affects the performance of the foreign object detection
algorithm and decreases the detection confidence in some cases. Under low-light conditions,
the overall brightness of the image is reduced, which can lead to a decrease in the contrast
between foreign objects and the background, making it difficult to accurately detect the
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foreign objects. If the light is too strong, the image may be overexposed, which will also
affect foreign object detection. We test the TL-Yolo algorithm in different environments.
Compared with normal environmental conditions (Figure 11), the TL-Yolo algorithm can
achieve accurate foreign object detection in foggy and rainy days, dark, and bright scenes,
which proves that the TL-Yolo algorithm has good generalization performance, as shown
in Figure 12.

(a) Faster R-CNN model

(b) SPP-Net model

(c) Yolov5 model

(d) Yolov7 model

(e) Yolov8 model

(f) our TL-Yolo model

Figure 11. Visualization comparison of detection results with the state-of-the-art methods. Compared
with the mainstream two-stage detection algorithms Faster RCNN, SPP-Net, and the single-stage Yolo
series of detection algorithms, our TL-Yolo successfully solves the missed detection, false detection,
and repeated detection.



Electronics 2024, 13, 1543 15 of 18

(a) Foggy environment

(b) Rainy environment

(c) Dark environment

(d) Bright environment

Figure 12. Visualisation of detection results under varying environmental conditions using the
TL-YOLO algorithm. The TL-YOLO algorithm has consistent detection performance in a variety of
working environments with weather conditions and lighting conditions.

4. Conclusions

This paper presents a foreign-object detection method TL-Yolo on power transmission
lines based on improved Yolov8. Our TL-Yolo employs Omni-Dimensional Dynamic Con-
volution (ODConv) as the feature extraction module, an improved weighted bidirectional
feature pyramid module with Multi-Scale Attention (MSA) mechanism to fuse multiscale
features, a lightweight cross-platform GSConv Cross Stage Partial Network (GSCSP) to
facilitate effective cross-layer feature fusion, and an Adaptive Training Sample Selection
(ATSS) strategy to balance the positive and negative samples. The experimental results
show that the average detection accuracy of the TL-Yolo algorithm is as high as 91.30%,
which is 4.20% higher than the Yolov8 algorithm. Meanwhile, our method’s accuracy and
recall rates also increased by 4.64% and 3.53% respectively. In the comparison experiment,
the mAP value of the TL-Yolo algorithm exceeds that of other state-of-the-art target detec-
tion algorithms, which fully shows its superior performance in the task of detecting foreign
objects on transmission lines.

Traditional methods for inspecting transmission lines often require manual inspection
and detection, leading to the issues of missed and false detections. TL-YOLO, on the other
hand, can accurately identify and locate target objects, thereby improving the precision
and reliability of inspections. Furthermore, the TL-YOLO algorithm enables automated
real-time detection, significantly reducing the need for manual intervention. This facilitates
the timely identification of line faults and enhances the power supply stability. The low
complexity and less computation of the TL-YOLO algorithm make it suitable for outdoor
portable detection equipment such as drones; therefore, the TL-YOLO can be used in a
wide range of open-air inspection tasks.



Electronics 2024, 13, 1543 16 of 18

It is important to note that this study is conducted in a supervised manner, which
necessitates a large amount of labeled data for training. Obtaining labeled data in practice
is a time-consuming and labor-intensive process. Therefore, in future research related
to foreign object detection on transmission lines, it may be beneficial to integrate with
semi-supervised learning methods. In the foreign object detection task, there is often a large
number of unlabeled data and a small number of labeled data. Traditional supervised learn-
ing methods may have difficulties in dealing with such problems, while semi-supervised
learning can make full use of the information of unlabeled data besides labeled data to
identify foreign objects more accurately. It can reduce the labor and time costs. This makes
semi-supervised learning more practical and feasible in the field of foreign object detection.
This has certain practical significance for improving the situation of limited data resources.
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