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Abstract: This paper introduces a pioneering method for real-time image processing in electronic
component assembly, revolutionizing quality control in manufacturing. By promptly capturing
images from pick-and-place machines during the interval between component pick-up and mounting,
defects are identified and promptly addressed in line. This proactive approach ensures that defective
components are rejected before mounting, effectively preventing issues from ever occurring, thus
significantly enhancing efficiency and reliability. Leveraging rapid network protocols such as gRPC
and orchestration via Kubernetes, in conjunction with C++ programming and TensorFlow, this
approach achieves an impressive average turnaround time of less than 5 milli-seconds. Rigorously
tested on 20 operational production machines, it not only ensures adherence to IPC-A-610 and
IPC-STD-J-001 standards but also optimizes production efficiency and reliability.

Keywords: real time; image processing; quality; manufacturing; defect detection; inspection; TensorFlow;
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1. Introduction

The motivation for this work lies in the need to elevate the quality and reliability of
electronic products while simultaneously reducing waste and extending the lifespan of
electronic devices. Despite the importance of component quality, the electronic industry
traditionally foregoes incoming inspection processes, relying instead on establishing trust
with suppliers throughout the supply chain [1]. This trust-based approach assumes the
absence of errors, fraud, counterfeits, damage, or defects in the procured materials, without
employing dedicated technology for incoming inspections.

Despite often being subtle and barely perceptible to the naked eye, defects can have
profound implications, particularly in applications governed by stringent standards and
subjected to high stress levels [2,3]. Even the slightest imperfections, whether in a low-cost
capacitor or a high-end processing unit, have the potential to trigger product malfunc-
tion [4-10]. It can be disheartening to witness the failure of a top-tier product due to an
unnoticed defect in a seemingly inconspicuous component valued at just one cent.

Defects encompass a wide range of issues, spanning from cracks [11-15], fractures,
and the peeling of metallization to deformations, discoloration, mold, corrosion [4,16-23],
bent leads, deformed leads, and misshapen BGA balls, among others (see examples in
Figures 1 and 2). To provide clarity and establish a baseline for defect identification, leading
standards such as IPC-A-610H [3] and IPC-STD-J-001 [24] offer comprehensive definitions
of defects on assembled PCBs.

While significant technological advancements have been achieved in the assembly and
testing stages of manufacturing [25,26], minimal attention has been given to technology
focused on electronic components themselves. There exists a pervasive misconception
that production machines such as pick-and-place and AOI (automated optical inspection)
machines also monitor the quality of electronic components. However, these machines
primarily track the assembly process and do not examine the components themselves for
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defects; they only detect deviations in how the components are placed. Consequently,
only defects of considerable magnitude are typically identified, leading to a high tolerance
for faults.
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Figure 1. Examples on passive components (left to right): conductive FOD (foreign object debris),

corrosion leading to cracks, lead peeling, non-conductive FOD.

Figure 2. Examples on leaded components (left to right): FOD, termination peeling, bent leads,
distorted leads.

To tackle these challenges, extensive research and development endeavors have been
undertaken by the authors. Initially, the focus was on combating counterfeit components,
a prevalent issue during periods of electronic component shortages, notably observed in
2021-2023 and 2017-2018. Efforts were concentrated on performing a pre-inspection of
reels procured from unauthorized distributors, posing a high risk of fraud. A method
was devised to inspect all components within a reel while they remained sealed under
the cover tape. The reels were inserted into a reel-to-reel inspection machine that rolled
the tape while capturing images of each component in the reel. Utilizing images captured
from the top side of the components and via a classification algorithm, manufacturers of
components were identified based on their visual features [27]. This method was patented
and published.

However, despite its high accuracy, this method necessitates using a reel-to-reel ma-
chine for the inspection of individual reels before they are utilized in production, limiting
its applicability to only a fraction of the reels in use. The subsequent step aimed to enable
the mass inspection of components and advance the concept of big data [28,29].

In order to facilitate the inspection of all electronic components, we leveraged the
images captured by pick-and-place machines during their automated mounting process.
These machines methodically pick up each component and measure their pick-up location
and angle primarily using an automated vision system. Subsequently, the component is
mounted on the PCB after compensating for pick-up inaccuracies. This process inherently
captures images of all components from their bottom side just before they are mounted on
the PCBs.

We seized these images from the machines and utilized them in conjunction with
the algorithms developed for reel-to-reel machine models. As a typical production line
processes, on average, around one million components a day, this provided the gateway
to big data. Over the course of several years, we collected and analyzed approximately
4 billion components by deploying the system across tens of SMT (surface-mount tech-
nology) production lines [27,30-33]. The data were gathered and processed via a cloud
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platform capable of collecting from sites worldwide and centrally processing the data using
cloud resources.

Our method for detecting counterfeits, defects, solderability issues, and corrosion was
published in [27,30-33]. By applying this method to mass materials, we attained a unique
position to evaluate the state of components from a statistical perspective. Consequently,
we published work on the occurrence of corrosion and solderability issues in passive
components [32]. Additionally, we documented several use cases of corrosion detected
using this method, subsequently verified by lab analysis [16,34]. Moreover, we devised a
method to mitigate the risk of cracks in MLCCs (multilayer ceramic capacitors) by the early
detection of the evidence of corrosion in the soldering terminals as we demonstrated that
corrosion serves as a precursor for crack development [12].

The accuracy and reliability of these methods are outlined in papers [30,31], relying
extensively on big data. However, the presented method was centralized in the cloud and
was suitable for the post-mounting detection of defects during production. Nonetheless,
the delayed response time for uploading images to the cloud resulted in a reaction time of
approximately 10 s, by which time the component was already on the PCB.

To address the imperative need for real-time reactions and to prevent the mounting
of defective components, it became crucial to shift the processing to the edge near the
mounting machines. The round trip of the image to the cloud would exceed the available
time frame between pick-up and placement, which is measured in milliseconds. Therefore,
the focus of this work is to present a method for performing real-time processing at the edge
in a manner fast enough to react instantaneously and prevent the mounting of defective
components within milliseconds.

The scope of this method extends to ensuring scalability to support multiple machines
in production sites in an economical and reliable manner. This represents the pinnacle of
this technology, enabling the electronic industry to exclusively utilize tested and qualified
components. The impact it will have on industry efficiency, reliability, and quality is
profound. This is because in today’s electronic landscape, most failures originate from the
components themselves rather than from the manufacturing process.

The aim of this paper is to present the process of transitioning cloud-based algorithms
to edge algorithms and to present the methodology and performance of this method. While
the intricacies of the method have been elaborated in [32], we will provide an overview
and underscore the differences between edge and cloud processing, emphasizing their
significance for creating an efficient and nimble methodology.

In this work, we showcase how the processing of data at the edge, near the mounting
machines, offers real-time insights and immediate actionability, contrasting with the de-
layed response time inherent in cloud processing. By introducing edge algorithms, we aim
to address the critical need for instantaneous defect detection and prevention, particularly
given the rapid pace of component mounting in electronic production lines.

Furthermore, we will explain the scalability and reliability of the edge-based method,
essential for supporting multiple machines across production sites while maintaining eco-
nomic feasibility. This shift from cloud to edge processing represents a pivotal advancement
in technology, empowering the electronic industry to adopt a proactive approach to quality
assurance and component integrity.

2. Compliance with IPC-A-610H and IPC-J-STD-001 Standards

The IPC-A-610H standard [3] serves as a comprehensive guide for assembled PCBs,
outlining specific criteria for identifying defects and ensuring the quality of electronic
assemblies. Other standards relate to the specific defect details as they appear in the
IPC-A-610. In this section, we integrate the key compliance parameters outlined in IPC-
A-610 with the presented Al-driven inspection method. In each section, we highlight the
standard sections that are relevant to the presented method and that the method can detect
automatically on all inspected components. The detection algorithm is only mentioned in
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this work and is elaborated in [12,16,30,32,34]. In this work, the novelty is in adapting the
methods to real-time operation.

2.1. Defects on Component Leads/Terminations

The examination of component leads is integral to our defect detection process, align-
ing with IPC-A-610’s criteria. Leveraging deep learning algorithms, the presented method
scrutinizes each lead for damage or deformation exceeding 10% of the lead’s diameter,
width, or thickness, ensuring compliance with IPC-A-610 standards. Examples from images
taken by the pick-and-place machines and disqualified by the algorithm are presented in
Figure 3. The deviations are circled. The visible defects are scratches, dents, distortions,
deformations, peeling, shorts, etc.

Figure 3. Examples from images taken by the pick-and-place machines and disqualified by the
algorithm. Detected defects are highlighted in red circles.

2.2. Bent or Warped Leads

The presented method, powered by advanced deep learning techniques, is adept at
identifying bending, indentation, and coplanarity issues in component leads, in accordance
with IPC-A-610 Section 8.3.5.8. Through the presented advanced evaluation techniques, we
ensure that any deviation beyond the specified threshold is promptly flagged for further
assessment. Figure 4 presents examples of bent leads and coplanarity issues automatically
detected by the algorithm that exceed 10% of the lead’s width.

Figure 4. Examples of bent leads and coplanarity issues automatically detected by the algorithm
that exceed 10% of the lead’s width. Detected defects are highlighted in red circles. (A) Bent leads,
(B) deformed leads, (C) damaged leads.

2.3. Corrosion and Cleanliness

The presented method is equipped to detect corrosion and residues on metallic surfaces
with precision. By promptly recognizing any indication of discoloration or evidence
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of corrosion, it ensures compliance with IPC-A-610 cleanliness and surface appearance
parameters. Figure 5 presents examples of components with corrosion and contamination
automatically detected by the Al algorithm that exceed 10% of the lead’s width.

Figure 5. Examples of components with corrosion and contamination automatically detected by the
Al algorithm that exceed 10% of the lead’s width. Detected defects are highlighted in red circles.
(A) Contamination of leads, (B) corrosion of leads.

2.4. Cleanliness—Foreign Object Debris (FOD)

IPC-A-610 emphasizes the importance of cleanliness in electronic assemblies, particu-
larly concerning foreign object debris (FOD). The presented method evaluates components
for contamination, flagging any debris or residues beyond the specified threshold for
further evaluation, in line with IPC-A-610 Section 10.6.2 and 10.6.3 standards. Figure 6
presents examples of components with corrosion and contamination automatically detected
by the Al algorithm.

a”

Figure 6. Examples of components with corrosion and contamination automatically detected by
the Al algorithm. Detected defects are highlighted in red circles. Note that debris may be due to a
component defect or point out a root cause in the supply chain, such as contaminated components in

a container or poorly handled material.
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2.5. Loss of Metallization

Metallization loss defects are critical vulnerabilities highlighted by IPC-A-610 stan-
dards. The presented method identifies irregularities in metallization coverage, ensur-
ing the optimal functionality and reliability of electronic components as per IPC-A-610
Section 9.1 and 9.3 standards. Figure 7 presents examples of components with metallization
delamination automatically detected by the Al algorithm.

Figure 7. Examples of components with metallization delamination automatically detected by the Al
algorithm. Detected defects are highlighted in red circles.

2.6. Mounting Upside Down

Lastly, the presented method is designed to detect components mounted upside down,
as specified in IPC-A-610 Section 8.3.2.9.2. By flagging any non-compliant mounting
configurations, our system ensures adherence to IPC-A-610 standards. Figure 8 presents a
resistor mounted upside down from the top view.

Figure 8. A resistor mounted upside down from the top view.

In summary, the integration of advanced deep learning algorithms enhances the
inspection system and seamlessly integrates IPC-A-610 compliance parameters, providing
a robust framework for ensuring the quality and reliability of electronic components in
accordance with industry standards.

3. Method

In this section, we explore the challenges our method must address to facilitate the
real-time analysis of all assembled components. We outline the operational dynamics of
pick-and-place machines, pinpointing the critical time window within which the method
must react. Additionally, we detail the methodology employed to extract images from
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these machines, ensuring their availability for subsequent processing. Furthermore, we
describe the pre-processing steps necessary for pre-processing the data before analysis.

3.1. Operational Workflow and Critical Points in Pick-and-Place Component Handling

The schematic in Figure 9 describes the operational flow, depicting the sequence from
image capture to component placement. This visual aid highlights intervention points
and the execution of directives for component rejection. Emphasizing the time window
underscores the significance of timely actions in maintaining the quality and reliability of
the assembly process. Notably, the response time window varies from 10 to 30 milliseconds,
contingent upon the specific machine model.

PnP Alignment
Eammee——  Picture taken Processing
(~15ms)

Image
Avilable

Processing
Window
(10-30ms)

Sending

Picture
(~1ms)

Last Chance to Al Detection
Reject Command Processing

Figure 9. Process flow of the pick-and-place machine illustrating the timeline from image capture to
component placement, emphasizing the available process window for intervention and commanding
component rejection.

The component shooters retrieve 20 to 28 components in a single run. They encompass
two primary families: the revolver pick-up head, characteristic of ASMPT (Singapore) and
Fuji (Japan), proficient in component retrieval via a revolving head, and the cluster-based
pick-up head typical to Panasonic (Japan) and Yamaha (Japan), equipped with multiple
nozzles, sequentially retrieving components before traversing a pit camera. While quick,
shooters are primarily suited for smaller components, resulting in relatively diminutive
image sizes and abbreviated processing times. In contrast, pick-and-place heads, designed
for larger components, collect a lesser quantity per run, albeit necessitating more time for
processing due to the larger component dimensions. These divergent parameters strike a
balance, resulting in comparable speed requirements across all pick-up heads.

The pick-and-place machine captures component images to determine their posi-
tioning on the pick-up nozzle, enabling precise placements and compensating for minor
positional inaccuracies. Furthermore, it identifies incorrect pick-ups, such as empty nozzles
or tombstone pick-ups in conjunction with the vacuum sensor in the pick-up nozzle. Tra-
ditional machine vision tools process these images between pick-up and placement time.
Any deviation from acceptable pick-up thresholds prompts the vision software to flag the
component for rejection, subsequently leading to its disposal in a designated bin.
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3.2. Data Collection from the Pick-and-Place Machine

Data collection from the pick-and-place machine is performed through a dedicated
application programming interface (API), designed to streamline the transfer of images and
metadata from the machine to a local server. The data collection process is based on a REST
APl integrated into the pick-and-place machine, which interfaces with the machine’s image
capture system. It orchestrates the acquisition of data in a format conducive to real-time
analysis, fetching images of components milliseconds before their placement on the PCB.
Additionally, the API collates metadata associated with each image, providing contextual
information for subsequent analysis.

The data from the API undergo transmission to a local server using the Google Remote
Procedure Call (GRPC) protocol. Employing GRPC is a rapid method to transfer the
images and metadata from the pick-and-place machine to the local server. This protocol’s
proficiency in real-time applications ensures minimal latency and maximal throughput,
critical for prompt defect and corrosion detection. The exchange of data between the
pick-and-place machine and the local server occurs within the local network.

3.3. Pre-Processing

The effectiveness of the real-time defect and corrosion detection system relies on a
series of procedures, including pre-processing, feature extraction, and the selection of an
appropriate model architecture. The following sections present each of these steps in detail.

Beginning with centering and cropping, the pre-processing workflow ensures the
accurate alignment and framing of component images. This step aligns the component
centrally within the image frame and crops it uniformly to facilitate consistent and accurate
analysis. Figure 10 illustrates instances where the algorithm must disregard certain aspects
due to the pick-and-place machine’s ability to address them. It also highlights challenges
posed by off-center component images, emphasizing precise processing.

(b)

Figure 10. Sample cases of pick-up quality and component alignment. (a) Sample cases demonstrating

pick-up instances that the algorithm should ignore as the pick-and-place machine’s vision system
is capable of detecting and addressing these issues. (b) Example of a component image where the
component is not centered, illustrating the challenges in processing such images accurately.

Light balance correction rectifies lighting irregularities within images to ensure an
accurate analysis. A specialized classifier identifies images with lighting discrepancies,
particularly those afflicted by saturation. Upon detection, the system prompts the machine
to make necessary adjustments. Rectifying these imbalances is important as saturated
images impede analysis and compromise component placement accuracy. Figure 11 ex-
emplifies a component with excessive light balance, underscoring the importance of this
correction process.
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Figure 11. Example of a component with excessive light balance, illustrating the importance of light
balance detection in pre-processing.

In addition to light balance concerns, the pre-processing stage involves identifying and
rectifying blurry images, which can impede component placement and inspection accuracy.
Blurriness often results from incorrect programming or defective lighting and imaging
systems, necessitating prompt detection and mitigation. Addressing blurry images early is
important to ensure a reliable and accurate analysis. Figure 12 illustrates an example of a
blurry image captured during component inspection, emphasizing the importance of early
detection and mitigation during pre-processing.

Figure 12. Example of a blurry image captured during component inspection, emphasizing the need
for effective detection and correction of blurry images in the pre-processing stage.

Metadata matching is used for gaining an understanding of the component’s package
type. This insight enables the categorization of components based on their visual similari-
ties. For instance, in the case of passive chip components like chip resistors, classification is
determined by functionality and footprint. For example, a chip resistor with a size of 0603
is denoted as CRES-0603. It is important to note that the algorithm does not require specific
resistor values or part numbers for analysis. Instead, our approach focuses on identifying
and categorizing components based on production lines and visual characteristics.

3.4. Model Architecture for Defect and Corrosion Detection

The algorithm is presented in [12,16,30,32,34] in detail. In this work, we present the
gap to edge real-time computing. The objective is to categorize images as either “normal”
or “defective”, with potential nuances such as minor, moderate, or major defects in some
instances. Initial attempts to address this classification challenge leaned towards leveraging
popular ImageNet models; however, these endeavors encountered two primary hurdles.

A significant challenge arises from the scarcity of training data available within the
realm of electronic components. The prevalence of defective items is notably low, often
amounting to less than one defect per ten thousand components [30]. Acquiring an ade-
quate number of defective items to establish a robust training dataset proves arduous. In
scenarios where only a few hundred defective items exist among millions of components,
conventional image classification models tend to grapple with overfitting. Overfitting
leads to situations where training accuracy reaches 100%, but validation accuracy remains
notably lower, sometimes failing to surpass that of random guessing.

Another challenge revolves around the resemblance between some defective items
and their normal counterparts. Defects and corrosion can manifest subtly, such as small
dots within components. Conventional convolutional neural network (CNN) models often
falter in identifying these inconspicuous defects and corrosion due to their limited capacity
to capture fine-grained details [34].

We introduce a specialized network architecture tailored for defect and corrosion de-
tection, as detailed in [32,33] (see Figure 13). Unlike the serial architecture commonly found
in popular image classification models, where multiple layers of small filters, typically
3 x 3 in size, are connected sequentially, our approach adopts a set of filters with varying
window sizes operating in parallel. Each filter within this set is designed to detect a specific
type of defective region or corrosion within component images. These filters generate
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features indicating the likelihood of such defects and corrosion being present. The overall
feature vector is formed by concatenating all the individual features produced by these
parallel filters. Subsequently, this feature vector undergoes processing through a dense
layer, culminating in the final defect and corrosion score (see Figure 13).

Input image: 128x64

dense —~
29x29 Score
16 x
15x15 |

/

feature vector

Figure 13. Neural network architecture [16,30,34].

Moreover, we employ data augmentation techniques during training to enhance
network performance. These techniques involve artificially expanding the training dataset
by applying transformations like rotation, flipping, and scaling to existing images. By
generating variations of the original data, augmentation mitigates overfitting and enhances
the model’s ability to generalize to unseen data, enabling learning from a more diverse
range of examples.

The adoption of this parallel architecture not only enhances defect and corrosion
detection accuracy but also improves algorithm efficiency. It facilitates high-speed pro-
cessing, capable of analyzing up to 3000 images per second on a Tesla T4 GPU. This GPU
acceleration yields a substantial reduction in processing time, rendering the system suitable
for real-time inspection during the component assembly process. By optimizing the archi-
tecture for GPU support, the algorithm capitalizes on the parallel processing capabilities of
the GPU, swiftly performing image analysis. The combined benefits of this architecture
and GPU acceleration ensure efficient and timely defect and corrosion detection, further
elevating the overall quality of electronic products.

3.5. Comparative Analysis: Benchmarking against Other Defect Detection Methods

To gauge the effectiveness of the proposed defect detection approach, we conducted
a comparative analysis against robust principal component analysis (RPCA) [35-38], a
widely used method for anomaly detection. Both approaches were evaluated on diverse
datasets comprising various component types to ascertain their accuracy and recall rates,
reflective of their defect detection capabilities. The methods were tested using a small batch
of previously labeled components, with defects verified through visual and lab inspection.
It is important to highlight that the dataset used in our study encompasses various levels
of defects, with the primary focus being on identifying defects that may lead to a decrease
in reliability.
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We initially tested RPCA on datasets containing three component types: capacitor,
resistor, and SOT-23-3. Table 1 summarizes the results. Using the same datasets, we
evaluated our model, and the results are presented in Table 2.

Table 1. RPCA testing results.

Component

Non-Defect

Defect Items True True False False

Type Items Tested Tested Positive Negative Positive Negative Accuracy Recall
Capacitor 610 51 19 527 83 32 0.826 0.373
Resistor 651 64 25 543 108 39 0.794 0.391
SOT-23-3 1054 102 65 983 71 37 0.907 0.637
Table 2. Evaluation of the presented model.
Component  Non-Defect Defect Items True True False False Accurac Recall
Type Items Tested Tested Positive Negative Positive Negative y
Capacitor 610 51 32 577 33 19 0.921 0.627
Resistor 651 64 40 628 23 24 0.934 0.625
SOT-23-3 1054 102 72 1026 28 30 0.95 0.706

The presented model consistently outperforms RPCA in terms of both accuracy and re-
call across all component types. While RPCA yields acceptable results for some components,
particularly SOT-23-3, it demonstrates poor performance for passive components like the
capacitor and resistor. In contrast, our model delivers consistently high accuracy and recall
rates across various component types, highlighting its effectiveness in defect detection.

4. Advancements to Real-Time Processing

In the traditional approach, data collection involved capturing component images and
associated metadata, which were subsequently transmitted to cloud servers for process-
ing [30]. However, this cloud-based analysis faced a significant drawback: processing times
averaging around 10 s per component. Earlier iterations also encountered delays in defect
and corrosion detection due to batch processing of similar components, primarily caused
by the time required for data transfer to and from the cloud.

The method presented in this study prioritizes real-time defect and corrosion detec-
tion by relocating the processing center. Instead of relying on cloud-based analysis, this
approach emphasizes edge computing, ensuring that processing occurs directly at the point
of data acquisition. To meet the speed required for real-time defect and corrosion detection,
the method utilizes graphics processing units (GPUs) and refines algorithms and software
capable of operating within stringent timeframes.

Achieving real-time processing for deep neural network (DNN) classification models
on edge devices, such as MobileNet, necessitates exploring techniques and tools to enhance
processing speed. Quantization involves reducing the precision of model weights and
activations, typically transitioning from 32-bit floating-point numbers to 8-bit fixed-point
numbers. This reduction reduces memory usage and computational demands, facilitating
swifter inference, particularly beneficial for resource-constrained edge devices. However, it
may lead to a reduction in model accuracy due to diminished precision.

Model pruning involves eliminating non-essential weights or neurons from the neural
network, resulting in a more streamlined and expedited model. Pruning reduces the
model’s size, leading to quicker inference times and a smaller memory footprint. However,
it requires careful handling to prevent accuracy loss and may introduce some model
instability. Depthwise separable convolutions (DSCs) split the convolution process into
two stages, reducing computational cost, and they are commonly used in architectures
like MobileNet for efficient inference on mobile and edge devices. Additionally, model
parallelism divides the model into smaller segments, each processed in parallel on distinct
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GPUs, potentially achieving linear speedup with additional GPUs, particularly valuable
for intricate models with high computational demands.

Operator fusion amalgamates multiple mathematical operations into a single opera-
tion, mitigating overheads associated with memory transfers and kernel launches on GPUs,
thereby augmenting inference speed. The ONNX Runtime serves as an inference engine
optimized for executing ONNX models, furnishing high-performance inferencing across
diverse hardware platforms, including GPUs.

These methods reduce model size and enhance inference speed while maintaining
an acceptable level of accuracy. TensorFlow, with its comprehensive support for quanti-
zation and model optimization, emerges as a practical platform for implementing these
optimizations. Additionally, ONNX Runtime can be leveraged for efficient inference on
edge devices, enabling real-time inference on the edge for the rapid and precise execution
of MobileNet-like models for electronic component inspection.

5. Architectural Framework and Deployment Strategies

This section provides an in-depth exploration of the architectural framework of the
solution and the strategies implemented to optimize its performance and reliability. The
architecture, illustrated in Figure 14 and elaborated in Table 3, demonstrates its effectiveness
in overcoming challenges related to limited training data and the identification of subtle
defects and corrosion in electronic components during the assembly process. This approach
offers an efficient, data-efficient solution for defect and corrosion detection, ultimately
enhancing product quality and reliability.
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Figure 14. SMT over edge high-level architecture diagram.

Table 3. Algorithm and system performance of old architecture with new.

Software Version CPU RAM (MB) Throughput (c/s)
Edge (C++) 0.1 25 460
Edge (Py) 0.14 123 4.6

The solution harnesses Kubernetes to orchestrate services across multiple servers
at each customer’s site, enhancing system robustness and scalability. Machine learning
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models are stored in cloud storage, allowing for on-demand retrieval during software
startups. These models are securely encrypted in memory to ensure controlled access. An
external process continually monitors changes in remote storage, prompting the system to
fetch updates and deploy the most current models.

Operating on Dell servers equipped with Nvidia RTX GPUs, the system adopts a
software as a service (SaaS) model. Data transmission occurs through the gRPC protocol,
while model execution is facilitated by C++ TensorFlow Serving. The architectural design
efficiently processes asynchronous data from all machines at the site, enabling the concur-
rent execution of two Al models for each component. Commands are issued to deactivate
the components only when necessary.

Figure 15 illustrates the Kubernetes cluster, based on Nvidia’s GPU, scaling to ac-
commodate multiple production machines and growing production demands. This vi-
sualization underscores the system’s scalability and adaptability to evolving operational
requirements.

Running containers Container Memory Usage Total Memory Container CPU Usage CPU Cores
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Figure 15. The graphs show the Kubernetes cluster, based on Nvidia’s GPU, scaling to accommodate
multiple production machines and growing production demands.

6. Experimental Setup and Evaluation

This section describes the experimental setup employed to evaluate the solution’s
performance and capabilities. The experiments encompassed a range of hardware configu-
rations and software optimizations aimed at evaluating its potential in real-world electronic
component assembly scenarios. We utilized the Nvidia RTX 3070 server, featuring 8 GB of
DDR6 RAM and 16 cores, as the foundational server for our tests.

To simulate real-world conditions, we first replicated an environment mirroring a pro-
duction line setup, comprising 20 pick-and-place (P&P) machines continuously dispatching
components via the gRPC protocol. Our experimentation extended to exploring Nvidia’s
A100 and L4 GPUs to evaluate adaptability to different GPU configurations. C++ served as
our primary programming language. We conducted comparative assessments to discern
performance differences between different versions. Additionally, we employed TensorRT,
a deep learning inference optimizer and runtime library developed by NVIDIA. The inte-
gration of TensorRT enabled the analysis of performance and efficiency of machine-learning
models on GPUs, contributing to understanding the solution’s capabilities in real-time
electronic component inspection.
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6.1. Benchmarking and Testing

In order to quantitively assess the performance of the presented solution in real-world
production environments, we engineered an environment mirroring the configurations
commonly found in our customers’ setups. This environment was designed to incorporate
20 ASMPT pick-and-place (P&P) machines, each mounting components and utilizing the
gRPC protocol. This stress testing was important in gauging the solution’s robustness and
reliability in handling the demands of large-scale electronic component inspections. Over
1.6 million components were processed within a data frame over 12 h.

In addition to hardware evaluations, the software underwent thorough testing and
refinement. Developed from the ground up using C++, our software underwent compar-
isons between different versions to ensure optimal performance and reliability. To further
enhance the understanding of the presented solution’s capabilities, we subjected our ma-
chine learning models to testing using TensorRT, an advanced deep learning inference
optimizer and runtime library developed by NVIDIA. The evaluation of our models on
GPUs, along with detailed performance metrics, is presented in the following section,
providing valuable insights into the efficiency and effectiveness of our solution in real-time
electronic component inspections.

6.2. Pre-Processing Stage Evaluation

In the pre-processing stage, all images underwent initial processing for light balancing
(clipping), aiming to address issues related to images with a high ratio of saturated pixels.
These saturated pixels are indicators that the mounting machine can be utilized to enhance
the accuracy of component placement. See examples in Figure 11, where the frequency of
clipped images during the system’s operation on real-time data is depicted. It is evident
that approximately 4.6 components per second are clipped in this scenario. However,
as the system continuously conveys this information to the mounting machine, there is
a reduction in this rate over time due to the feedback loop. This feedback mechanism
contributes to improving the accuracy of placement and reducing the attrition rate in the
assembly process.

In addition to addressing issues related to clipped images, the pre-processing stage
also mitigates problems associated with blurry images, which can significantly impact
mounting accuracy and increase attrition rates. Blurry images often occur due to incorrect
programming that fails to allocate a sufficient resolution (binning) to the image, resulting
in a lack of sharpness (as observed in Figure 12). Another common cause of blurry images
is the incorrect programming of component height, leading to poor focus during image
capture. Defective lighting or imaging systems can also contribute to image blurriness.

6.3. Pre-Processing Stage—Component Dimensions Measurement

In high-volume production lines, accurately measuring the dimensions of mounted
components is crucial due to the wide variety of component sizes encountered. Figure 16
displays the calculated width and height of mounted components over a 12 h interval
during testing. The data reveal that small passive components such as MLCCs and chip
resistors are the most prevalent size category. We have observed a positive correlation
between the size of the image and the end-to-end processing time, indicating that larger
images take longer to process.

Obtaining real-life dimensions of components and calculating the mean and variance
of their sizes are vital steps in improving the performance of pick-and-place (P&P) and
automated optical inspection (AQI) systems. These measurements provide accurate feed-
back for programming component dimensions, enhancing the software’s performance by
relying on real measurements of specific components rather than generic information from
tables or specification sheets.
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Figure 16. The calculated dimensions of the components exemplifying the various components pro-
cessed in the production line. Different colors in the chart represent different pick and place machines.

Furthermore, analyzing the variance in component sizes is essential for assessing the
quality of materials used and the consistency of components within each container. Variance
measurements help gauge how similar the components are within a batch, providing
insights into manufacturing quality and potential issues related to component variation.

6.4. Processing Stage—Component Defects and Corrosion Detection Algorithms

The experiment involved running both the defect and corrosion detection algorithms
simultaneously, while 20 machines operated asynchronously in a real-world production
environment. The primary focus was to evaluate the processing time of these algorithms
under high-volume conditions. During the experiment, the mean processing time for defect
and corrosion detection algorithms was approximately 1.5 milliseconds per component
and approximately 20 components per second. Figure 17 presents the processing time of
the defects detection algorithm and the corrosion detection algorithm, running in parallel
on the same images. Note that the presented processing time solely accounts for the time
spent on the detection algorithms and excludes pre-processing steps and network delays.
These results demonstrate the efficiency and effectiveness of the implemented algorithms in
real-time defect and corrosion detection. The size of the components significantly impacts
processing performance.
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Figure 17. (Top) processing time of the defects detection algorithm, (bottom) processing time of the
corrosion detection algorithm, both running in parallel on the same images.

7. Conclusions

We introduce a groundbreaking method for the real-time processing of images during
SMT assembly, representing a significant advancement in quality control within manufac-
turing environments. Our approach enables a 100% inspection of all components, virtually
eliminating visible defective components from the final products through an inline pro-
cess. Moreover, the method ensures compliance with industry-leading standards such as
IPC-A-610 and IPC-STD-J-001.

By leveraging the time window between component pick-up and mounting, our
method ensures real-time image processing with an average turnaround time of less than
5 milliseconds. This efficiency is facilitated by utilizing the gRPC network protocol and
Kubernetes orchestration for coordination across production environments. The implemen-
tation of C++ programming, real-time TensorFlow, and cost-effective GPU further enhances
the method’s speed and reliability.

In addition to the advancements highlighted, the presented method incorporates a
system for image acquisition and analysis, supported by Al and big data technologies.
Images of the components during SMT assembly are captured using cameras already in-
stalled within the production line, ensuring a detailed visual inspection of each component.
These images are then processed in real-time through our Al-driven algorithms, leveraging
the power of deep learning and big data analytics to detect defects and anomalies with
exceptional accuracy.

The transition from traditional cloud-based processing to real-time edge processing
is facilitated by a specialized architecture and software design. By deploying Kubernetes
orchestration, we have streamlined the coordination of processing tasks across distributed
edge devices, optimizing resource utilization and minimizing latency. The adoption of
C++ programming, coupled with real-time TensorFlow inference and cost-effective GPU
acceleration, further enhances the speed and reliability of our solution, enabling its seamless
integration into existing manufacturing workflows.

Through rigorous testing on 20 live production machines, we have validated the
scalability and effectiveness of our approach in real-world manufacturing settings. By
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achieving 100% inspection coverage and virtually eliminating defective components from
the final products, our method sets a new standard for quality control in SMT assembly.
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