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Abstract: In the realm of pretrained language models (PLMs), the exponential increase in computa-
tional resources and time required for training as model sizes expand presents a significant challenge.
This paper proposes an innovative approach named neighbor attention initialization (NAI) to expe-
dite the training process of larger PLMs by leveraging smaller PLMs through parameter initialization.
Our methodology hinges on the hypothesis that smaller PLMs, having already learned fundamental
language structures and patterns, can provide a robust foundational knowledge base for larger
models, which is called function preserving. Specifically, we present a comprehensive framework
detailing the process of transferring learned features on transformer-based language models mainly
using the neighbor attention head and neighbor layer. We conducted experiments in GPT-2 and
demonstrated that our method yields considerable savings in training costs compared to standard
approaches, including learning from scratch and bert2BERT, indicating a notable improvement in
training efficiency for large PLMs.

Keywords: large pretrained language models; efficient training; function preserving

1. Introduction

Recent advancements in Natural Language Processing (NLP) have been significantly
driven by PLMs such as BERT [1], GPT series [2–4], XLNet [5], T5 [6], RoBERTa [7] and
LLaMa series [8,9]. These models have demonstrated exceptional performance across a
range of NLP tasks. However, the pre-training phase of these large-scale PLMs entails
substantial computational resources. The field has observed a growing inclination towards
constructing and training exceptionally large models. This trend aims to explore the
upper bounds of PLMs’ capabilities. Illustrative examples include GPT-2 (117M, 345M,
762M, 1542M parameter); GPT-3 (175B parameters); PanGu-α [10] with 200B parameters;
Switch Transformers [11] comprising an unprecedented 1571B parameters; LLaMa series
with 7B, 13B, 33B, 70B parameters [8,9]; and Qwen (1.8B, 7B, 14B, 72B parameters) [12].
These models have shown promising results in language comprehension and generation.
Notwithstanding their performance, a notable limitation is that these colossal models are
generally trained from scratch, not leveraging the already acquired knowledge from their
smaller counterparts. However, our empirical studies suggest the presence of overlapping
knowledge domains across PLMs of varying sizes, indicating potential training efficiencies
to be gained from small PLMs. For example, in Figure 1, the attention patterns of the
two GPT-2s with different sizes are quite similar in the same layer and same attention
head. And, similar phenomena have been found in previous studies [13]. Furthermore,
in Figure 2, we compare the attention patterns of identical heads across different layers in
GPT-2 (117M) and GPT-2 (345M). Notably, the 12th layer of GPT-2 (117M), which is its final
layer, closely resembles the 13th layer of GPT-2 (345M). This observation underpins the
potential for depth expansion in smaller PLMs.

Drawing from these observations, our research presents neighbor attention initializa-
tion (NAI), a knowledge transfer approach from smaller to larger PLMs, aimed at boosting
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PLMs training efficiency and cost-effectiveness. NAI mainly extends function preserving
training [13,14] to Transformer-based PLMs by reuse the parameters of the existing smaller
PLMs, and in the process, NAI strictly retains the ability of small models, thereby providing
the larger model with an optimized starting point for subsequent training phases. Addi-
tionally, NAI employs the closest attention head for width expansion and the nearest layer
for depth expansion, for which we observe that there is a large number of similar attention
distributions across both neighbor attention heads and neighbor layers.

Figure 1. Visualization of attention distributions of pretrained GPT-2 (117M) and GPT-2 (345M) for a
random sentence. In each heatmap, the color depth of the j-th element in the i-th row reflects the
attention weight from position i to position j. “L2 H3” denotes the third head of the second layer.
The upper ones are the attention patterns of the GPT-2 (117M) model of a architecture of {L = 12,
D = 768}, and the lower ones are the attention patterns of the GPT-2 (345M) whose architecture is
{L = 24, D = 1024}. We find that there are a large number of similar attention distributions in the
same layer and the same head of the two models, highlighting the potential for parameter reuse from
pretrained small PLMs to expedite the pre-training process of large PLMs.

Figure 2. Attention distributions for pretrained GPT-2 models with configurations {L = 12, D = 768}
and {L = 24, D = 1024} are visualized. The upper ones shows the final layer of the {L = 12, D = 768}
model, while the lower depicts the 13th layer of the {L = 24, D = 1024} model. We find that there is
also a large number of similar attention distribution, which underscores the feasibility of expanding
the depth in smaller PLMs.

To demonstrate the superiority of our method, we conducted experiments on GPT-2.
We employed the GPT-2 model for the following reasons: (1) The GPT-2 model architecture
is publicly available in four different size variants, facilitating our research on knowledge
transfer across models of varying scales within the same family. (2) While previous work,
such as bert2BERT [13], has primarily focused on encoder-based models like BERT [1] as a
research foundation, there has been relatively limited exploration of knowledge transfer
techniques for decoder-only models. As a seminal decoder-only model, GPT-2 provides
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an ideal testbed for investigating efficient pre-training methods tailored to this important
class of language models. (3) The model architecture and parameters of the GPT-3 model,
a larger successor to GPT-2, are not publicly available. Furthermore, the sheer scale of
GPT-3’s parameter exceeds the computational resources at our disposal for pre-training
models of such magnitude.

Our results show that our method can save a significant amount of computation in
pre-training compared to the traditional way of learning from scratch and outperform the
existing initialization methods bert2BERT [13]. One typical example is that, using GPT-2
(117M) as a base for GPT-2 (345M) initialization, NAI reduces computation costs by 31%
compared to conventional pre-training from scratch.

In general, PLMs within the same series often have varying model sizes, as larger
models tend to demonstrate enhanced overall capabilities while incurring greater com-
putational resource requirements. However, for relatively simple tasks such as speech
generation, smaller models may suffice. Existing common methods for training PLMs
of varying scales often involve training each model from scratch, without leveraging the
knowledge encapsulated in previously trained smaller PLMs. Therefore, the primary re-
search question we aim to address is as follows: For PLMs within the same series but with
different model sizes, how can we leverage the existing smaller PLMs to train larger PLMs
in a computationally efficient manner?

2. Related Work

Efficient pre-training in NLP has been a topic of exploration in previous research.
Some approaches aim to enhance efficiency by reusing parameters from existing PLMs
and employing progressive learning techniques. These works, such as [15–17], are moti-
vated by the observation that different layers of PLMs possess similar knowledge, such
as attention patterns. The approach involves initially pre-training a smaller model with
fewer Transformer layers and subsequently expanding the model iteratively by adding
the already-trained layers on top. Another line of research proposes “knowledge inheri-
tance” or “back distillation”, wherein the knowledge of small models is transferred into
larger models [18]. Another aspect of efficient pre-training focuses on data efficiency [19],
where rare words are given special attention during the pre-training process to enhance the
model’s understanding when encountering them subsequently.

Efficiency in pre-training can also be improved through the use of specific pre-training
tasks. One notable example is ELECTRA [20], which introduces a task called replaced token
detection. This task involves predicting whether each token in a corrupted input has been
replaced or not. Our proposed method is orthogonal to this line of work. Additionally, there
are several other techniques that can be employed for efficient pre-training, including mixed
precision training [21], large batch optimization [16], model architecture innovation [22],
and layer dropping training techniques [23].

Another relevant topic is reusable neural networks, which is closely related to transfer
learning [24] and has primarily been explored in the field of computer vision. Net2Net [14]
is a seminal work in this area, which introduces the concept of function-preserving trans-
formations to enable the reuse of neural networks. However, Net2Net randomly selects
neurons to be split, and subsequent work [25] addresses this issue by employing a func-
tional steepest-descent approach to determine the optimal subset of neurons for splitting.
The pruning technique [26] has also been employed for reusable neural networks [27]. In ad-
dition to [27], another notable study introduces the concept of hierarchical pre-training. This
approach effectively reduces both the time required for pre-training and enhances overall
performance by leveraging an already pre-trained vision model as an initialization step in
the pre-training process. Recently, ref. [13] extended the previous function-preserving [14]
Transformer-based language model and further improved it by proposing advanced knowl-
edge for a large model’s initialization, which uses the parameters of the next transformer
layer to expand each layer. In this paper, we focus on the reusable pre-training of language
models and present a new method called NAI, which accelerates the pre-training of GPT-2.
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3. Method
3.1. Preliminary

Before discussing our methodology, we briefly outline the GPT-2 architecture, which
comprises an embedding layer followed by several Transformer decoders [3,28]. The
architecture is shown in Figure 3.

Figure 3. The model architecture of GPT-2.

3.1.1. Embedding Layer

The embedding layer consists of token embedding and positional embedding, which
maps the tokens in a sentence into vectors with two embedding matrices W TE and W PE.
Then, we obtain the initial hidden states H0.

3.1.2. Transformer Layer

The hidden states are iteratively processed by multiple Transformer layers:

Hl = Transformerl(Hl−1), l ∈ [1, L] (1)

where L denotes the number of Transformer layers, each including a multi-head casual
attention (MHCA) and a feed-forward network (FFN), and both of them have residual
connections [29].

Layer Normalization. Both MHCA and FFN modules utilize a layer normalization [30]
to stabilize hidden state dynamics. Formally, it is written as:

LayerNorm(H) =

(
H − µ√
σ2 + ϵ

)
⊙W LN + bLN , (2)

where ⊙means the element-wise multiplication, the statistics of µ and σ are the calculated
mean and variance of hidden states H respectively, ϵ is a small constant added for numerical
stability, and W LN and bLN are the scale and shift parameters.
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MHCA. The Transformer decoder’s key component, MHCA, processes the layer’s
hidden states Hl through multiple heads, concatenating their outputs to form the final
output as follows:

Qi, Ki, Vi = HlW
Q
l,i , HlW

K
l,i, HlW

V
l,i

hl,i = softmax(
QiKT

i√
dk
⊙W MASK)Vi

Hl = Concat(hl,1, hl,2, . . . , hl,a)

HMHCA
l = HlW

O
l + Hl−1. (3)

After the Layer Normalization, the output Hl is linearly projected to queries (Qi), keys
(Ki) and values (Vi) using different weights W Q

l,i , WK
l,i, WV

l,i , respectively. hi
l indicates the

context-aware vector, which is obtained by the scaled dot-product of queries and keys in
the i-th casual attention head. a represents the number of self-attention heads. dk is the
head dimension acting as the scaling factor. W MASK is the attention mask to ensure that
the model, during self-attention calculations, only considers its previous words and not the
subsequent words. And, HMHCA

l is the input of the next sub-module FFN.
FFN. FFN consists of two linear layers and one NewGeLU activation function [3],

which is formatted as:

Hl = LayerNorm(HMHCA
l )

HFNN
l = NewGeLU(HlW

1
l + b1

l )W
2
l

Hl = HFNN
l + HMHCA

l (4)

3.2. Overview

We aim to accelerate the pre-training of target model T(Lt, Dt) by transferring the
knowledge of an existing pre-trained model S(Ls, Ds), where Ls, Lt means the number of
Transformer layers, and Ds, Dt means the model width (i.e., hidden size), satisfying Ls ≤ Lt

and Ds ≤ Dt. Similar to [13], NAI initializes the target model T using the parameters from
the existing model S by the width-wise expansion (Ds → Dt) and depth-wise expansion
(Ls → Lt). This expansion enables direct knowledge transfer from the source model’s
parameters to the target model. Essentially, the width-wise expansion can be decomposed
into two kinds of operations: in-dimension and out-dimension expansion. As illustrated in
Figure 4, the matrix expansion enlarges a parameter matrix W ∈ Rdw

in∗d
w
out of source model

S to U ∈ Rdu
in∗d

u
out of target model T. In the following sections, we introduce our neighbor

attention initialization (NAI), which employs the closest attention head for width expansion
and the nearest layer for depth expansion, simultaneously retaining the capabilities of the
original model.

Figure 4. Overview of the matrix expansion. It first enlarges the size of in-dimension and then
enlarges the size of out-dimension.

3.3. NAI

We observe that there is a large number of similar attention distributions across both
neighbor attention heads and neighbor layers in GPT-2 [2–4], which is also mentioned of
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Bert [1] in previous works [31,32]. For example, in Figure 5, we can find that there are lots
of similar distributions across the neighbor attention heads in the same layer.

Figure 5. Attention visualization of neighbor attention heads in the same layer for pretrained GPT-2
(L = 24, D = 1024). We find that there is a large number of similar attention distributions in the
neighbor heads of same layer.

3.3.1. Width-Wise Expansion

Width-wise expansion includes two kinds of operations: in-dimension and out-
dimension expansion. Based on the results of Figure 5, NAI first conducts the in-dimension
expansion by copying the weights of the last dimension and then performs the weight
normalization to ensure that the output is the same as the original output. Second, NAI
conducts the out-dimension expansion, which just does the copy operation. Note that
because of the multi-head attention mechanism, all the operations are conducted in the
head-wise. Lastly, to break the symmetry more rapidly [14], a small amount of noise is
added to the expanded dimension. Figures 6 and 7 illustrate how NAI conducts width-wise
expansion. We hereby denote the weight expansion as

U = EXPNout(EXPNin(W)), (5)

which includes two stages of expansion, in-dimension expansion EXPNin and out-dimension
expansion EXPNout.

Expansion for all modules. We apply width-wise expansion of NAI for all modules of
GPT-2 via matrix expansion EXPNin and EXPNout. Specifically, for the embedding matrix
UTE and UPE , we only conduct the out-dimension expansion:

UTE = EXPNout(WTE),

UPE = EXPNout(WPE). (6)

Layer normalization is a frequently employed component that is typically applied on
top of MHCA and FFN modules. This normalization technique ensures that the input data
undergoes normalization. Its expansion is formulated as follows:

ULN = EXPNout(WLN) (7)

The MHCA module can be decomposed into multiple parallel self-attention heads.
It is worth noting that in Equation (3), when we calculate attention score, it will be scaled
according to dimension

√
dk, so after completing the expansion of Q, K, we need to multiply
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the overall attention by the coefficient Dt

Ds . At the same time, in order to scale the impact
of coefficient Dt

Ds on the original matrix, we allocate it to both Q and K. A more detailed
explanation of this operation will be discussed later. The expansion can be formulated as:

UQ|K =

√√
Dt

Ds EXPNout(EXPNin(W Q|K)),

UV = EXPNout(EXPNin(WV)),

UO = EXPNout(EXPNin(WO)). (8)

Figure 6. In-dimension expansion of NAI. The normalization ensures the output is the same as the
original output.

Figure 7. Out-dimension expansion of NAI.

For the FFN module, we perform the expansion on the parameter matrices W1|2

(Equation (4)) as follows:

U1|2 = EXPNout(EXPNin(W1|2)). (9)

Additionally, we introduce an extension to the classifier layer, typically comprising
a linear layer, as our observations have indicated that this modification can expedite the
convergence of the loss function:

UCLS = EXPNin(WCLS). (10)

We provide a simplified example to illustrate the knowledge transfer process of NAI.
In this example, we consider a GPT-2 structured source model S {12, 128}, which is extended
to a target model T {12, 192}. The dimension of the attention head is 64, and the hidden layer
state is represented head-wise. That means, for example, we represent the 128-dimensional
vector X as [X0, X1]. We denote the hidden state after passing through each module of
the source model S as the left-hand side of the arrow, and the hidden state after passing
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through T as the right-hand side. Assume that the input data batch is 1; after passing
through the embedding layer, we have the initial hidden state:

H0 = [H0,0, H0,1]→ H
′
0 = [H0,0, H0,1, H0,1]. (11)

After the layer normalization layer, if we ignore the influence of the mean and variance
of the hidden layer state , we have the following:

H1 = [H1,0, H1,1]→ H
′
1 = [H1,0, H1,1, H1,1]. (12)

Then H1 and H
′
1 are projected through W Q|K|V and UQ|K|V :

Q = [Q0, Q1]→ Q
′
=

√√
Dt

Ds [Q0, Q1, Q1]

K = [K0, K1]→ K
′
=

√√
Dt

Ds [K0, K1, K1]

V = [V0, V1]→ V
′
= [V0, V1, V1]. (13)

Then the attention score of the i-th head in target model T can be written as:

Q
′
iK
′T
i√

Dt
=

√√
Dt

Ds Qi

√√
Dt

Ds KT
i

√
Dt

=
QiKT

i√
Ds

, (14)

which is the attention score of the i-th head in the source model S. The analysis of the
subsequent layers follows a similar pattern. Also, we expand a pretrained GPT-2 of {L = 12,
D = 768} to a target GPT-2 model of {L = 12, D = 1024}. Figure 8 shows that the newly formed
attention heads by NAI basically retains the capabilities of the original neighbor heads.

Figure 8. Attention visualization of the original heads and the newly formed heads of a GPT-2 model
{L = 12, D = 1024} expanded by NAI with the source model pretrained GPT-2 {L = 12, D = 1024}.
We can find that the newly formed attention heads basically retains the capabilities of the original
neighbor heads. The attention visualization of the original and expanded heads in a GPT-2 model
{L = 12, D = 1024}, augmented by NAI with the pretrained GPT-2 model {L = 12, D = 1024}, reveals that
the newly formed attention heads largely preserve the functionalities of the original neighbor heads.

3.3.2. Depth-Wise Expansion

Previous findings [31,32] show that adjacent Transformer layers have similar function-
ality, and we also find this phenomenon in GPT-2 as illustrated in Figure 2. Based on this
phenomenon, when we perform depth-wise expansion, we continuously copy the last layer
of the original model to reach the number of layers of the target model. From an intuitive
perspective, adopting weight copying from the last layer appears to align more consistently
with the gradual and progressive learning process observed in each layer of the transformer
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model. To preserve the capabilities of the original model, we set the output layers of the
MHCA and FFN module to zero, leveraging the residual connection architecture. Moreover,
it was observed that failing to set the output layers of the MHCA and FFN modules to zero
can lead to volatile training behavior, ultimately causing divergence in the learning process.
Figure 9 provides a concise and comprehensible depiction of the depth-wise expansion
of NAI. By initializing the deeper model with transferred knowledge from the Ls-layer
trained model, we anticipate accelerated learning compared to training the deeper model
from scratch. The whole procedure is summarized in Algorithm 1.

Figure 9. Depth-wise expansion of NAI. In order to ensure the preservation of the original model’s
capabilities and maintain stability during the training process, we set the output layers of the MHCA
and FFN module to zero.

Algorithm 1 NAI algorithm

1: Input: the source model S(Ls, Ds) and the target model T(Lt, Dt)
2: TLs(Ls, Dt)← S(Ls, Ds) by width-wise expansion of NAI
3: for t = Ls + 1→ Lt do
4: Tt(Lt+1, Dt)← stack the last layer of TLs on top of Tt−1
5: set the output layer of the MHCA and FFN modules to zero of layer t
6: end for
7: output: the target model T(Lt, Dt)

4. Experiment
4.1. Experimental Setup

Pre-training Details. All of our experiments are mainly based on our own reim-
plementation of the GPT-2 model. We use the concatenation of OpenWebText [33] and
English Wikipedia as the pre-training data. For dataset OpenWebText, we performed a
de-duplication operation and removed a non-English corpus. For both datasets, sentences
with a length below 128 were excluded from both datasets. The settings of the pre-training
are peak learning rate of 1.5× 10−4 , warmup step of 104, training iteration of 106, and a
small batch size of 128 due to limited computing resources. The AdamW optimizer was
used with [β1, β2] = [0.9, 0.999], weight decay = 0.01. Unless otherwise noted, all methods,
including NAI and baselines, use the same pre-training settings for fair comparisons. In
the settings of NAI and bert2BERT, the target models has a GPT-2 architecture of {24, 1024}
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and {36, 1280}, and an architecture of source models {12, 768} {24, 1024} are evaluated. Both
source models are pretrained using the above settings, and they are training from scratch
without any optimization. The computations in this research were performed using the
CFFF platform of Fudan University with 2 NVIDIA A100 GPUs.

Baselines. We initially introduce a method training from scratch without any opti-
mization, named GPTbase. As mentioned above, all the source models used in NAI and
bert2BERT are trained by this. Then, we introduce an approach called DirectCopy, which
involves the direct replication of the source model into the target model, while employing
random initialization for the parameters that have not been populated. bert2BERT is also
included as the baseline. During the width-wise expansion in bert2BERT, advanced knowl-
edge from the subsequent layer is utilized for initializing the large model; the detailed
process can be found in [13]. In the depth-wise expansion phase of bert2BERT, the target
model is constructed using the StackBERT technique [15], and the detailed process of
StackBERT is provided in Algorithm 2. This approach involves the continuous replication
of the entire source model after the width-wise expansion. Note that here, we only compare
various initialization methods, so the two-stage pre-training in bert2BERT is not considered.

Algorithm 2 StackBERT

1: Input: the source model S(Ls, D) and the target model T(Lt, D)
2: k← ⌊Lt/Ls⌋, T1 ← S(Ls, D)
3: for t = 2→ k do
4: Tt(Ls ∗ t, D)← stack T1 on top of Tt−1
5: end for
6: T(Lt, D)← stack the top Lt − Ls ∗ k layer of T1 on top of Tk
7: output: the target model T(Lt, D)

4.2. Results and Analysis

We present the pre-training loss curves of GPT-2 models with config {24, 1024} in
Figure 10. The results reveal the following insights: (1) DirectCopy—This method, which
involves directly copying the trained parameters from the source model to the target
model, exhibits minimal computational cost savings. This suggests that the simplistic
approach of DirectCopy is not effective in achieving cost reductions. (2) bert2BERT—By
utilizing advanced knowledge for initializing the large model and employing StackBERT for
depth-wise expansion, bert2BERT achieves approximately 21% computational cost savings.
However, the departure from the function-preserving initialization principle, caused by the
utilization of advanced knowledge and depth-wise expansion, limits the acceleration of loss
reduction during the early stages of training. Consequently, the preservation of the source
model’s capabilities is not substantially retained. (3) NAI (Our proposed method)—NAI
outperforms the baselines in terms of performance. It achieves a 10% improvement in
computational cost savings compared to bert2BERT. Notably, NAI adheres to the function-
preserving initialization principle during both width-wise and depth-wise operations,
resulting in a rapid decrease in loss during the initial stages of training. By preserving the
capabilities of the source model, NAI ensures an effective initialization of the target model.

Additionally, we depict the pre-training loss curves of GPT-2 models with config
{36, 1280} in Figure 11. In comparison with Figure 10, we observe the following trends:
All the methods, including DirectCopy, bert2BERT, and NAI, achieve greater computa-
tional cost savings compared to the baseline model GPTbase. For example, DirectCopy
demonstrates approximately 12% more cost savings compared to GPTbase, whereas it had
negligible savings in Figure 10. Method bert2BERT achieves a cost reduction of 24%,
surpassing the 21% achieved in Figure 10. Similarly, NAI achieves a cost savings of 33%,
slightly higher than the 31% in Figure 10. And, it also achieves a 9% improvement compared
to bert2BERT. We attribute this phenomenon to the closer scale between the source model
and the target model. These detailed analyses provide a comprehensive understanding of
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the experimental results, highlighting the effectiveness of NAI in achieving computational
cost savings while preserving the capabilities of the source model.

Figure 10. Pre-training loss curves of GPT-2 {24, 1024} of NAI and baselines.

Figure 11. Pre-training loss curves of GPT-2 {36, 1280} of NAI and baselines.

We also evaluated the effectiveness of all methods on the LAMBADA, PTB, WikiText2,
and WikiText103 test datasets; the following is a brief introduction to them.

LAMBADA: LAMBADA is a dataset designed for testing the ability of language
models to perform pronoun resolution in context. It consists of narrative passages followed
by a single line continuation. The task is to predict the last word of the continuation, which
requires understanding the context provided by the passage.

PTB: PTB is one of the most widely used datasets in natural language processing. It
consists of annotated text from various sources, including newswire, transcribed speech,
and literature. The dataset is extensively used for tasks such as language modeling, part-of-
speech tagging, and parsing.

WikiText2: WikiText2 is a dataset derived from Wikipedia articles. It is designed
for language modeling tasks, including next-word prediction. The dataset contains high-
quality text with diverse topics and writing styles.
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WikiText103: WikiText103 is an extension of WikiText2 and contains a larger corpus of
Wikipedia articles. Like WikiText2, it is designed for language modeling tasks and provides
a diverse range of textual data.

All these datasets are commonly used in natural language processing research for
training and evaluating various language models and algorithms.

The test results are shown in Tables 1 and 2. We employed a zero-shot approach for
testing on these datasets, which means no training or fine-tuning was performed on the
datasets. Perplexity (PPL) was used as the evaluation metric, and the average of three test
results was taken as the final result for each test set. From the tables, we can conclude
that both bert2BERT and NAI perform comparably to GPTbase and DirectCopy methods.
Furthermore, both bert2BERT and NAI demonstrate significant cost savings in terms of
computational resources, with NAI exhibiting even better cost savings in training.

Table 1. Zero-shot results on different datasets of GPT-2 {24, 1024}. We use the perplexity as the metric.

Model Flops
(×1019) LAMBADA PTB WikiText2 WikiText103

GPTbase 6.2 33.7 68.9 28.7 38.6

DirectCopy 5.8 33.4 68.3 28.4 38.5

bert2BERT 4.9 32.6 67.5 28.1 38.2

NAI 4.3 32.2 67.6 28.3 37.7

Table 2. Zero-shot results on different datasets of GPT-2 {36, 1280}. We use the perplexity as the metric.

Model Flops
(×1019) LAMBADA PTB WikiText2 WikiText103

GPTbase 14.4 18.2 45.6 23.2 26.6

DirectCopy 12.7 17.6 45.8 23.4 25.7

bert2BERT 11 17.8 45.5 23.1 25.4

NAI 9.6 17.8 45.2 23.7 26.5

5. Potential Limitations and Challenges of NAI

The NAI method, as presented in our study, offers a novel approach to efficiently
train larger PLMs by leveraging the knowledge encapsulated in smaller PLMs. Despite its
potential to reduce computational costs and expedite training, there are several limitations
and challenges associated with applying NAI to different model architectures and domains.

1. Architectural Limitations: NAI is inherently tailored for Transformer-based archi-
tectures, which are distinguished mainly by their self-attention mechanisms. These
architectural elements are pivotal for the function-preserving initialization process
that NAI employs. The self-attention mechanism, in particular, enables the model to
weigh the importance of different parts of the input data, whereas layer normalization
facilitates the stabilization of the learning process by reducing the internal covariate
shift. Given the constraints of computational resources, the empirical validation of
NAI has been primarily confined to the GPT-2 model, which is a decoder-only PLMs.
This limitation necessitates a cautious extrapolation of NAI’s efficacy to other PLM
architectures, such as those based on encoder-only or encoder–decoder configura-
tions. Encoder-only models, such as BERT, utilize a bidirectional training strategy
that contrasts with the unidirectional nature of GPT-2, while encoder–decoder mod-
els, akin to sequence-to-sequence frameworks, are designed to handle input–output
mapping tasks that diverge from the autoregressive generation focus of GPT-2. The
transference of NAI to these alternative architectures entails a rigorous examination
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of potential modifications required to align with their distinct operational mecha-
nisms. For instance, the adaptation of NAI to encoder-only models may necessitate
strategies that effectively capture and preserve the bidirectional context during the
initialization process. Similarly, encoder–decoder models may demand a reconcep-
tualization of the NAI approach to accommodate the dual-input and dual-output
structure characteristic of these architectures.

2. Data Availability and Quality: NAI’s efficiency is contingent on the availability and
quality of the smaller PLMs used for initialization. In domains where high-quality,
well-pretrained models are scarce, the effectiveness of NAI may be compromised.
Additionally, the method assumes a certain level of overlap in the knowledge domains
between the smaller and larger models, which might not always be the case, especially
in niche or rapidly evolving domains.

3. Generalization and Adaptability: The success of NAI hinges on the assumption that
smaller PLMs have learned foundational language structures that are generalizable
to larger models. However, the extent to which this generalization holds true across
various tasks and languages remains an open question. Furthermore, adapting NAI to
non-English languages or multilingual settings may require additional considerations
to account for linguistic diversity.

6. Conclusions and Future Work

This paper introduces a novel and efficient pre-training method called NAI. The key
idea behind NAI is to employ the closest attention head for width expansion and the nearest
layer for depth expansion to get a larger model. By leveraging the knowledge embedded
in the small model, NAI aims to improve the efficiency and effectiveness of pre-training
large models.

To evaluate the effectiveness of NAI, we applied this method to the popular GPT
model. The experimental results demonstrate the benefits of NAI in terms of computational
cost reduction and performance improvement on various test datasets. Notably, our method
achieves significant savings in computational resources while maintaining competitive
performance compared to alternative techniques.

However, it is important to note that due to the limitations of computational resources,
we were unable to conduct extensive experiments to fully validate the algorithm. Despite
this limitation, the promising results obtained in our initial experiments serve as a strong
indication of the potential of NAI in pre-training large-scale language models.

In the future, we plan to extend the application of NAI to train even larger language
models. Moreover, we aim to explore the feasibility and effectiveness of applying NAI
to other domains and tasks beyond language modeling, thereby expanding its scope
to very large PLMs in various fields. This would enable us to further investigate the
benefits and limitations of NAI and contribute to the advancement of efficient and effective
pre-training techniques.
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