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Abstract: To address urban traffic congestion, researchers have made various efforts to mitigate issues
such as prolonged travel time, fuel wastage, and pollutant emissions. These efforts primarily involve
microscopic route selection from the vehicle perspective, multi-vehicle route optimization based on
traffic flow information and historical data, and coordinated route optimization that models vehicle
interaction as a game behavior. However, existing route selection algorithms suffer from limitations
such as a lack of heuristic, low dynamicity, lengthy learning cycles, and vulnerability to multi-vehicle
route conflicts. To further alleviate traffic congestion, this paper presents a Period-Stage-Round Route
Selection Model (PSRRSM), which utilizes a population game between vehicles at each intersection to
solve the Nash equilibrium. Additionally, a Period Learning Algorithm for Route Selection (PLA-RS)
is proposed, which is based on a multi-agent deep deterministic policy gradient. The algorithm allows
the agents to learn from the population game and eventually transition into autonomous learning,
adapting to different decision-making roles in different periods. The PSRRSM is experimentally
validated using the traffic simulation platform SUMO (Simulation of Urban Mobility) in both artificial
and real road networks. The experimental results demonstrate that PSRRSM outperforms several
comparative algorithms in terms of network throughput and average travel cost. This is achieved
through the coordination of multi vehicle route optimization, facilitated by inter-vehicle population
games and communication among road agents during training, enabling the vehicle strategies to
reach a Nash equilibrium.

Keywords: urban road networks; multi-vehicle route selection; population game; Nash equilibrium;
multi-agent reinforcement learning; road agent

1. Introduction

In recent years, as urbanization advances worldwide, the number of urban vehicles
is also constantly rising, resulting in a gradual increase in traffic congestion, which has
become a significant factor impacting the efficiency of traffic flow. The congestion reduces
vehicle traveling speed, causes delays, and leads to increased tailpipe emissions, fuel
consumption, adverse health effects on residents, and safety risks, resulting in significant
socio-economic losses [1]. Consequently, addressing the issue of traffic congestion through
the application of traffic models and algorithms to enhance traffic efficiency [2] in urban
road networks has garnered significant attention within academic circles. In this context,
route selection [3] algorithms play a crucial role.

The existing methods can be categorized into microscopic route selection from a single-
vehicle perspective, multi-vehicle route selection using traffic information and historical
data, and coordinated route optimization based on game theory. The microscopic route
selection methods, which concentrate on the single-vehicle perspective, encompass a
range of conventional methods such as Dijkstra’s algorithm [4], A* algorithm [5], and
the artificial potential field method [6]. Furthermore, there are graphical methods like the
stochastic roadmap method [7] and the fast search random tree method [8], as well as swarm
intelligence algorithms such as genetic algorithms [9], ant colony algorithms [10], and
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particle swarm algorithms [11]. However, these single-vehicle route selection algorithms
often prove ineffective when applied to multi-vehicle route selection. This ineffectiveness
stems from the fact that these algorithms only consider the processing of road information
by a single vehicle, which does not account for the impact of one vehicle on the passage of
others. Consequently, congestion can easily develop on the initially optimal route, resulting
in secondary congestion.

Scholars have suggested multi-vehicle route optimization based on traffic flow in-
formation and historical data to minimize secondary congestion. Some methods acquire
network information such as congestion, accidents, and roadworks to understand traffic
conditions [12], or involve quantifying road congestion and using reinforcement learn-
ing to make decisions [13]. Despite their negotiating nature, these methods have limited
vehicle-to-vehicle interaction and may lack generalization capabilities. To enhance group
interest considerations, scholars have introduced coordinated multi-vehicle route opti-
mization based on game theory. Examples include the population game [14] and the
Stackelberg game [15]. While these methods efficiently determine optimal vehicle strat-
egy combinations, their computational efficiency decreases significantly when applied to
high-dimensional data structures.

The above-mentioned methods are effective in alleviating congestion and enhancing
traveling efficiency within urban road networks to some extent. Nevertheless, several
limitations exist. Some methods lack interaction between vehicles, leading to low road
utilization. Additionally, certain methods are not sufficiently responsive in highly dynamic
traffic environments, causing difficulty in maintaining optimal strategies. Moreover, some
methods mandate excessive details regarding vehicle interactions, thus reducing computa-
tional efficiency. Furthermore, in most existing methods, route selection only takes travel
time into account, while the evaluation index is overly simplistic.

The multi-vehicle route selection problem diverges from single-vehicle route selection
as it aims to ameliorate congestion and reduce overall traveling cost for all vehicles. A
large number of vehicles choosing the optimal route under the non-negotiated method
easily causes secondary congestion to occur. Therefore, resolving the multi-vehicle route
selection predicament necessitates the coordination of vehicle strategies, aiming to exchange
individual optimums for a group optimum. Moreover, in scenarios with extensive road
network traffic, the dynamic nature of decision making and the real-time adjustment of
multi-vehicle routes become imperative, as failure to do so could trigger the new congestion.

This paper proposes a multi-stage population game route selection model to balance
traffic flow on the road, alleviate congestion in the entire road network. Building on this
model, the paper introduces a Period Learning Algorithm for Route Selection based on
a multi-agent deep deterministic strategy gradient [16] to enhance the dynamics, collab-
oration, and learning ability of the method. The algorithm involves a population game
occurring at regular intervals between vehicles approaching the same intersection. Given
the drivers’ bounded rationality [17], vehicles are categorized into multiple populations,
and the Nash equilibrium is determined through repetitive strategy selection in a finite
number of stages and optimization using mixed strategies [14]. In the Period Learning
Algorithm for Route Selection, same-direction roads between adjacent intersections are
represented as road agents, using an actor–critic network structure [18] with centralized
training and distributed execution. The algorithm is divided into three periods. In the first
period, road agents learn from their experiences solely based on the outcomes and gains of
the population game. In the second period, the agent initializes vehicle strategies, replacing
random initialization to expedite game convergence. In the third period, the agent strate-
gies are directly employed as the executed vehicle strategies. In this period, the learning
algorithm capitalizes on the multi-agent system’s high learning starting point through its
experience from the population game, while also continuing to learn and provide direct
decisions for the vehicles.

The main contributions of this paper are described as follows.
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1. A Period-Stage-Round Route Selection Model (PSRRSM) is introduced to precisely
address the Nash equilibrium by dividing vehicle populations at each intersection. It
uses a multi-stage game strategy to coordinate the determination of optimal routes
for multiple vehicles.

2. The Period Learning Algorithm for Route Selection (PLA-RS) uses population game
data from PSRRSM to help road agents learn more quickly, improving the accuracy
and efficiency of dynamic route selection for vehicles. Importantly, the PLA-RS takes
into account multifaceted travel costs in its considerations.

3. The Vehicle Multi-stage Population Game Algorithm (VMPGA) is crafted to furnish
game decisions for vehicles at each intersection in the Period Learning Algorithm for
Route Selection (PLA-RS). It plays a crucial role in substantially optimizing vehicle
routes and enhancing coordination capabilities, serving as an informative source for
PLA-RS.

The rest of this paper is organized as follows. Section 2 presents related works,
followed by Section 3, which explains the Period-Stage-Round Route Selection Model
and the weighted definition of vehicle travel cost. Section 4 outlines the Period Learning
Algorithm for Route Selection. This is followed by Section 5, which discusses the validation
of the algorithm’s performance through experiments. Finally, Section 6 concludes the paper
and offers an outlook for future work.

2. Related Works

Misztal et al. [19] proposed the iterative local search algorithm (ILS) for a variant
of the Vehicle Routing Problem (VPR) and made the Sawp (2-1) algorithm work with a
single perturbation mechanism, which is used to increase the search area and improve the
quality of the returned solution, and can be used to solve a large group of vehicle route
problems. Šedivý et al. [20] discussed the possible application of the solver optimization
module in solving the single-loop traveling salesman problem and demonstrated the
corresponding algorithms, which not only significantly reduced the distance traveled,
but also reduced the time required to design the route. Stopka et al. [21] applied opted
operations research methods to the urban logistics transportation and distribution problem,
including the Clarke–Wright algorithm, Mayer algorithm, and nearest neighbor algorithm,
which dramatically improved the truck capacity utilization. Paisarnvirosrak et al. [22]
proposed a method combining the firefly algorithm with a forbidden search algorithm for
solving the Vehicle Routing Problem with Time Windows (VRPTW), which significantly
reduces the fuel consumption, the number of vehicles required for transportation, the
consumption of money, and the greenhouse gas emissions. The above heuristic algorithms
and swarm intelligence algorithms can alleviate traffic congestion and reduce the cost of
travel time, distance, fuel, etc., to some extent. However, limitations in vehicle negotiation
make them difficult to use in large-scale route selection problems.

Zhang et al. [23] introduced the concept of vehicle fairness care to improve coordina-
tion between vehicles and reduce travel costs. They developed a coordinated route model
based on an asymmetric congestion game to achieve this goal. Lejla et al. [24] proposed a
cooperative behavioural strategy for self-driving vehicles by using a game theory approach,
which can effectively solve the turn entry problem and shorten the waiting time. Lin
et al. [25] proposed the Social Vehicle Route Selection (SVRS) algorithm, which combines
historical and current drive information and uses game evolution method to calculate the
optimal routes. Tai et al. [26] modeled vehicles by studying two-dimensional metacellular
automata to better coordinate vehicles in dense road networks with route greedy updates
of appropriate frequency. Tanimoto et al. [27] explored the route selection problem using a
metacellular automata simulation that coincides with evolutionary game theory, modeling
the interaction between vehicles as an n-chicken game and solving this game by provid-
ing appropriate information to the driver agents, which in turn alleviates urban traffic
congestion. The above game theory methods can use either collaborative or adversarial
approaches to make each game participant reach the optimal strategy. However, while
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good route decisions can be made, the game theory method has considerable complexity,
and its role is limited in scenarios where the dynamic requirement and the congestion
level are high. At the same time, reinforcement learning-based route selection methods
require a long training cycle while possessing efficient decision-making capability. Rein-
forcement learning methods combined with game theory have been applied in a variety of
fields, but rare in the field of path selection. Whether it can surpass the decision-making
effect of separate game theory methods or reinforcement learning methods is a question
worth studying.

Mortaza et al. [28] proposed a route selection model based on the Multi-agent Re-
inforcement Learning (MARL) algorithm to assess the impact of multiple traffic factors
on vehicle delays. The model examines the weights of different components of the road
network environment, including weather, traffic, and road safety, in order to determine the
prioritized routes for vehicles. To enhance the utilization of historical data, Li et al. [29] in-
corporated a heuristic search strategy into the enhanced Q-Learning algorithm to accelerate
the learning process and reduced the search space by constraining the range of direction
angle variation. Liu et al. [30] proposed to use the Dyna framework to improve the speed
of the decision making, and used the Sarsa algorithm as a routing strategy to improve the
security of the algorithm, and finally combined the two to propose a Dyna-Sa algorithm.
Zhou et al. [31] proposed a decentralized execution order scheduling method based on
multi-agent reinforcement learning for a large-scale order scheduling problem, where all the
Agents work independently guided by a joint policy evaluation. Mona Alshehri et al. [32]
proposed an extension of the graph evolutionary algorithm to make it more suitable for
solving coordinated multi-agent route selection tasks in dynamic environments.

In order to improve the learning efficiency of the algorithm, Nazari et al. [33] proposed
an end-to-end framework for solving vehicle routing problems using deep reinforcement
learning. Li et al. [34] proposed an DRL method based on an attention mechanism, which
contains a vehicle selection decoder considering heterogeneous fleet constraints and a
node selection decoder considering route construction. Nai et al. [35] proposed a mixed-
strategy gradient actor–critic model with a stochastic escape term and a filtering operation,
using a model-driven approach to ensure the convergence speed of the whole model.
Berat et al. [36] proposed a synergistic combination of deep reinforcement learning and
hierarchical game theory as a modelling framework for driver behaviour prediction in
motorway driving scenarios. Reinforcement learning methods, including those discussed
above, leverage historical data to enhance vehicle decision making and coordination flex-
ibility and efficiency. Although these methods demonstrate some degree of adaptability
and extensibility, they have not made significant strides in addressing complex sequential
decision-making problems. Moreover, challenges such as prolonged learning cycles, low
data utilization, and limited generalization abilities persist.

In summary, the existing vehicle route selection methods for urban road networks
have limitations such as insufficient dynamics, slow convergence, and single driving cost
factor. In addressing the complex challenges presented by the vast data dimension, high
dynamics, continuous action space and state space of multi-vehicle route selection in
urban road networks, this paper introduces the PSRRSM model. This model is based on
population game and multi-agent deep reinforcement learning, enabling vehicles within
the enter edges of each intersection to dynamically select routes. From this model, the
paper derives the PLA-RS route selection algorithm, designed to enhance the reliability and
efficiency of multi-vehicle decision making. Additionally, a route cost calculation method
is proposed, considering factors such as energy consumption, environmental pollution,
and driver preference. This holistic approach aims to disperse traffic flow, ease traffic
congestion, and optimize travel time in urban road networks.

3. Period-Stage-Round Route Selection Model

Existing route selection methods often do not fully consider the dynamics of traffic
conditions in urban road networks, nor do they fully consider the degree of vehicle-to-
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vehicle interaction. In order to better coordinate multi-vehicle route decisions in urban
road networks and further reduce road network congestion, this paper proposes the Period-
Stage-Round Route Selection Model (PSRRSM), as shown in Figure 1. This model offers
coordinated route selection decisions for large number of vehicles within urban road
networks. It facilitates the continuous learning of the relationship between road states,
vehicle strategies, and game benefits by road agents. In doing so, it allows for the ongoing
reduction of the average travel cost in iterations, resulting in time, distance, and fuel savings
for travelers, while simultaneously optimizing global benefits. Section 3.1 of this chapter
specifically describes the model definition of PSRRSM, and Section 3.2 describes the specific
way in which utility is calculated.

Figure 1. Period-Stage-Round Route Selection Model for urban road network.

3.1. Problem Model

The urban road network model comprises nodes and edges. Nodes symbolize intersec-
tions, while edges represent roads. Essentially, it is a weighted directed graph H = (S, L),
where S represents the intersections and L represents the edges (roads), as illustrated in
Figure 2. The number of intersections in an urban road network is denoted by |S| and
the number of roads is |L|. Roads are also called segments. si denotes the ith intersection.
For any two neighbouring intersections si and sj, a road from si directly to sj is denoted

by li
j. Note that li

j and l j
i do not necessarily exist at the same time, due to the presence of

one-way roads in the road network. Use enter(si) to denote the set of roads adjacent to si
and with direction towards si, i.e., the set of enter edges, and o f f (si) to denote the set of
roads adjacent to si and with direction away from si, i.e., the set of off edges. For example,
the set of enter edges for intersection s5 in Figure 2 is enter(s5) = {l6

5 , l8
5} and the set of off

edges is o f f (s5) = {l5
2 , l5

6}. Each edge li
j owns a road agent RAi

j.
In the urban road network described by the directed graph H = (S, L), the set of all

vehicles is denoted as V, and any vehicle v ∈ V. The original edge and destination edge
of vehicle v are denoted by ori(v) and dest(v), respectively. At moment t, the set of edges
that vehicle v has already passed is denoted by passt(v), and the current edge is denoted
by nowt(v). When a vehicle, denoted as v, is positioned at edge nowt(v), it engages in
estimating the total cost of the available routes at the current location. Furthermore, the
vehicle takes part in the collective decision-making process along with all other vehicles at
the enter edges of the upcoming intersection. Subsequently, based on the collective decision,
the vehicle selects one of the off edges of the intersection as its next route. This selected
off edge is referred to as next(v), representing the subsequent edge chosen by vehicle v.
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Denote by a(v) the pure strategy chosen by the vehicle v, assuming that the intersection
ahead is si, as shown as follows:

a(v) = [nowt(v)→ next(v)] (1)

Figure 2. Directed graph for a simple road network.

Denote by A(v) the set of optional pure strategies for the vehicle v currently located at
one enter edge lh′

i of the intersection si, as shown as follows:

A(v) =
{[

lh′
i → li

j′

]∣∣∣∀lh′
i ∈ enter(si), ∀li

j′ ∈ o f f (si)
}

(2)

where li
j′ is an arbitrary off edge of the intersection si.

The set consisting of all vehicles on the enter edges of intersection si is called the
decision unit of intersection si and is denoted by du(si), as shown as follows:

du(si) =
{

v
∣∣∣nowt(v) = lh′

i , ∀lh′
i ∈ enter(si)

}
(3)

Denote by R(a(v), li
j) whether the current pure strategy a(v) of vehicle v selects the off

edge li
j. If yes, then R(a(v), li

j) = 1; if no, then R(a(v), li
j) = 0. The strategies selected by the

vehicles in lh′
i may not be all the same, which implies that they do not select all the same off

edge either. Denote the proportion of vehicles included in lh′
i choosing different strategies

by the road vehicle state X(lh′
i ), as shown as follows:

X
(

lh′
i

)
=
{

x
(

lh′
i , li

j′

)∣∣∣lh′
i ∈ enter(si), ∀li

j′ ∈ o f f (si)
}

(4)

where x
(

lh′
i , li

j′

)
denotes the proportion of vehicles included in lh′

i that choose the strategy

[lh′
i → li

j′ ] to all vehicles in lh′
i .

Denote by the intersection vehicle state X(si) the proportion of vehicles included in
du(si) that choose different strategies when divided by enter edges, as shown as follows:

X(si) =
{

X
(

lh′
i

)∣∣∣∀lh′
i ∈ enter(si)

}
(5)

In order to enrich the travel cost considerations and take into account multiple terms to
be optimized, the travel cost of an edge is defined as a weighted sum of time cost, distance
cost, fuel cost, emission cost, and driver preference values. Taking edge li

j as an example,
the weighted sum of the travel cost of the edges is formulated as shown as follows:

c(li
j) = time(li

j)×ω1 + dist(li
j)×ω2 + f uel(li

j)×ω3 + pol(li
j)×ω4 + esti(li

j)×ω5 (6)
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In formula (6), time(li
j) is the time cost of li

j, dist(li
j) is the distance cost of li

j, f uel(li
j) is

the fuel cost of li
j, pol(li

j) is the pollution cost of li
j, and esti(li

j) is the driver preference cost

of li
j. ω1 ∼ ω5 are the weighting coefficients, which satisfy the constraint ∑5

m=1 ωm = 1.
Using route to represent any possible finite route in the urban road network, the travel cost
of route is the sum of the travel costs of the included edges, as shown as follows:

c(route) = ∑
li
jϵroute

c
(
li
j
)
, li

j ∈ L (7)

The multi-vehicle route selection problem in urban road networks presents several
unique characteristics. Firstly, the urban road networks are characterized by a high density
of vehicles, especially at intersections. The presence of numerous vehicles at each intersec-
tion complicates the traffic scenario. Secondly, the movement of each vehicle influences
the travel cost of the road it is on, subsequently impacting the costs associated with the
routes of other vehicles. Furthermore, as the number of vehicles increases, this influence
accumulates, thereby altering the optimal routes of the vehicles. The population game
is a kind of game that iteratively seeks for an equilibrium solution, which is applicable
to the scenarios that satisfy the following conditions: the existence of a large number of
self-decision-making game players; the strategy of a single game player has a small impact
on the payoff of other game players; and the payoff of a single game player is determined
by the distribution of the strategies of all the game players, including itself. In multi-vehicle
route selection on an urban road network, using vehicles as game players and thus using
the population game approach satisfies these three conditions and theoretically reduces the
average travel cost. The players of each game are all the vehicles included in the decision
unit du(si), and the vehicles included in each lh′

i of these enter edges are a population.
At the onset of each time step, vehicles located at the entrance edges of each intersection

are organized into decision units (du(si)) to engage in multi-vehicle decision-making
through population game-based approaches. This aims to address the overall congestion
in urban road networks, enhance road access efficiency, and lower the average multi-
vehicle travel cost within the framework of comprehensive travel cost. During this process,
enter edge agents undergo learning and training. The objective is to ensure that each
vehicle’s chosen strategy is optimal, given the unchanged strategies of other vehicles within
the decision unit, ultimately reaching a Nash equilibrium within each decision unit. On
the time line, a certain decision frequency is guaranteed so that all vehicles in the road
network can participate in multi-vehicle decision making on every edge they pass through,
thus minimising congestion on the urban road network. The optimization goal of the
Period-Stage-Round Route Selection Model is as shown as follows:

c
(
route

(
a(v)

))
≤ c
(
route

(
a′(v)

))
s.t. route

(
a(v)

)
=
{

nowt(v)} ∪ Dijkstra
(
next(v), dest(v)

)
∀t, ∀a′(v) ∈ A(v)− a(v), ∀v ∈ V

(8)

where route(a(v)) denotes the route determined by the current pure strategy a(v) for
vehicle v. Dijkstra(next(v), dest(v)) denotes the current shortest route from next(v) to
dest(v) as defined by the integrated travel cost.

3.2. Utility Calculation

When participating in multi-vehicle decision making at an intersection, all vehicle on
the enter edges serves as the decision unit. Vehicle v selects an enlightened route, denoted
as route(a(v)), which includes the current edge and the next edge. This selection is made
based on a strategy and the integrated travel cost calculated after each strategy is chosen.
Where the integrated travel cost is a weighted sum of time, distance, fuel, pollution, and
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driver preference. This section describes how these travelling sub-costs are estimated.
According to the BPR (Bureau of Public Roads) formula, the time cost for any edge li′

j′ ∈ L in
the road network in the population game occurring at intersection si is calculated as follows:

time(li′
j′ ) =



dist(li′
j′ )

vmax(li′
j′ )

1 + α

(
qi′

j′

cap(li′
j′ )

)β
, i′ = i

dist(li′
j′ )

vmax(li′
j′ )

1 + α

(
ni′

j′

cap(li′
j′ )

)β
, i′ ̸= i

(9)

where vmax(li′
j′ ) is the maximum permissible speed of edge li′

j′ , and cap(li′
j′ ) is the maxi-

mum capacity of edge li′
j′ . α, β are the parameters. si′ , sj′ are the arbitrary neighbouring

intersections.
The prediction of the time cost for intersection si involves the estimation of the number

of vehicles qi
j on the off edge li

j, based on the current pure strategy of each vehicle on the
enter edges. Additionally, the prediction also entails estimating the number of vehicles on
the other edges li′

j′ using the static current number of vehicles ni′
j′ . The formula for predicting

the number of vehicles on the off edge li
j is shown as follows:

qi
j = ni

j + ∑
p∈P

∑
a(v)∈A(v)

R
(
a(v), li

j
)
· n(si) · x

(
si, li

j
)

(10)

where ni
j denotes the current number of vehicles on edge li

j and n(si) denotes the current
number of vehicles on decision unit du(si), which is equivalent to |du(si)|.

The distance cost dist(li
j) is the length of the edge.

Fuel cost is proportional to distance cost. Fuel cost are calculated as follows:

f uel(li
j) =

f uel(v)
dist(v)

dist(li
j) (11)

where f uel(v) is the current total fuel consumption of vehicle v and dist(v) is the current
total mileage of vehicle v.

Pollution cost is proportional to the time cost. The pollution cost is calculated as follows:

pol(li
j) =

pol(v)
time(v)

time(li
j) (12)

where pol(v) is the current total emission of vehicle v and time(v) is the current total travel
time of vehicle v. Note that only the distance cost above is a constant and accurate value,
while the formulas for time, fuel, and pollution costs are estimates of future costs. Moreover,
the time cost is the same for all vehicles at the same moment, while the fuel and pollution
costs are related to each vehicle’s own properties.

Driver preference costs simulate individual subjective estimates of the sum of the
four costs of time, distance, fuel, and pollution by different drivers, and require a bal-
ance between certainty and uncertainty. The driver preference cost esti(li

j) is calculated
as follows: {

esti
(
li
j
)
= N−random(µ, σ2)

µ = time
(
li
j
)
×ω1 + dist

(
li
j
)
×ω2 + f uel

(
li
j
)
×ω3 + pol

(
li
j
)
×ω4

(13)

where σ2 is the variance and N−random denotes random values taken from a normal
distribution determined by the given mean and variance. Cost estimates for the same
driver for the same edge at the same moment are not generated repeatedly.
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4. Period Learning Algorithm for Route Selection

In order to combine the accuracy of game-theoretic equilibrium solutions and the
convergent and generalization ability of multi-agent reinforcement learning methods, this
paper introduces a vehicle population game and a road multi-agent system. While the
vehicles contained in the decision unit du(si) participate in the game, the corresponding
road agents learn according to the position distribution of the vehicles and the outcome
state of the game—i.e., the proportion of vehicle strategies. After extensive training, the
strategies provided by the road agents result in a total benefit that approaches or exceeds
the effect of the population game. This can effectively reduce the average cost of travel for
multiple vehicles and alleviates congestion in the urban road network. Section 4.1 describes
the method architecture of the Period Learning Algorithm for Route Selection based on the
Period-Stage-Round Model, and Section 4.2 describes the specific implementation process
of the Period Learning Algorithm for Route Selection.

4.1. Method Architecture

In order to use the vehicles population game to assist the learning of road agents in
order to improve the final decision making, the overall training process of the algorithm is
divided into three periods in this paper. In each period, the training method, the training
degree, and the degree of participation in decision making of the agents are different.
This process is called “period learning”. The overall architecture of the Period Learning
Algorithm for Route Selection is as follows.

The Vehicle Multi-stage Population Game Algorithm is a sub-algorithm within the
Period Learning Algorithm for Route Selection. It operates by enabling the vehicles in the
decision unit du(si) to initially obtain a strategy, and then continuously refine this strategy
through multi-stage iteration. This iterative process allows the vehicles to arrive at an
equilibrium solution, with termination occurring under one of two conditions: the Nash
equilibrium or when the maximum number of stages is reached. In the first period, the
initial strategies of the vehicles are randomly generated, as in the general application of the
population game; in the second period, the initial strategies of the vehicles are generated
by the road agent of the edge where they are located, in order to improve the convergence
rate of the game. During the first and second periods, the equilibrium solution prompts the
execution of each vehicle strategy in the following time step. Subsequently, the recorded
data are stored in the replay buffer of the road agents. It including the number of vehicles
on each edge, the proportion of strategies, the cumulative vehicle payoffs, and the number
of vehicles on each edge at the conclusion of the subsequent time step.This facilitates the
sampling and training process for the road agents. In the third period, the road agents
having undergone comprehensive training through the Period Learning Algorithm for
Route Selection, transition to the stage where they are empowered to make direct decisions.
Consequently, they execute actions by directly implementing the initial strategies, rendering
the Vehicle Multi-stage Population Game Algorithm inactive during this period.

The Period Learning Algorithm for Route Selection uses the distribution of the number
of vehicles, the proportion of strategies, and the payoffs of the game under the equilibrium
solution of the game as training data for road agents. By employing neural networks, the
algorithm optimizes the initial strategies of the population game during the convergence of
its parameters, thus enhancing the convergence rate of the game. With improved conver-
gence rate, the empirical data provided for the road agents also improves. By iteratively
repeating this process, both the convergence speed and convergence rate of the road agents
and the population game are significantly enhanced. This aims to enable the road agents to
independently achieve the decision-making effect of the population game and to continue
learning in order to maintain the decision-making effect. We denote the deep reinforce-
ment learning model of road agents in this paper by tuple < N, S, O, A, R, γ >. Where
N, S, O, A, R, γ denote the number of agents, joint state, observation, joint action, reward
function, and decay factor, respectively.
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• N: The number of agents, which corresponds to the number of roads. Agent is also
known as road agent RA. RAh

i ∈ {RAh
i |sh, si ∈ S, lh

i ∈ L}.
• S and O: The observation of agent RAh

i is the vector (n(l1), n(l2), . . . , n(lm))T consist-
ing of the number of vehicles of all neighbouring edges, where the edges l1, l2, . . . , lm ∈
NR(lh

i ). NR(lh
i ) is the set of edge lh

i ’s neighbouring edges. The set of neighbouring
edges is defined as follows:

NR(lh
i ) =

{
lh′
i′

∣∣∣sh′ = sh ∪ sh′ = si ∪ si′ = sh ∪ si′ = si

}
(14)

In Figure 2, the set of neighbouring edges of l5
2 is {l1

2 , l2
1 , l2

3 , l3
2 , l5

2 , l5
6 , l6

5 , l8
5}. The neigh-

bouring edges of an edge include itself. lh
i ’s observation state at the ltth time step is

denoted by obsh,i
lt . The joint state statelt is a matrix consisting of the observations of

all agents.
• A: The action of agent RAh

i at time step lt is defined as the proportion of strategy

selection ah,i
lt = X

(
lh
i

)
= {x(lh

i , li
j′)|∀li

j′ ∈ o f f (si)} for the vehicle contained in the

corresponding edge lh
i . In this algorithm, there exists online action online_a and target

action target_a, where the former is generated by the agent, and the latter is the action
that the agent needs to learn, and also the proportion of the strategy that the vehicle
actually executes. In different periods of this algorithm, the relationship between
online_a and target_a is different. In period 1, the Agent does not generate online_a
and converts the Nash equilibrium generated by the game to target_a; in period 2,
the agent’s actor network generates online_a, which is used to optimize the initial
strategies of the vehicles in order to improve the convergence rate of the game, but the
target_a used for learning is still converted from the Nash equilibrium; in period 3,
target_a = online_a, and the vehicle directly executes the strategy given by the agent.
Distribution of actions: convert x(lh

i , li
j′) from proportional to integer according to the

number of vehicles nh
i on edge lh

i . Following the pairing principle, when vehicle v
participates in the game at intersection si, if the off edge li

j chosen by a(li
j) satisfies

li
j ∈ Dijkstra(lh

i , dest(v)), then a(v) = a(li
j), x(lh

i , li
j)− 1. When the remaining vehicles

cannot be matched with the remaining strategies, a random distribution is performed .
Distribution is complete when all x(lh

i , li
j′) go to zero.

• R: The reward of agent RAh
i at time step lt is defined as the opposite of the sum of

travel costs of the vehicles included in the corresponding edge lh
i , i.e., rewardh,i

lt =
−∑v∈V(lh

i )
c(route(a(v))).

• γ: Decay factor that determines the importance of the rewards obtained from one
learning. As time progresses, the importance of rewards produced later decreases.

With the road agents and the training method, the model can be made to learn the
relationship between the current state, the strategy, the next state and the reward received.
The road agents completes their communication in the centralized training of the actor and
critic networks and makes decisions using only local observations, with the actor network
generating the actions. In the first period, the road agents focus on learning the equilibrium
solution generated by the population game in order to achieve intersection vehicle states
that are close to the equilibrium solution. During the second period, the intersection vehicle
states are derived by applying the actions generated by the road agents, which serve to
initialize the strategy distribution of the vehicles. This approach aims to yield a significant
improvement in the rate and speed of convergence of the population game, while the
agents continue training. Subsequently, when the multi-agent learning process reaches
a certain level of stability, it transitions into the third period. In this period, the vehicles
no longer rely on reaching an equilibrium solution through the game, but rather directly
execute the strategy distribution provided by the road agents. This transition represents
an evolution in the dynamic interaction between the road agents and the vehicles, as their
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strategic decision making becomes more streamlined and efficient. The training process of
the agents is shown in Figure 3.

Figure 3. Training process of road agents.

4.2. Period Learning Algorithm for Route Selection Implementation

In order to make the collaboration and decision making between vehicles at each enter
edge of the intersection more efficient and have strong learning and generalization ability,
this paper proposes the Period Learning Algorithm for Route Selection. The algorithm
contains two main parts: Vehicle Multi-stage Population Game Algorithm and Road Multi-
agent Deep Reinforcement Learning. In the first and second periods, the former entity is
embedded within the latter but retains a level of autonomy, actively engaging in decision-
making and offering training support. Meanwhile, during the same periods, the latter
primarily receives training and contributes indirectly to decision-making. Subsequently,
in the third period, the latter operates independently, making decisions and engaging in
autonomous learning, distinct from the former.

4.2.1. Vehicle Multi-Stage Population Game Algorithm

In the population game, vehicles participating in the game repeatedly consider the
influence of other vehicles’ strategies during each stage. They strive to identify the optimal
strategy, for which they use the mean value and gradually converge to the Nash equilibrium
over the multiple stages of the game. This process enables them to reach the optimal
solution for travel cost at the global system level.

At an intersection during a single game, the inputs include the edges where each
vehicle is located, the destination edges of each vehicle, and the initial mixing strategies. The
output is determined as the optimal mixing strategies for each vehicle, which are observed
when the game reaches an equilibrium solution or the maximum number of stages.
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The state of the population is the enter edge vehicle state

X
(

lh′
i

)
=
{

x
(

lh′
i , li

j′

)∣∣∣lh′
i ∈ enter(si), ∀li

j′ ∈ o f f (si)
}

where x
(

lh′
i , li

j′

)
stands for the number of vehicles in the population that choose the mixed

strategy S(li
j′). The set of population states of all populations is then defined as the

social state X(si) =
{

X
(

lh′
i

)∣∣∣∀lh′
i ∈ enter(si)

}
, which is the intersection vehicle state.

Denote X′(si) the social state of the previous stage. The population state satisfies the
following constraints:

Σ
x
(

lh′
i ,li

j′
)
∈X
(

lh′
i

)x
(

lh′
i , lli

j′

)
=1 (15)

0 ≤ x
(

lh′
i , li

j′

)
≤ 1, ∀

[
lh′
i → li

j′

]
∈ A(v), v ∈ du(si) (16)

where A(v) can be the set of pure strategies for any vehicle in du(si). Mixed strategies are
used to select pure strategies in each round of a stage with a certain probability distribution,
defined as follows:

S
(
li
j, a(li

j′)
)
=

{
1− ε1, j′ = j

ε1
(|o f f (si)|−1) , j′ ̸= j

(17)

where ε1 ∈ (0, 1) is the exploration rate.
In order to find a social state that represents a Nash equilibrium, i.e., all the vehicles

involved in the game cannot find a better mixed strategy than the one in that state, the
Nash equilibrium of the population game in this algorithm is defined as follows:

NE(G) = {X(si):c(route(a(v))) ≤ c(route(a′(v))), ∀a′(v) ∈ A(v)− {a(v)}, ∀v ∈ du(si)} (18)

where c(route(a(v))) and c(route(a′(v))) are the total travel cost of the corresponding
vehicle’s current strategy and the total travel cost of choosing the other pure strategy,
respectively. At the end of the game, the vehicles obtain the optimal mixed strategies, but
actually execute their corresponding pure strategies.

To ensure the algorithm’s effective implementation, the game’s time interval should
be suitably calibrated. This will allow each vehicle to make at least one route decision on
every edge it traverses, maintaining the dynamic knowledge of the road network state.
Consequently, the segments of the route Dijkstra

(
li
j, dest(v)

)
, excluding the edge li

j, will
not be executed during the entire travel process. As a result, the vehicle v’s complete route
will be determined by the selection of the next edge in each game.The specific steps of the
algorithm are shown as follows.

(1) Initialize the Vehicle Mixing Strategy
The vehicle populations are first divided according to the edge they are currently on.

When using the Vehicle Multi-stage Population Game Algorithm on its own, randomly
initializing the mixing strategies for vehicles at intersection si’s enter edge lh′

i . When nested
in the Period Learning Algorithm for Route Selection, random initialization is used in
Period 1 and Agent initialization is used in Period 2.

(2) Multi-stage Gaming
During stage b, each vehicle v at each enter edge lh′

i makes a T-round selection of pure
strategy a(li

j′) according to the currently held mixed strategy Sv
b(l

i
j). Then, records all the

pure strategy-total cost pairs (av
r,b, cv

r,b) in a sequence Zv
j′ ,b , where r,b means the selection

in the rth round of stage b. In each round of pure strategy selection, enter edge lh′
i ’s each

vehicle v selects its pure strategy in a certain order. At the end of the selection in round T,
the average cost of each pure strategy a(v) ∈ A(v) is computed according to the recorded
sequence of all pure strategy-total cost pairs Zv

j′ ,b. Then the optimal mixed strategy S(li
j′) is

found to be the vehicle v’s mixed strategy Sv
b+1(l

i
j′) for the next stage. Sv

b is the vehicle v’s
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mixed strategy to be used in stage b . Since the computation of the off edge li
j′ ’s time cost

involves predicting the number of vehicles qi
j′ by pure strategy, the pure strategy chosen by

each vehicle will have a small effect on the travel cost of the other vehicles in the subsequent
and next round. Consequently, the new mixed strategies generated by each vehicle in each
stage will adjust with the pure strategy choices of all vehicles in each round of the stage.
As a result, the mixed strategy distributions of all vehicles in each group, denoted as the
social state X(si), will approach the Nash equilibrium rapidly.

(3) Output and execution
In order to limit the time complexity of the algorithm, the output of the Vehicle Multi-

stage Population Game Algorithm is divided in two ways: if the social state X(si) of
two neighboring stages are identical, the algorithm is considered to be fully converged to
the Nash equilibrium, and the social state X(si) will be outputted as a Nash equilibrium
NE(G); if there is no social state X(si) of the neighboring stages identical, the current social
state X(si) will be outputted when the stage number b reaches the upper limit B. Each
vehicle executes the pure strategy corresponding to the mixed strategy held by itself at the
end of the algorithm.

The specific process of the Vehicle Multi-stage Population Game Algorithm is shown
in Algorithm 1.

Algorithm 1 VMPGA (Vehicle Multi-stage Population Game Algorithm)
Input: urban road network H = (S, L), intersection for gaming si, decision unit du(si),

maximum of stage number B, number of rounds per stage T
Output: Nash equilibrium NE(G) or a set of mixed strategies{

Sv
b(l

i
j′)
∣∣b = B, ∀v ∈ V, ∀li

j′ ∈ o f f (si)
}

when the stage number reaches B
1: Find all enter edge vehicles ∀v ∈ du(si), divide the population according to the current

edge and initialize the mixed strategies
2: for b ∈ {1, 2, . . . , B} and X′(si)! = X(si) do
3: X′(si)← X(si)
4: for r ∈ {1, 2, . . . , T} do
5: for li

j ∈ o f f (si) do

6: qi
j ← ni

j
7: end for
8: for lh

i ∈ enter(si) do
9: for v ∈ du(si),nowt(v) = lh

i do
10: Choose a randomized pure strategy a(li

j′) ∈ A(v) as av
r,b according to the

mixed strategy Sv
b(l

i
j)

11: for li
j ∈ o f f (si) do

12: if R
(
av

r,b, li
j
)
= 1 then

13: qi
j ← qi

j + 1
14: Generate route(av

r,b) according to pure strategy av
r,b and compute

total cost c(route(av
r,b)) as cv

r,b

15: Save the pure strategy-total cost pair
(

av
r,b, cv

r,b

)
into the sequence

Zv
j,b

16: end if
17: end for
18: end for
19: end for
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Algorithm 1 Cont.

20: for lh
i ∈ enter(si) do

21: for v ∈ du(si), nowt(v) = lh
i do

22: Calculate the average cost of each pure strategy that v has chosen in stage

b separately: Fv
j,b ←

∑av
r,b=a(li

j)

cv
r,b
|Zv

j,b |
, i f
∣∣Zv

j,b

∣∣ > 0

∞, otherwise
, a(li

j) ∈ A(v)

23: a(li
j′)← argmina(li

j)∈A(v)F
v
j,b

24: The mixed strategy S(li
j′) corresponding to the pure strategy a(li

j′) is used

as the mixed strategy Sv
b+1(l

i
j′) for vehicle v in the next stage

25: end for
26: end for
27: end for
28: end for
29: Each vehicle v ∈ du(si) generates route(a(v)) according to the pure strategy a(v)

corresponding to the final mixed strategy and executes it

4.2.2. Road Multi-Agent Deep Reinforcement Learning Algorithm

In the PLA-RS, the road multi-agent utilizes the equilibrium solution of the population
game to assist learning in the first and second periods. At the beginning of multi-agent
training, the algorithm is in the first period. In the decision making at the ltth time step,
for each intersection si, firstly, initial strategies are randomly generated for all vehicles
contained in the decision unit du(si). Then, the agent RAh

i of each enter edge lh
i records the

vector of the numbers of vehicles on the neighboring edges NR(lh
i ) as the observation obsh,i

lt .
Next, the game is run. At the completion of the game, each enter edge obtains the proportion
of strategies under the equilibrium solution for the observation. The agent RAh

i of each
enter edge lh

i records the strategy proportion of the corresponding edge as the target action
target_ah,i

lt . Each vehicle v that participated in the game receives a payoff −c(route(a(v))).
The agent RAh

i of each enter edge lh
i records the sum of the payoffs of the vehicles included

in the corresponding edge as a reward rewardh,i
lt = −∑v∈V(lh

i )
c(route(a(v))). Then, each

vehicle executes the obtained strategy and advances one time step. The agent RAh
i of each

enter edge lh
i records the vector of the numbers of vehicles on the neighboring edges NR(lh

i )

corresponding to the enter edge as the next observation obs′h,i
lt . Finally, the agent RAh

i of
each enter edge lh

i saves (obsh,i
lt , target_ah,i

lt , rewardh,i
lt , obs′h,i

lt ) into the replay buffer.
When the number of experiences reaches the sample size batch_size, the second period

is entered. In the decision making of the ltth time step, for each intersection si, firstly,
the actor network of the agent RAh

i of each enter edge lh
i generates the online action

online_ah,i
lt = X

(
lh
i

)
= {x(lh

i , li
j′)|∀li

j′ ∈ o f f (si)}. The strategy selection proportion X(lh
i )

is converted into the absolute number of each mixed strategy according to the number of
vehicles nh

i of the corresponding enter edge lh
i . It is then distributed to the vehicles of the

corresponding enter edge lh
i according to the rule. Secondly, the game is run, and the agent

RAh
i of each enter edge lh

i records the observation obsh,i
lt , the target action target_ah,i

lt , and
the reward rewardh,i

lt . Then, the vehicles execute the strategies, advances one time step, and
the agent RAh

i of each enter edge lh
i records the next observation obs′h,i

lt . Finally, the agent
RAh

i of each enter edge lh
i saves (obsh,i

lt , target_ah,i
lt , rewardh,i

lt , obs′h,i
lt ) into the replay buffer.

Then, samples from the replay buffer according to the batch_size, performs centralized
learning, and updates the parameters of actor networks and critic networks.

When, after sufficient training, the sum of the payoffs obtained by each agent of
each enter edge utilizing the strategy of actor generation and distribution is similar to
the sum of the payoffs obtained by the game, the third period is entered. In the decision-
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making process at time step lt, the actor network of agent RAh
i for each enter edge lh

i
at intersection si generates the online action online_ah,i

lt . Subsequently, transforms it into
mixed strategies. The mixed strategies are then distributed to the vehicles in the corre-
sponding enter edge lh

i . At the same time, the agent RAh
i of each enter edge lh

i records
the observation obsh,i

lt , target action target_ah,i
lt = online_ah,i

lt , and reward rewardh,i
lt . Then,

the vehicles execute the strategies, advances one time step, and the agent RAh
i of each

enter edge lh
i records the next observation obs′h,i

lt . Finally, each agent RAh
i of the enter edge

lh
i saves (obsh,i

lt , target_ah,i
lt , rewardh,i

lt , obs′h,i
lt ) into the replay buffer, samples to perform the

centralized learning, and updates the parameters of the networks.
At this point, the Period Learning Algorithm for Route Selection and the embedded

Vehicle Multi-stage Population Game Algorithm are introduced. To summarize, PLA-RS is
an algorithm that assists the training of a road multi-agent with the help of inter-vehicle
population games to improve the decision-making effect. In order to improve the training
and decision-making effect, the algorithm is divided into three periods, so that the road
multi-agent changes from relying on the population game to independent decision-making
and independent learning. The detailed process of the Period Learning Algorithm for
Route Selection is shown in Algorithm 2.

Algorithm 2 PLA-RS (Period Learning Algorithm for Route Selection)

Input: Online actions online_ah,i
lt for each agent RAh

i , Learning times lt = 0 of agents,
sample size batch_size, learning times boundaries ltb1, ltb2 for dividing the period

Output: Target action target_ah,i
lt of each agent RAh

i
1: for si ∈ S do
2: for lh

i ∈ enter(si) do
3: RAh

i generates observation obsh,i
lt

4: end for
5: if lt < ltb1 then
6: Randomly initialize the mixing strategies for all enter edge vehicles
7: else
8: for lh

i ∈ enter(si) do RAh
i generates the online action online_ah,i

lt , which is dis-
tributed to the corresponding edge lh

i ’s vehicles
9: end for

10: end if
11: if lt < ltb2 then
12: The VMPGA is run to derive the equilibrium solutionX(si)
13: for lh

i ∈ enter(si) do
14: Generate target_ah,i

lt from X(si)
15: end for
16: else
17: for lh

i ∈ enter(si) do
18: target_ah,i

lt ← online_ah,i
lt

19: end for
20: end if
21: end for
22: All vehicles execute the pure strategies corresponding to the mixed strategies
23: for si ∈ S do
24: for lh

i ∈ enter(si) do
25: RAh

i generates observation obs′h,i
lt = obsh,i

lt+1

26: RAh
i calculates reward rewardh,i

lt = −∑v∈V(lh
i )

c(route(a(v))) according to vehi-
cle payoffs

27: RAh
i saves (obsh,i

lt , target_ah,i
lt , rewardh,i

lt , obs′h,i
lt ) into the replay buffer D

28: end for
29: end for
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Algorithm 2 Cont.

30: if lt >= batch_size then
31: for si ∈ S do
32: for lh

i ∈ enter(si) do
33: RAh

i samples batch_size samples from replay buffer D
34: RAh

i carry out learning and update target network parameters
35: end for
36: end for
37: end if
38: Learning times increase, lt← lt + 1

5. Experiments

To evaluate the efficacy of the PLA-RS in the context of the multi-vehicle dynamic
route selection problem, this study employs the SUMO platform to simulate urban road
networks and vehicles. The agents, neural networks, and algorithm processes are coded in
Python to facilitate the experimentation process. Subsequently, experiments are conducted
on both artificial and real road networks to assess the algorithm’s performance under
diverse conditions. The experiments were conducted in different traffic scenarios from
smooth to congested. In order to verify that the negotiation of the algorithm can bring better
optimization for group travel cost, the PLA-RS is compared with three non-negotiated
algorithms. Section 5.1 shows the experiments of multi-vehicle dynamic route selection for
different traffic scenarios under artificial road network. In order to verify the effectiveness
of the algorithm in real traffic scenarios, Section 5.2 shows the multi-vehicle dynamic route
selection experiments under real road network.

5.1. Experiments in the Artificial Road Network

This section examines the decision-making performance of the PLA-RS under varying
traffic intensities using an artificial road network. It also compares the experimental data
with different non-negotiated route selection algorithms. The experimental parameter
settings, comparison algorithms and experimental projects will be presented together with
the artificial road network.

5.1.1. Experimental Conditions

The artificial road network used in the experiment contains 21 intersections and
72 edges. The structure of the artificial road network is shown in Figure 4. In the randomly
generated trip information, each edge may be the starting point or the end point. Each edge
holds a road agent. It is specified that the vehicle density does not exceed 142 veh/km, i.e.,
in the BPR formulation, cap = [0.142× dist(l)], l ∈ L.

Figure 4. Artificial road network.
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The length of longer roads is between 1200 m and 1500 m and the length of shorter
roads is between 200 m and 400 m. In the BPR formula, α = 0.8, β = 6. The maximum
speed of the road vmax = 13.89 m/s. The other parameter settings are shown in Table 1.

Table 1. Definition of parameters of PLA-RS.

Notation Instruction Value

stepLength Time step. 60 s
cap Road capacity. [0.142× dist(l)], l ∈ L
B Maximum stage number of the game. 4
T Number of rounds per stage. 100
ε1 Exploration probabilities for mixed strategies. 0.35

ω1 ∼ ω5 Weights of each of the sub-costs of travel cost. 0.7599, 0.05, 0.0001, 0.09, 0.1
bu f f er_size Replay buffer capacity. 3125
batch_size Sample size. 256

ltb1 Period transformation step boundary 1. 256
ltb2 Period transformation step boundary 2. 3125
ε2 Exploration probability of agents’ choice of actions. 0.1
γ Attenuation factor. 0.95

lr1 Learning rate (actors). 0.0001
lr2 Learning rate (critics). 0.001

In order to validate the role of vehicle negotiation decisions in the PLA-RS in reducing
travel costs, this paper compares the algorithm with three non-negotiation algorithms for
a wide range of statistics under several different traffic flows. The algorithms used for
comparison with the PLA-RS include the DQN algorithm, the Q-Learning algorithm, and
the Dijkstra algorithm. In these three algorithms, vehicles do not communicate with each
other, cannot negotiate for group benefits, and cannot notice dynamic changes in traffic
conditions. Each comparison is based on the same road network and origin–destination
information. The Dijkstra algorithm is the benchmark algorithm for the SUMO platform.
Q-Learning is a reinforcement learning classical algorithm that stores the possible rewards
for taking each optional action in each state in terms of a Q-table. The DQN algorithm is
one of the pioneers of Deep Reinforcement Learning and employs a neural network to fit
the state-policy mapping function. In the experiments, the agent for both algorithms is
vehicle, the agent state is set to the edge it is on, the action is the choice of the next edge,
and the reward is the opposite of the traveling time.

In the traffic simulation, the time for the traffic to continuously enter is 5400 s. The
time step stepLength is 60 s. The time step is both the time interval for all the vehicles to
divide into populations and play the game, and the time interval in which the road agents
carry out experience storage and training. The DQN and Q-Learning algorithms use an
experimental approach that involves first creating multi-agent for training, then saving Q-
tables or network weights. After that, the complete route for each vehicle is determined as
it enters the road network in the experimental scenario. The origin-destination information
is randomly generated at a given scale and frequency, but it does not change when it is
generated and used in different algorithms.

In order to verify the advantages of PLA-RS over non-negotiated algorithms in many
aspects, the following experimental projects are carried out. First, the road network through-
put under different traffic flows and the road network throughput process under the max-
imum traffic flow. Regardless of which route selection algorithm, its ultimate goal is to
deliver vehicles to their destinations more often and faster, so the road network throughput
is the first indicator to be considered. Throughput is the number of vehicles completing
its trip. Since the origin–destination information of each algorithm is the same, the actual
comparison is the number of vehicles completing the trip in the road network up to 5400 s.
The throughput process is the change in the number of vehicles arriving at the destination
over time. The second is the average traveling time under different traffic flows and the
average travel cost by weights ω1 ∼ ω4. The average traveling time is the most commonly
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used evaluation criterion in the route selection problem, which can reflect the time saved
by the algorithm for the drivers on a macro level. And in order to verify the comprehensive
cost saved by the algorithm for the drivers, the experiment also includes the actual average
traveling cost calculated by weights ω1 ∼ ω4. When the algorithm is running, the fuel
cost and pollution cost are calculated according to Equations (11) and (12), but in the
experimental evaluation, the actual generated fuel cost and pollution cost are used. Since
the driver-estimated cost is a subjective estimate of the four costs of time, distance, fuel, and
pollution by the simulated drivers, it is not included. The third is the winners and losers
in terms of travel time for different traffic flows compared to the results of the Dijkstra
method. Winners is how many vehicles have lower travel times than the same vehicle in
the Dijkstra method and losers is how many vehicles have higher travel times than the
same vehicle in the Dijkstra method. This will reflect the effectiveness of the algorithm
in reducing the time cost in each driver’s perspective at a micro level. The fourth is the
average speed of vehicles over time at maximum traffic flow. The overall average speed
is a visual representation of the efficiency of the road network and a micro reflection of
the algorithm’s decision-making ability over time. Fifth, under the maximum traffic flow,
the number of vehicles passing through the 12 roads with the highest number of trips.
Counting the change in the number of vehicles by road separately can show the spatial
details of the road network efficiency.

5.1.2. Experimental Results and Analysis

In this section, we compare the effectiveness of the PLA-RS with three comparison
algorithms. In order to verify the effect of each algorithm in different traffic environments,
experiments under four traffic densities from smooth flow to congested flow are conducted
respectively. Under smooth flow, the total number of vehicles in the road network can
maintain dynamic balance after reaching a certain value, and a better access efficiency can
be ensured even without the guidance of the algorithms. With the increase of traffic density,
traffic congestion becomes more and more likely to pile up, and the algorithms’ ability to
guide and disperse becomes especially important.

In order to compare the ability of each algorithm to deliver vehicles to their destina-
tions, the road network throughput at each traffic flow and the road network throughput
process at the maximum traffic flow are counted in Figure 5.

Figure 5. Throughput under different traffic flows and throughput process under congested flow in
the artificial road network.

Figure 5a shows the throughput of the road network as 5400 s, while Figure 5b shows
the complete throughput process, i.e., the number of arriving vehicles over time. Figure 5a
shows that the throughput metrics of the four algorithms produce a significant gap after
60 veh/min. The PLA-RS’s throughput is about 23% higher than the baseline algorithm and
about 9% higher than the Q-Learning and DQN algorithms at 80 veh/min. The throughput
process in Figure 5b shows that the performance of the PLA-RS is more stable throughout
the experimental period. The three non-negotiated algorithms show different degrees of
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degradation in route selection effectiveness during the experimental wind-up period after
congestion due to the inability of communication between vehicles.

To compare the algorithms’ effectiveness in reducing time, distance, fuel, and pollution
costs, we calculate the average travel time and cost for the road network under different
traffic flows using weights ω1 ∼ ω4. The average travel time and average travel cost under
different traffic flows are shown in Figure 6.

Figure 6. Average travel time and average travel cost under different traffic flow in the artificial
road network.

The vertical coordinate unit in Figure 6a is second, and the vertical coordinate value
in Figure 6b is the weighted sum of average travel time, average travel distance, average
fuel consumption, and average pollution emission calculated by weights ω1 ∼ ω4. From
Figure 6, it can be seen that the PLA-RS has a limited role in smaller traffic scope, and its
ability to guide the traffic flow differs very little from the baseline algorithm. The role of
all three non-baseline algorithms is mainly in the congested flow, i.e., under 80 veh/min
traffic flow. When traffic congestion reaches that level, the PLA-RS produces a significant
increase in its effectiveness in reducing each travel cost.

To assess how well the algorithms reduce drivers’ travel time, we count the winners
and losers of the Q-Learning algorithm, the DQN algorithm, and the PLA-RS in comparison
to the Dijkstra algorithm for each traffic flow. The statistics of winners and losers at different
traffic flows are shown in Figure 7.

Figure 7. Winners and losers compared to Dijkstra method for different traffic flows in the artificial
road network.

In Figure 7, the positive value is the number of winners and the negative value is the
number of losers. If the positive and negative values of the same bar are subtracted, the
advantage of the algorithm over Dijkstra algorithm in terms of the number of winners can
ve seen. It can also be seen that the winners and losers of the algorithms are more or less
equal at lower traffic flows, while at 60 veh/min, the PLA-RS shows a slight disadvantage.
Likewise, all three algorithms outperform the baseline algorithm significantly when the
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traffic flow reaches a congested flow of 80 veh/min. The PLA-RS has slightly more
successes than the Q-Learning and DQN algorithms, and slightly fewer failures than
these two algorithms.

In order to show the microscopic details of the road network access efficiency in time,
the variation of the average speed of the road network under each algorithm with time was
counted under the congested flow as shown in Figure 8.

Figure 8. Change in the average vehicle velocity over time under congested flow in the artificial road
network.

In Figure 8 the average vehicle velocity was recorded at 100 s intervals. From Figure 8,
it can be seen that the gap in average speed mainly occurs in the middle and late stages of
the experiment. It is between 4000 s and 6000 s for PLA-RS, between 8000 s and 10,000 s
for Q-Learning and DQN, and between 10,000 s and 13,000 s for Dijkstra. The PLA-RS
obtains a faster average vehicle velocity and delivers all experimental vehicles to their
destinations earlier.

In order to show the spatial details of the route selection, the change in the numbers of
vehicles over time on the 12 roads with the highest numbers of passing vehicles under each
algorithm at the maximum traffic flow was counted, as shown in Figure 9.

Figure 9. Changes in the numbers of vehicles on the 12 most congested roads in the artificial
road network.
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In each subfigure of Figure 9, different colors represent different roads and the height
of the bar indicates the number of vehicles. From Figure 9, it can be seen that the number of
vehicles on the most congested roads in the road network is significantly lower when the
PLA-RS is running than when the other algorithms are running. Comparing the number
of vehicles on different roads reveals that the PLA-RS results in a more evenly distributed
spatial arrangement of vehicles compared to the Q-Learning and the DQN algorithms. This
indicates the PLA-RS’s advantage in dispersing traffic flow.

5.2. Experiments in the Real Road Network

In order to further verify the efficiency and reliability of the PLA-RS, it is necessary to
conduct route selection experiments in real road network with more complex structures. In
this paper, the PLA-RS is run in a part of the road network in Minhang District, Shanghai,
as shown in Figure 10. The road network contains 66 intersections and 152 edges, each
of which possesses one agent, except for the edges at the rim of the road network that do
not need to participate in the decision-making. Four scopes of traffic flows are randomly
generated to enter the road network, including 15 veh/min, 20 veh/min, 30 veh/min, and
40 veh/min. 40 veh/min is already the congested flow because the ratio of the number of
intersections to edges in this road network is significantly higher than that of the artificial
road network, and congestion is more likely to pile up. Similarly, in the trip information,
each road may be a starting point or an ending point.

Figure 10. Part of the road network in Minhang District, Shanghai.

This real road network has more than three times the number of intersections and only
two times the number of edges compared to the artificial road network. And the total and
average length of the roads are shorter, thus requiring a more coordinated decision-making
ability of the algorithm.

The throughput and the throughput process at maximum traffic flow are shown
in Figure 11.

The advantages of the PLA-RS over the artificial road network are illustrated in
Figure 11, particularly under the throughput metrics. As traffic flow increases in the more
complex real road network, the PLA-RS demonstrates its advantage sooner compared to the
artificial road network. Notably, the throughput of the PLA-RS consistently grows as traffic
becomes congested, at the same time as the effectiveness of the Q-Learning algorithm and
the DQN algorithm diminishes due to the extreme congestion. The Q-Learning algorithm
and the DQN algorithm primarily manifest their effects in the middle and late stages of the
experiment in terms of the road network’s throughput under congested flow. Conversely,
the PLA-RS stands out as the only algorithm capable of maintaining a high decision-making
capability during the most severe congestion periods.
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Figure 11. Throughput at different traffic flows and throughput process at 40 veh/min in the real
road network.

The average travel time and average travel cost for different traffic flows are shown
in Figure 12.

Figure 12. Average travel time and average travel cost for different traffic flows in the real road network.

The experiments on travel time and cost demonstrate that PLA-RS performs better
in reducing time and overall travel costs in complex road networks compared to artificial
road networks. It also reduces travel costs more effectively at lower traffic flows.

The winners and losers at different traffic flows are shown in Figure 13.

Figure 13. Winners and losers compared to Dijkstra method for different traffic flows in the real
road network.

As can be seen from Figure 13, the PLA-RS still shows a slight disadvantage at lower
traffic flows and a significant advantage at higher traffic flows. Compared to an artificial
road network, the PLA-RS shows a larger gap between the number of winners and losers
compared to the Q-Learning algorithm and the DQN algorithm in a more complex real
road network.
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The variation in the average speed of the road network with time under the congested
flow is shown in Figure 14.

Figure 14. Change in the average vehicle velocity over time under congested flow in the real
road network.

The experimental results of average speed show that in the real road network the
PLA-RS can achieve a wider interval of advantage in time than in the artificial road network.
The PLA-RS outperforms the Q-Learning algorithm and the DQN algorithm in a broader
timeframe, extending beyond the middle and late stages of the experiments. Specifically,
during peak traffic hours from 2000 s to 6000 s, the PLA-RS widens the performance gap
with the other algorithms.

The variation of the numbers of vehicles over time on the 12 roads with the highest
numbers of vehicles passing under each algorithm under the congested flow is shown
in Figure 15.

Figure 15. Changes in the numbers of vehicles on the 12 most congested roads in the real road network.

Figure 15 shows that the PLA-RS experiences less congestion at the most congested
part of the real road network compared to other algorithms. However, the distribution of
vehicles is not as uniform as in the artificial road network. Given the greater number of
roads on the real road network, it is probable that vehicles are dispersed elsewhere, while
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under the three non-negotiated algorithms, there is a higher concentration of vehicles. This
suggests that the PLA-RS does a more thorough job of dispersing the traffic flow.

From the experimental results of the real road network, it can be seen that the most
significant optimization of the PLA-RS for multi-vehicle route decision making lies in the
period when the vehicles continue to enter the network. During the peak traffic period,
the coordinated route decision-making ability of the DQN and Q-Learning algorithms is
more limited, albeit they are able to alleviate traffic congestion to a certain degree. Their
main impact is observed in dispersing traffic flow quickly after the end of the traffic peak.
However, the PLA-RS is able to make vehicles arrive at their destinations with stable
efficiency even during the peak traffic period, which means that the PLA-RS is able to
convert the congested flow into free flow to a certain extent.

6. Conclusions

To alleviate the significant congestion problems in urban road networks, this paper
presents the construction of a Period-Stage-Round Route Selection Model (PSRRSM) based
on a combination of MARL and game theory. Specifically, the proposed PSRRSM enables
road agents to utilize the vehicle population game for assisted learning. In addition, a Period
Learning Algorithm for Route Selection (PLA-RS) is constructed to enable the agents to partic-
ipate in routes decision making to varying degrees according to the periods. Consequently,
the multi-vehicle route decision making consistently reaches the Nash equilibrium level,
ultimately leading to the maximization of traffic congestion relief and reduction of travel
costs. Extensive experiments have been conducted in SUMO, utilizing both artificial and
real road networks, serves to demonstrate the superiority of the proposed PSRRSM over
three non-negotiated algorithms. The PSRRSM exhibits a higher road network throughput
efficiency and lower time, distance, fuel, and pollution costs at the macro level, as well as
considerable advantages at the micro level from the drivers’ perspective, temporal details,
and spatial details.

In spite of the progress in this paper, there is still some work required to be further
studied. Firstly, the decision-making process could be considered for different areas within
the network and the inter-area route selection strategy to enhance the applicability and
effectiveness of the model on a broader scale. Secondly, to improve vehicle–road coop-
erative decision making, the combination of the model with signalization control can be
explored. Thirdly, more vehicle types should be considered, and with the rise of new
energy vehicles [37], traffic scenarios should be set up in which conventional, electric, and
hybrid energy vehicles coexist, and the composition of the travel cost should be modi-
fied accordingly. Finally, the model operation cost, such as equipment deployment and
communications, would need to be considered to make the model more optimized.
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