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Abstract: Numerical weather prediction (NWP) is crucial in the current short-term wind power
forecasting (STWPF) based on data, but it is difficult for STWPF to achieve high accuracy due to the
limited accuracy of NWP, which poses a serious challenge to the formulation of forward generation
plans. In response to the above issues, this article conducts a traceability analysis of the error of
STWPF and proposes a wind power prediction method based on NWP wind speed trend correction.
Firstly, the causes of existing errors are analyzed to quantify the impact of NWP on prediction
accuracy. Secondly, considering the process correlation between measured and predicted wind
speeds, improved complete ensemble EMD with adaptive noise (ICEEMDAN) is used to decompose
historical measured wind speeds and NWP wind speeds to construct the most relevant low-frequency
trend components. Thirdly, a weighted dual constraint mechanism is proposed to select the most
similar historical NWP trend segments to correct NWP wind speed. Finally, the corrected wind speed
is used for power prediction and completing STWPF. Through the application of this method to a
wind farm in Inner Mongolia Autonomous Region, China, which effectively improves the accuracy of
NWP and reduces the average RMSE by 1.39% for power prediction, the effectiveness of this method
is verified.

Keywords: error traceability; wind speed process correlation; dual constraint mechanism; wind
speed correction; wind power short-term forecasting

1. Introduction

In recent years, issues such as energy security, climate change, and environmental
pollution have increasingly become constraints on the green and sustainable development
of the economy and society. Countries around the world have taken the development of
renewable energy represented by wind and photovoltaic power as a key way to achieve
green and low-carbon development [1].

Wind energy is a very important source of clean energy today. The International
Energy Agency (IEA) reported that wind power generation increased by a record 265 TWh
(an increase of 14%) in 2022, exceeding 2100 TWh. To achieve the vision of zero emissions
by 2050 in China, it is necessary to increase the annual new capacity from approximately
75 GW in 2022 to 350 GW by 2030 [2]. However, due to the randomness, volatility, and
intermittency of wind energy, the current wind power generation has high uncertainty [3,4].
The disadvantage of wind energy poses serious challenges to attempts to integrate large-
scale wind energy into modern power systems [5]. Accurate wind power prediction is one
of the foundations for ensuring the stable operation of the power system and promoting
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wind energy consumption [6,7]. STWPF (1–3 days) [8] is an essential means for optimizing
daily power generation plans, as well as adjusting maintenance plans. Due to the limited
prediction accuracy of NWP, it is difficult to achieve high-precision power prediction.

Traditional wind power prediction focuses on improving prediction accuracy, which
usually adopts prediction methods such as clustering scenario partitioning [9], model
optimization [10], sequence decomposition [11], and feature construction [12] to achieve
refined modeling and improve prediction accuracy. The above strategies can significantly
improve the accuracy of wind power prediction, but there is relatively little research on the
analysis of the sources of wind power prediction errors and the proportion of factors that
cause wind power prediction errors. References [13,14] conducted statistical analysis on the
distribution of wind power prediction errors, and reference [15] compared the prediction
error characteristics of different models for selecting the optimal model. Reference [16]
analyzed the spatiotemporal correlation of wind power prediction errors and found that
there is a significant relationship between errors and key meteorological elements, that is,
wind speed and wind direction. However, reference [17] suggests that power prediction
errors are significantly correlated with wind speed and temperature, but weakly correlated
with air pressure and humidity. Reference [18] analyzed the error relationship between
a single station and a wind farm cluster and concluded that the prediction error of the
cluster is significantly lower than that of a single station. The above error analysis usually
focuses on the error statistics of prediction results and can only quantitatively analyze
the size of errors and error related factors. It is difficult to fully explore the sources of
errors and the proportion of error factors, which is of little significance for developing
effective error correction and accuracy improvement strategies. Currently, in STWPF, NWP
is used as the main input in a data-driven mode to map power for the next 1–3 days [19–21].
However, the accuracy of NWP wind speed to some extent restricts the improvement of
power prediction accuracy. Therefore, a lot of research has been conducted on the correction
technology of NWP, and the existing correction of NWP mainly focuses on the correction of
wind speed. In terms of calibration time scale, it mainly focuses on the ultra-short term,
usually considering the ultra-short-term prediction correction of wind speed or intelligent
calibration based on scene partitioning [22,23]. For example, reference [22] proposed an
NWP wind speed calibration method that can be used for STWPF, considering the temporal
characteristics of measured wind speed and the mapping relationship with NWP wind
speed, and establishing a wind speed sequence transfer calibration framework. On this
basis, wind speed correction models were formed based on multiple algorithms such as
linear regression, support vector machine, and random forest. Within a 4 h time scale,
the root-mean-square error of the two wind farms could be reduced by 5.4% or 7%. In
the above wind speed correction, most of the models are based on time series prediction
methods and usually consider wind speed time series extrapolation. Short-term wind
speed correction usually establishes a mapping relationship between NWP wind speed
and measured wind speed, which is difficult to adapt to different weather processes and
does not have generalization. Table 1 lists the commonly used NWP wind speed correction
methods and their corresponding correction time scales. In the ultra-short term, most of
them consider the error transmission of time series and the trend relationship of wind
speed changes. In the short term, wind speed correction is almost always based on the
calibration model of artificial intelligence for measured and predicted wind speeds, and
there is little consideration for the process correlation effect of wind speed to establish an
effective similarity matching mechanism.

Table 1. Common short-term NWP wind speed correction methods and correction time scales.

Reference Time-Scale Method Input Model

Min Ding et al. [24] STWPF AI method NWP wind speed, trend BiGRU
Liu Y et al. [25] STWPF AI method NWP wind speed, NWP wind direction RBF
Hu S et al. [26] STWPF AI method NWP wind speed GP
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Table 1. Cont.

Reference Time-Scale Method Input Model

Zjavka L [27] STWPF AI method NWP wind speed PNN
Cai H [28] STWPF AI method NWP wind speed SVR
Hu S [29] STWPF AI method NWP wind speed DBN
Jiang Y [30] STWPF time series NWP wind speed ELM, LSSVM
Dong L [31] USTWPF time series NWP wind speed MLR
Wang H [22] USTWPF time series NWP wind speed SVR
Suo L [32] USTWPF time series Measured wind speed BiGRU
Lu Y N [33] USTWPF time series Wind speed prediction error ARIMA
Wang C [34] USTWPF time series Wind speed prediction error Copula

In summary, the current wind power prediction usually considers scenario partition-
ing, model optimization, sequence decomposition, and feature construction, without fully
exploring the sources of wind power prediction errors and the proportion of error causes,
which is not conducive to establishing targeted correction methods to improve the accuracy
of wind power prediction. NWP wind speed is a key meteorological factor that affects the
accuracy of wind power prediction. The current correction strategy is mainly based on
the temporal transmission characteristics of wind speed or prediction errors to establish
a time series correction model. The time scale is usually concentrated in the ultra-short
term, and for short-term wind speed correction, a simple mapping between measured
wind speed and predicted wind speed is usually established, which is difficult to adapt
to complex weather processes. This article first analyzed the sources and causes of wind
power prediction errors, identified the proportion of errors caused by different prediction
methods and NWP, and proposed an STWPF method based on NWP wind speed trend cor-
rection. Firstly, the factors that caused wind power prediction errors were analyzed and the
proportion of error causes was determined. Secondly, a short-term correction mechanism
for NWP based on wind speed process correlation was proposed, which extracts the trend
series of NWP predicted wind speed and measured wind speed. Similar trend segments
of NWP were found through historical matching, and the high-frequency components of
measured wind speed corresponding to historical NWP segments were superimposed onto
the low-frequency trend components to achieve the correction of NWP segments. Finally,
the effectiveness of the proposed method was verified by applying it to a wind farm in
Inner Mongolia Autonomous Region, China. The main innovation points of this article are
as follows:

(1) Based on the prediction errors of measured wind speed and NWP wind speed,
a quantitative analysis is conducted on the causes of the errors, in order to provide the
degree of constraint of NWP accuracy on power prediction accuracy.

(2) Considering the correlation effect between NWP wind speed and measured wind
speed process, ICEEMDAN is used to extract the most relevant trend components of the
wind speed sequence and construct the trend sequence.

(3) An effective weighted dual constraint mechanism is proposed for selecting the most
relevant historical NWP trend segments to correct NWP predicted wind speed, without
the need for establishing complex mapping models. Compared with traditional correction
methods, it can adapt to different weather scenarios and be applied to STWPF, effectively
improving the prediction accuracy of STWPF.

The remaining parts of this article include Section 2, which quantifies the accuracy
loss caused by NWP. Sections 3 and 4 present the methodology of this paper. Section 5
covers the validation of the results. Section 6 presents the analysis and discussion. And
Section 7 is the conclusion.

2. Error Cause Analysis

NWP is a method of describing and predicting atmospheric motion using mathemati-
cal models. It involves solving a set of nonlinear partial differential equations involving
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fluid dynamics, thermodynamics, continuity, and water vapor equations [35]. NWP uses
finite element difference method to divide the Earth’s atmosphere into three-dimensional
grids and solves equations at each grid point to predict weather conditions. However,
NWP is not a perfect method for describing atmospheric systems. The weather system
itself is an unstable dynamic system with limited predictability. The model itself also has
incompleteness, requiring the approximation and parameterization of physical processes
within the grid. In addition, there are spatiotemporal truncation errors in the numerical
solution process, which are prediction time errors caused by discrete grids and rapid atmo-
spheric motion, as well as small-scale processes that cannot be captured. Therefore, when
predicting wind power, the limited accuracy of NWP makes it difficult to provide effective
trend mapping for the prediction model.

Figure 1 shows a schematic diagram of the measured wind speed and NWP wind
speed of a wind farm in Inner Mongolia Autonomous Region, China. It shows that NWP
has certain differences in numerical and phase terms compared to the measured wind
speed, making it difficult to track the trend of actual wind speed during peak periods in
numerical terms, and there is a certain delay in phase terms compared to the measured
wind speed. The time-varying nature of NWP wind speed time lag results in changes in the
effective information window of NWP wind speed when achieving wind power prediction
tasks at different times. On the one hand, previous time selection methods can only explain
the time lag of the system, so they cannot consider the time-varying nature. On the other
hand, traditional WPF models with fixed parameters are only suitable for features within
a fixed information window and cannot track effective NWP wind speed information.
Figure 2 shows the prediction curve using NWP and actual wind speed. It is difficult for
the prediction curve using NWP wind speed to reach the numerical value of actual wind
speed, and its fluctuation trend is difficult to reach the fluctuation level of actual wind
speed. In order to reduce the data magnitude difference between wind power and wind
speed, this paper normalizes the original series, in which wind speed and wind power
are normalized according to the maximum value and rated installed capacity, respectively.
Therefore, its information loss is significant, which makes it difficult to obtain an effective
mapping relationship. When we use NWP wind speed for prediction, the prediction curve
is close to the trend of NWP wind speed change due to the mapping relationship of the
established model, but it is difficult to track the actual power curve change trend, which
will cause dual problems of ensuring power supply and consumption in the operation of
the power system. The trend of the predicted power curve in both the high output level
scenario represented by Figure 2a and the low output level scenario in Figure 2b is identical
to the NWP trend, which loses the fluctuation information and makes it difficult to track
the actual power trend, resulting in a low prediction accuracy.
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Figure 2. The power prediction curves of measured wind speed and NWP wind speed.

In Table 2, this article lists the NWP predicted wind speed RMSE of 10 wind farms
in Inner Mongolia Autonomous Region, China. The historical power data from 2020,
measured wind speed, and NWP wind speed data were used to predict the RMSE of power
using NWP or measured wind speed, as well as the proportion of RMSE caused by NWP
wind speed in power prediction. The first 11 months were used as the training set, and the
final month was used as the testing set. The RMSE formula for NWP wind speed prediction
and power prediction is as follows:

RMSEws =

√√√√√ n
∑

i=1
(yi − yi

′)2

max(y)
× 1

n
(1)

where yi is the measured wind speed value, yi
′ is the NWP wind speed value, max(y) is the

maximum wind speed of the corresponding wind farm, and n is the number of samples in
the corresponding prediction period.

RMSEp =

√√√√√ n
∑

i=1
(pi − pi

′)2

caps
× 1

n
(2)

where Pi is the measured value, Pi
′ is the predicted value, caps is the installed capacity

of the corresponding wind farm, and n is the number of samples in the corresponding
prediction period.

p =
RMSEpNWP − RMSEpMeasure

RMSEpNWP
× 100% (3)
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Table 2. Calculation of error indicators for different wind farms.

Wind Farm RMSEws RMSEp
(with Measure)

RMSEp
(with NWP) Percentage (%)

1 0.1165 0.0672 0.2003 0.6645
2 0.0970 0.0865 0.2156 0.5988
3 0.1114 0.1152 0.1982 0.4186
4 0.1051 0.1054 0.2035 0.4822
5 0.1203 0.0761 0.1515 0.4979
6 0.2334 0.1385 0.3118 0.5558
7 0.2759 0.2577 0.2741 0.4245
8 0.2034 0.2543 0.2608 0.4085
9 0.1110 0.0931 0.1886 0.5067
10 0.1488 0.1436 0.1987 0.4786

The calculation method for the proportion is shown in (3), where RMSEpNWP is the
RMSE that uses the NWP wind speed as input, and RMSEpMeasure is the RMSE caused by
using the measured wind speed. Table 2 shows that NWP is the main cause of accuracy
reduction in the cause of errors, although there are also factors such as prediction models
and historical data quality. The proportion of RMSE caused by using NWP in power
prediction is higher than 40%. This also indicates that the prediction accuracy of NWP is
the main factor causing low prediction accuracy in short-term wind power prediction with
NWP as the main input in a data-driven model. Therefore, this article proposes a correction
method for NWP wind speed to effectively improve the accuracy of NWP and thereby
enhance the accuracy of power prediction, in response to the impact of inherent errors in
NWP on power prediction.

3. Short-Term Wind Power Prediction Method Based on NWP Trend Correction

The main framework of this article is shown in Figure 3. Wind speed, as a key
meteorological element in NWP, largely determines the upper limit of power prediction
accuracy. Traditional short-term wind speed correction usually establishes a fuzzy mapping
between NWP wind speed and measured wind speed, which is difficult to adapt to complex
weather processes and has many incorrect corrections. This article proposes a method
for selecting similar segments based on the correlation between measured and predicted
wind speed trends. The wind speed trend requires extracting high-frequency and low-
frequency components based on modal decomposition. The high-frequency components
represent the fluctuation characteristics of the original sequence, while the low-frequency
components represent the main development trend of the sequence. The short-term NWP
prediction of wind speed has higher accuracy compared to the long-term period, and the
main trend of predicted wind speed is relatively close to the actual wind speed trend.
Historical matching based on similar fragments can select NWP wind speed processes that
are similar to historical situations. The high-frequency components of the measured wind
speed corresponding to the NWP segment are superimposed onto the NWP segment to
achieve an effective correction of NWP wind speed. The correction process is as follows:

(1) ICEMDAN modal decomposition is performed on historical NWP and measured
wind speed, the number of modes corresponding to the most relevant low-frequency
components is calculated, and the optimal low-frequency modes are stacked to obtain the
trend components of NWP wind speed and measured wind speed. Trend components are
extracted on a daily basis to obtain fragments of NWP and measured wind speed trend
components.

(2) During the prediction period, the most similar historical NWP trend segment
is selected based on weighted constraints, and the mean value of the high-frequency
component of the measured wind speed segment corresponding to the NWP trend segment
in the corresponding period is overlaid with the NWP trend segment to obtain the NWP
wind speed correction result.



Electronics 2024, 13, 1559 7 of 22

(3) The NWP wind speed correction results are input into the prediction model to
complete the short-term wind power prediction.
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4. Wind Speed Trend Extraction Based on ICEEMDAN

There are relatively many modal decomposition methods, and VMD decomposition
requires the effective adjustment of penalty factors and the optimal number of modes
to achieve the optimal decomposition process. EMD, CEEMD, CEEMDAN, and other
methods are prone to modal aliasing during the decomposition process, and effective
information is not fully extracted. Therefore, this article adopts the ICEEMDAN [36]
decomposition method for the effective decomposition of NWP wind speed and measured
wind speed to extract trend components. ICEEMDAN improves its residual noise and
pseudo mode problems on the basis of CEEMDAN, resulting in less sequence noise and
pseudo mode after decomposition, which ensures that the total amount of information
between the original sequence and the decomposed sequence is closer, and the extracted
trend components are closer to the true values. The improved method is different from
CEEMDAN, which directly adds Gaussian white noise during the decomposition process.
Instead, the kth IMF component of white noise decomposed by EMD is selected. Based on
the decomposition of ICEEMDAN, the trend components of the original wind speed series
can be obtained by stacking the low-frequency components to achieve the matching and
stacking process between the measured wind speed components and the predicted wind
speed components.

4.1. Similar NWP Fragment Selection Mechanism Based on Double Constraints

Although there are some false positives and omissions in the short-term NWP wind
speed series, the overall trend is relatively close. In Figure 4, the predicted wind speed
and measured wind speed sequences of typical wind farms are, respectively, displayed.
From a trend perspective, the NWP wind speed is relatively close to the measured wind
speed, especially in high wind speed scenarios. This ensures the similarity between the
NWP wind speed and the actual wind speed sequence, and this article proposes a similar
NWP fragment selection mechanism based on dual constraints, which consider the trend
correlation of the sequence and the level of sequence size. The selection principles are
as follows:
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(1) Firstly, the correlation coefficient between the NWP wind speed trend segments
to be predicted and the historical NWP trend segments in the future period is calculated
based on the maximum correlation principle, in order to select the historical NWP wind
speed trend segments with a correlation coefficient greater than 0.8 as the initial sample set.

(2) Due to the fact that correlation could just measure trend consistency, it is difficult
to measure the magnitude of wind speed trends. Only sequences with similar wind speeds
can ensure the overall similarity between the matched historical NWP segments and the
predicted segments. On this basis, the error level between the NWP wind speed trend
segments of the predicted period and the segments in the selected sample set is calculated
to determine which sequence in the initial sample is closer to the sequence to be matched.

To simplify the dual constraint process, this article integrates the above two constraints
together to form a weighted constraint to quickly select similar NWP fragments. The
formula for calculating the dual weighted constraint is as follows:

L = ω1·(1 − ξ) + ω2·E (4)

where L represents the double weighted constraint, ω1 and ω2 represent the weight coeffi-
cients of the correlation coefficient constraint and the error constraint, respectively, and its
sum is 1. ξ represents the correction operator for the correlation coefficient, which can be
represented as (1 + Pcc)/2, where Pcc represents the Pearson correlation coefficient, and
E represents the error between NWP trend sequences. The smaller the error, the higher
the sequence similarity. Therefore, a smaller L indicates that the matched historical NWP
segments are closer to the NWP trend segments of the predicted time period.

In order to measure the average level of error, this article selects the normalized
average absolute error as the calculation method for E, and its expression is as follows:

E =
1
n
·

n

∑
i=1

∣∣∣∣Wsi − Wsi
Wsmax

∣∣∣∣ (5)

where n represents the number of sequence points, Wsi represents the ith point in the future
NWP wind speed trend sequence, Wsi represents the ith point in the historical NWP wind
speed trend sequence, and Wsmax represents the rated maximum wind speed.

Based on the above dual weighted constraints, a certain number of historical similar
NWP wind speed trend segments are selected as the sample set for the NWP segments to
be corrected in the future period.

4.2. Trend Compensation-Based NWP Fragment Correction Method

Due to the NWP trend sequence being relatively close to the measured wind speed
trend, when matching historical similar segments, the NWP prediction error in similar
scenarios may be close. At this point, it is not possible to directly select the real sequence
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containing high-frequency components corresponding to similar NWP fragments as the
correction result, as there may be significant errors. Therefore, this article selects two NWP
correction strategies, as follows:

(1) The average of the measured wind speed segments corresponding to the matched
similar sample set is used as the correction result for the future NWP segments to be
corrected. The calibration process can be expressed as:

NWPc =
1
n
·

n

∑
i=1

Ws f
(i) (6)

where NWPc represents the corrected NWP segment, n represents the number of similar
segments used for correction, and Ws f

(i) represents the measured wind speed segment
corresponding to the ith similar NWP segment. Ws f can be represented as:

Ws f =


ws11 ws12 . . . ws1m
ws21 ws22 . . . ws2m
. . . . . . . . . . . .

wsn1 wsn2 . . . wsnm


n×m

(7)

where Ws f is a matrix with n rows and m columns, where n represents the number of similar
segments, m represents the length of similar segment sequences, and wsnm represents the
measured wind speed at the mth point of the nth similar segment.

(2) The average of the high-frequency components of the measured wind speed
segments corresponding to the matched similar sample set is used as the correction result
for the future NWP segments to be corrected. The calibration process can be expressed as:

NWPc =
1
n
·

n

∑
i=1

Wsh(i)
f (8)

where Wsh(i)
f represents the high-frequency component of the measured wind speed seg-

ment corresponding to the ith similar NWP segment.
The above two correction methods both use NWP segments as the matching crite-

ria, and then use measured wind speed segments as the correction basis to establish a
search and correction mechanism for NWP similar wind speed trend segments considering
dual constraints.

5. Case Study

We selected the NWP forecasted wind speed for a wind farm in Inner Mongolia
Autonomous Region, China, from 00:00 on 1 January 2020 to 23:45 on 31 December 2021,
and analyzed the measured wind speed data and historical measured power data at the
height of the wind turbine hub to verify the effectiveness of the wind speed correction
method proposed in this article. The NWP wind speed, historical power, and measured
wind speed data have a resolution of 15 min, and the rated installed capacity of the wind
farm is 130.5 MW. The first eight months of data were used for modeling and the last four
months of data were used for testing. The location of the wind farms is shown in Figure 5
below. To measure the effectiveness of NWP wind speed calibration and wind power
prediction, on the basis of the RMSE mentioned above, this article selects the normalized
mean absolute error (MAE) to evaluate the size of the error. The calculation formula is
as follows:

MAEws =
1
n
·

n

∑
i=1

∣∣Pi − P̂i
∣∣ (9)

MAEp =
1
n
·

n

∑
i=1

∣∣∣∣Pi − P̂i
Cap

∣∣∣∣ (10)
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where n represents the number of sample points in the sequence, Pi represents the ith actual
value, P̂i represents the ith predicted value, Pi represents the average of the actual values in
the sequence, and Cap represents the rated installed capacity of the wind farm. The smaller
the error indicator, the better the prediction result.
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5.1. NWP Wind Speed Correction

This article uses ICEEMDAN to decompose historical NWP wind speeds and mea-
sured wind speeds and extract corresponding effective trend components from them. In
Figure 6, the decomposition results of the measured wind speed and NWP wind speed in
the wind farm are displayed. Both wind speed sequences are decomposed into 14 com-
ponents, those with higher fluctuations being referred to as high-frequency components
and those with lower fluctuations being referred to as low-frequency components. Usu-
ally, the low-frequency components of a sequence represent their trend direction. This
article uses indicators such as RMSE, MAE, and correlation coefficient to measure the
similarity between the measured and forecasted wind speeds and selects the low-frequency
components that best reflect wind speed trends and their correlation to construct trend
sequences. In Figure 7, the trend of three indicators between the actual wind speed and
NWP wind speed of the wind farm with the number of superimposed low-frequency
components is shown. The results indicate that the minimum number of low-frequency
components corresponds to the maximum correlation and minimum error. However, the
number of low-frequency components is too small, which cannot contain enough effective
trend information and cannot accurately find effective similar segments from historical
data. Starting from the 8th low-frequency component, the increase in error decreases and
the trend of correlation coefficient reduction decreases, indicating that the information
tends to be saturated. Therefore, the first eight low-frequency components are selected to
construct a trend sequence. In Figure 8, the trend sequence reconstruction results based
on the selected number of low-frequency components are displayed, and it can be found
that the changes in the measured wind speed trend sequence and NWP wind speed trend
sequence are relatively close, with strong correlation.
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Figure 8. Comparison of trend curves of wind farm NWP and measured wind speed decomposition
and reconstruction.

The selection of decomposition methods is crucial for the reconstruction of trend
sequences. In order to verify the effectiveness of the decomposition method used in this
article, the CEEMDAN, VMD, and DWT decomposition methods are selected for compari-
son. The correlation and degree of error between NWP wind speed and measured wind
speed trend sequences constructed using different decomposition methods are compared.
The Pearson correlation coefficient is used to measure the degree of correlation between
sequences, while RMSE and MAE measure errors. The results are shown in Table 3. ICEEM-
DAN extracts the NWP wind speed trend sequence with the highest degree of correlation
and the lowest error compared to the measured wind speed trend sequence. Because
the modal components obtained using ICEEMDAN have weaker modal aliasing, the con-
structed trend sequence contains sufficient information while reducing noise. Compared
with the other three decomposition methods, the RMSE of the NWP trend series and the
measured wind speed trend series in this article is reduced by 0.24, 0.28, and 1.52, respec-
tively. MAE decreased by 0.18, 0.2, 1.19, and R increased by 6%, 7%, and 21%, respectively.
The NWP obtained through ICEEMDAN decomposition is closer to the measured wind
speed trend series.

Table 3. The NWP of each decomposition method and the evaluation index of the extraction results
of the measured wind speed trend components.

Decomposition Methods RMSEws MAEws R

ICEEMDAN 1.71 1.32 0.69
CEEMDAN 1.95 1.50 0.63

VMD 1.99 1.52 0.62
DWT 3.23 2.51 0.48

5.2. NWP Similar Fragment Error Correction Based on Dual Constraints

On the basis of extracting wind speed trend sequences, NWP wind speed trend seg-
ments with similar historical periods are selected based on double weighted constraints in
the future period, and the high-frequency components of measured wind speed correspond-
ing to similar NWP trend segments are superimposed onto the NWP wind speed trend
segments to be corrected for NWP wind speed correction. Before correcting NWP wind
speed segments, it is necessary to match historical similar NWP segments to obtain predic-
tion errors for similar wind speed scenarios. By calculating the dual constraint weighted
indicators of the NWP segments to be corrected and the historical NWP segments, the
L-value curves of certain segments to be corrected in the wind farm are obtained. As shown
in Figure 9, the calculation results of the dual constraint weighted index corresponding to
each representative NWP segment in the historical NWP samples are mainly concentrated
between 0 and 5. When selecting similar NWP historical segments, matching samples with
L-values below 0.5 are used as strong correlation sample sets for correction. To highlight the
effectiveness of the proposed method, this article introduces a step-by-step matching (that
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is, first considering correlation and then further considering sequence size) and clustering
method to select historically similar samples, and introduces indicators such as correlation,
average absolute error, dual constraint weighting, and model matching time to measure
the matching advantages of various methods. As shown in Table 4, from the perspective
of correlation coefficients, almost all model-matched samples have a cumulative correla-
tion coefficient of over 0.99 with the fragments to be corrected. Although the weighted
evaluation method proposed in this article produces slightly lower sample correlation
coefficients, the average absolute error is smaller, and the L-value and time consumption
are also lower. Among them, the average MAE of the samples matched by the wind farm
using the matching mechanism proposed in this article is 3.503 and 0.542 lower than that of
the clustering and step-by-step matching methods, the average L value is 1.400 and 0.216
lower, and the average time consumption is 1.091 and 0.970 s lower. The dual constraint
weighted matching mechanism proposed in this article has a lower similar sample error,
higher matching degree, and shorter matching time compared to other matching methods,
demonstrating good adaptability. Based on the matching method proposed in this article,
representative modified NWP segments of each wind farm were selected. Based on the
matching results of similar segments using the proposed method, as shown in Figure 10,
the similar historical segments obtained from the representative modified samples are
relatively similar in trend and size to the trend sequence of the samples to be corrected.
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Table 4. The matching index obtained using each matching method.

Method R MAEws L Time Consumption

Clustering 0.999 3.500 1.400 7.587
Step-by-step matching 0.999 2.014 0.806 7.402

Double constraint
weighting method 0.995 0.590 0.237 6.278

Based on the above NWP historical segment matching results, the high-frequency
component corresponding to the measured wind speed segment is selected as the compen-
sation amount for correcting the NWP segment. To avoid the impact of accidental results
on the correction, this article selects the mean of the high-frequency components of multiple
similar segments corresponding to the measured wind speed segments as the error com-
pensation for correcting NWP. Figure 11 shows the relationship between the high-frequency
components of the measured wind speed segments corresponding to multiple similar NWP
wind speeds in a wind farm and the actual errors of the corresponding NWP segments to
be corrected. There is a certain difference in a single high-frequency component used for
compensation compared to the actual NWP prediction error. The compensation amount
for certain individual segments is very close to the true error, but it is difficult to effectively
find these segments. However, the mean of these high-frequency component segments is
closer to the true NWP prediction error compared to a single segment. Therefore, using
multiple segments for error correction is reasonable.
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Based on this, Table 5 shows the error evaluation indicators of NWP wind speed
before and after correction using the method proposed in this article. This article shows the
correction errors of three correction methods. Method I traditionally considers establishing
an intelligent mapping between measuring wind speed and predicting wind speed [24],
while Method II directly uses the matched historical measured wind speed fragment as
the correction result of the NWP segment. The method proposed in this article uses the
high-frequency component of the historical measured wind speed of the matched sample
as the error compensation amount to stack it onto the trend segment of the NWP to be
corrected for error correction. Figure 12 shows the calibration results of typical NWP wind
speed curves for a wind farm obtained using the wind speed correction method proposed
in this article. From the correction curve, the error of the correction method using artificial
intelligence mapping is relatively greater. Compared with the actual wind speed curve,
there are many erroneous corrections. The correction curve obtained using Method II is
relatively close to the actual wind speed curve in terms of change trend, but there are
certain differences in amplitude. Using the proposed correction method, both in terms of
trend and wind speed amplitude, it is closer to the actual wind speed. After correction, the
wind speed prediction error is significantly reduced. Before correction, the wind speed
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prediction RMSE is 3.248, and the MAE is 2.449. Using an artificial intelligence mapping
method, the error correction is not obvious, and there are even cases of deterioration. Using
the proposed correction method, the RMSE of the wind speed after correction decreases by
1.88, and the MAE decreases by 1.375. The correction strategy proposed in this article can
significantly improve the prediction accuracy of NWP wind speed.

Table 5. Error evaluation index before and after NWP wind speed correction.

Method RMSEws MAEws

Pre-correction 3.248 2.449
Method I 1.794 1.556
Method II 1.438 1.14

Proposed method 1.368 1.074
Electronics 2024, 13, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 12. Correction results of representative curves of NWP wind speed. 

5.3. Wind Power Prediction 
Table 6 shows the error evaluation indicators for the power prediction and error cor-

rection results of a wind farm obtained using the above prediction models and error cor-
rection methods. From the overall results, the error generated by using the corrected NWP 
wind speed for power prediction is relatively large, and the error generated by using the 
artificial intelligence mapping correction method for wind speed for power prediction is 
greater. This indicates that directly establishing a mapping relationship between meas-
ured wind speed and predicted wind speed is relatively unreasonable. Method II and the 
modified wind speed proposed in this article significantly improve the accuracy of power 
prediction. When used for power prediction, the correction method proposed in this arti-
cle is more reliable and has relatively fewer errors. Among the four prediction methods, 
RMS and NMAE decreased by an average of 4.45% and 3.57%, respectively, which verifies 
the effectiveness of the proposed method. At the same time, it has been verified that the 
method proposed in this article is suitable for the error correction of various predictors 
and has universality. 

Table 6. Power prediction error evaluation metrics. 

Model Input of Model RMSEp MAEp 

HKELM 

Pre-correction NWP 11.67% 9.74% 
Corrected NWP—Method I 24.99% 18.99% 
Corrected NWP—Method II 9.57% 7.59% 

Corrected NWP—Proposed method 9.43% 7.55% 

BP 

Pre-correction NWP 12.43% 9.92% 
Corrected NWP—Method I 16.72% 13.29% 
Corrected NWP—Method II 9.70% 7.80% 

Corrected NWP—Proposed method 9.47% 7.54% 

LSTM 

Pre-correction NWP 12.76% 10.20% 
Corrected NWP—Method I 19.47% 15.66% 
Corrected NWP—Method II 9.70% 7.69% 

Corrected NWP—Proposed method 9.58% 7.58% 

GRU 

Pre-correction NWP 11.95% 9.95% 
Corrected NWP—Method I 18.95% 15.29% 
Corrected NWP—Method II 9.83% 7.75% 

Corrected NWP—Proposed method 9.60% 7.64% 

Figure 12. Correction results of representative curves of NWP wind speed.

5.3. Wind Power Prediction

Table 6 shows the error evaluation indicators for the power prediction and error
correction results of a wind farm obtained using the above prediction models and error
correction methods. From the overall results, the error generated by using the corrected
NWP wind speed for power prediction is relatively large, and the error generated by using
the artificial intelligence mapping correction method for wind speed for power prediction is
greater. This indicates that directly establishing a mapping relationship between measured
wind speed and predicted wind speed is relatively unreasonable. Method II and the
modified wind speed proposed in this article significantly improve the accuracy of power
prediction. When used for power prediction, the correction method proposed in this article
is more reliable and has relatively fewer errors. Among the four prediction methods, RMS
and NMAE decreased by an average of 4.45% and 3.57%, respectively, which verifies the
effectiveness of the proposed method. At the same time, it has been verified that the
method proposed in this article is suitable for the error correction of various predictors and
has universality.

In Figure 13, the four days ahead power prediction curve using HKELM is shown.
The power prediction curve obtained by using the corrected NWP wind speed as input
significantly differs from the actual value, and the power predicted based on the artificial in-
telligence mapping corrected wind speed is similar. The power prediction results obtained
using the correction method proposed in this article are closer to the actual power, espe-
cially the corrected curve. The corrected NWP wind speed can provide a better mapping
relationship for the model, effectively improving the prediction accuracy and verifying the
effectiveness of the method proposed in this article.
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Table 6. Power prediction error evaluation metrics.

Model Input of Model RMSEp MAEp

HKELM

Pre-correction NWP 11.67% 9.74%
Corrected NWP—Method I 24.99% 18.99%
Corrected NWP—Method II 9.57% 7.59%

Corrected NWP—Proposed method 9.43% 7.55%

BP

Pre-correction NWP 12.43% 9.92%
Corrected NWP—Method I 16.72% 13.29%
Corrected NWP—Method II 9.70% 7.80%

Corrected NWP—Proposed method 9.47% 7.54%

LSTM

Pre-correction NWP 12.76% 10.20%
Corrected NWP—Method I 19.47% 15.66%
Corrected NWP—Method II 9.70% 7.69%

Corrected NWP—Proposed method 9.58% 7.58%

GRU

Pre-correction NWP 11.95% 9.95%
Corrected NWP—Method I 18.95% 15.29%
Corrected NWP—Method II 9.83% 7.75%

Corrected NWP—Proposed method 9.60% 7.64%

6. Discussion and Analysis
6.1. Analysis of Seasonal Characteristics

In order to further analyze the prediction performance of the wind power prediction
method proposed in this paper among different seasons, some data of four seasons in 2021
are selected for power prediction analysis. Table 7 demonstrates the metrics for evaluating
the power prediction errors of the different methods under four seasons, where the NRMSE
of the four prediction methods is on average 1.55%, 1.98%, 2.70%, and 1.61% lower in the
spring and summer months compared to the fall and winter months, respectively, and the
NMAE is on average 0.78%, 2.35%, 2.19%, and 1.34% lower in the fall and winter months,
respectively. The method proposed in this paper has the lowest average prediction error in
the four seasons, especially in spring and summer, and in the error statistics results of the
four seasons, for the method proposed in this paper, the NRMSE is lower by an average of
5.04% and the NMAE is lower by an average of 4.47%. Therefore, the method proposed in
this paper is adapted to power prediction in all seasons and shows high effectiveness.

Table 7. Error assessment indicators corresponding to different prediction methods under differ-
ent seasons.

Season Indicator Pre-Correction
NWP

Corrected
NWP—Method I

Corrected
NWP—Method II

Corrected
NWP—Proposed Method

Spring NRMSE 11.65% 19.24% 10.55% 9.27%
NMAE 9.75% 16.34% 8.96% 7.53%

Summer
NRMSE 11.22% 20.15% 11.05% 9.07%
NMAE 9.21% 17.64% 9.36% 7.13%

Autumn
NRMSE 12.35% 21.65% 13.22% 10.67%
NMAE 10.19% 19.16% 11.27% 8.55%

Winter
NRMSE 13.61% 21.69% 13.78% 10.89%
NMAE 10.33% 19.51% 11.43% 8.79%

6.2. Analysis of the Applicability of Wind Power Prediction Methods

In order to highlight the adaptability of the method proposed in this paper, we in-
troduce wind farm data from several regions to further validate the proposed method.
These include wind farms in Yunnan, Jilin, and Gansu, whose geographical locations are
shown in Figure 14. Based on the wind speed correction results, we further graph neural
network and time convolutional neural network for wind power prediction. Considering
the above results, the effectiveness of the power correction method in this paper has been
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sufficiently demonstrated. In this section, we only compare the power curves obtained
before and after the wind speed correction as well as the prediction using graph neural
network (GCN) and temporal convolutional neural network (TCN) and the corresponding
metrics for the prediction error assessment. Figure 15 shows the wind power prediction
results of the three provinces. From the wind farm power prediction curves of the three
provinces, the direct GCN as well as TCN prediction methods have lower errors compared
to the traditional models, but the prediction curves are not close to the trend of the real
curves due to the large error of the NWP wind speed. On the contrary, the method based on
NWP correction in this paper significantly improves the prediction error, and its prediction
value has a lower error compared to the method directly using TCN and GCN prediction.
The method based on power correction has the lowest error, which indicates that the NWP
key meteorological elements are of great importance to the power prediction accuracy in
short-term prediction. Forecast errors are significantly higher for wind farms in Jilin and
Gansu than for wind farms in Yunnan Province, due to the much larger installed wind
power capacity in these areas. From Table 8, the power-corrected NRMSE of the three
wind farms decreased by an average of 1.18% and 1.62% for NMAE compared to TCN,
and by an average of 1.17% and 1.47% for NMAE compared to GCN. The method in this
paper reduces the NRMSE by an average of 1.18% and the NMAE by an average of 1.55%
compared to the TCN and GCN prediction results. The method proposed in this paper
shows high prediction performance in power prediction of wind farms in different regions.
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Table 8. Wind power prediction error assessment indicator of each province.

Provinces Indicator TCN GCN
Proposed
Method—Before
Correction

Proposed
Method—After
Correction

Jilin
NRMSE 11.19% 10.96% 10.45% 9.76%
NMAE 9.55% 9.12% 8.64% 7.51%

Gansu
NRMSE 11.02% 10.61% 10.22% 9.46%
NMAE 9.36% 9.05% 8.50% 7.23%

Yunnan
NRMSE 8.02% 8.61% 8.22% 7.46%
NMAE 6.71% 6.99% 6.45% 6.01%
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7. Conclusions

This article proposes a short-term wind power prediction method that considers the
trend correction of NWP wind speed. It introduces the trend correlation between measured
wind speed and predicted wind speed to establish a short-term correction model for
predicted wind speed. At the same time, it considers the historical correlation of prediction
errors and establishes a wind power prediction error correction method that considers
similar historical NWP segments. The following conclusions are drawn:

(1) The NWP trend sequence decomposed using the ICEEMDAN-based sequence de-
composition method is closer to the measured wind speed trend sequence in terms of error,
correlation, and fluctuation compared to CEEMDAN, VMD, and DWT. The decomposition
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method proposed in this article was used to reduce the average RMSE of NWP trend series
and measured wind speed trend series by 0.6716, MAE by 0.5295, Pe by 0.1689, and R by
5.25% in the wind farm.

(2) The average MAE of samples matched using the proposed weighted dual constraint
mechanism is 3.503 and 0.542 lower than that of clustering and step-by-step matching
methods, the average L-value is 1.400 and 0.216 lower, and the average time consumption is
1.091 s and 0.970 s lower. The proposed dual constraint weighted matching mechanism has
a lower similar sample error, higher matching degree, and shorter matching time compared
to other matching methods, demonstrating good adaptability.

(3) The proposed NWP wind speed correction method significantly reduces NWP
error, while the error correction using artificial intelligence mapping is not obvious, and
there may even be deterioration. After correction using Method II, the average RMSE
decreased by 0.664 and the average MAE decreased by 0.576. After correction using the
method proposed in this article, the average RMSE decreased by 0.727 and the average
MAE decreased by 0.655. Using the correction method in this article, the wind speed RMSE
of Wind Farm I decreased by 1.88 and MAE decreased by 1.375.

Although the two-stage power prediction method proposed in this article can sig-
nificantly improve the accuracy of wind power prediction, due to the randomness and
uncertainty of NWP prediction errors, the matching results of NWP trend fragments are
not accurate, and there may even be errors in correction. This will further increase the error
of wind power prediction. In the future, we will further study the uncertainty modeling of
NWP to improve the NWP correction effect in complex weather or extreme error scenarios
to adapt to the entire weather process.
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Nomenclature

NWP Numerical weather prediction
STWPF Short-term wind power forecasting
IEA International Energy Agency
BiGRU Bi-directional gated circulation unit
RBF Radial-based neural network
GP Gaussian process regression
PNN Probabilistic neural network
SVR Support vector regression
DBN Deep belief network
ELM Support vector machine
MLR Multiple linear regression
LSSVM Least squares support vector machine
HKELM Hybrid kernel extreme learning machine
TCN Temporal convolutional neural network
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GCN Graphical convolutional neural network
ARIMA Autoregressive integrated moving average
Copula Copula model
EMD Average absolute error
CEEMD Complementary ensemble empirical mode decomposition
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
ICEEMDAN Improved complete ensemble EMD with adaptive noise
VMD Variational modal decomposition
DWT Discrete wavelet transform
RMSE Root-mean-square error
MAE Average absolute error
Pe Permutation entropy
R Correlation coefficient
AI Artificial intelligence f

References
1. Redl, C.; Hein, F.; Buck, M.; Graichen, P.; Jones, D. The European Power Sector in 2020: Up-to-Date Analysis on the Electricity Transition;

Agora Energiewende: Berlin, Germany, 2021.
2. Tracking Clean Energy Progress 2023–Analysis-IEA [Online]; International Energy Agency: Paris, France, 2023.
3. Yang, M.; Shi, C.; Liu, H. Day-ahead WPP based on the clustering of equivalent power curves. Energy 2021, 218, 119515. [CrossRef]
4. Ma, S.; Geng, H.; Yang, G.; Pal, B.C. Clustering-based coordinated control of large-scale wind farm for power system frequency

support. IEEE Trans. Sustain. Energy 2018, 9, 1555–1564. [CrossRef]
5. Yang, M.; Zhang, L.; Cui, Y.; Zhou, Y.; Chen, Y.; Yan, G. Investigating the Wind Power Smoothing Effect Using Set Pair Analysis.

IEEE Trans. Sustain. Energy 2020, 11, 1161–1172. [CrossRef]
6. Tawn, R.; Browell, J. A review of very short-term wind and solar power prediction. Renew. Sustain. Energy Rev. 2020, 153, 111758.

[CrossRef]
7. Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew.

Sustain. Energy Rev. 2014, 34, 243–254. [CrossRef]
8. State Grid Corporation of China. Function Specification of Wind Power Forecasting System: NB/T 31046-2022. Available online:

https://www.doc88.com/p-35729449244944.html (accessed on 4 May 2023).
9. Hao, Y.; Dong, L.; Liao, X.; Liang, J.; Wang, L.; Wang, B. A novel clustering algorithm based on mathematical morphology for

wind power generation prediction. Renew. Energy 2019, 136, 572–585. [CrossRef]
10. Tan, L.; Han, J.; Zhang, H. Ultra-short-term wind power prediction by salp swarm algorithm-based optimizing extreme learning

machine. IEEE Access 2020, 8, 44470–44484. [CrossRef]
11. An, X.; Jiang, D.; Zhao, M.; Liu, C. Short-term prediction of wind power using EMD and chaotic theory. Commun. Nonlinear Sci.

Numer. Simul. 2012, 17, 1036–1042. [CrossRef]
12. Wang, S.; Li, B.; Li, G.; Yao, B.; Wu, J. Short-term wind power prediction based on multidimensional data cleaning and feature

recon Figureuration. Appl. Energy 2021, 292, 116851. [CrossRef]
13. Zhang, Z.S.; Sun, Y.Z.; Gao, D.W.; Lin, J.; Cheng, L. A versatile probability distribution model for wind power forecast errors and

its application in economic dispatch. IEEE Trans. Power Syst. 2013, 28, 3114–3125. [CrossRef]
14. Bludszuweit, H.; Domínguez-Navarro, J.A.; Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst.

2008, 23, 983–991. [CrossRef]
15. De Giorgi, M.G.; Ficarella, A.; Tarantino, M. Error analysis of short term wind power prediction models. Appl. Energy 2011, 88,

1298–1311. [CrossRef]
16. Tastu, J.; Pinson, P.; Kotwa, E.; Madsen, H.; Nielsen, H.A. Spatio-temporal analysis and modeling of short-term wind power

forecast errors. Wind Energy 2011, 14, 43–60. [CrossRef]
17. Nazaré, G.; Castro, R.; Gabriel Filho, L.R.A. Wind power forecast using neural networks: Tuning with optimization techniques

and error analysis. Wind Energy 2020, 23, 810–824. [CrossRef]
18. Rajagopalan, S.; Santoso, S. Wind power forecasting and error analysis using the autoregressive moving average modeling. In

Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; IEEE: Piscataway,
NJ, USA, 2009; pp. 1–6.

19. Sun, S.; Liu, Y.; Li, Q.; Wang, T.; Chu, F. Short-term multi-step wind power forecasting based on spatio-temporal correlations and
transformer neural networks. Energy Convers. Manag. 2023, 283, 116916. [CrossRef]

20. Wu, H.; Meng, K.; Fan, D.; Zhang, Z.; Liu, Q. Multistep short-term wind speed forecasting using transformer. Energy 2022,
261, 125231. [CrossRef]

21. Ye, L.; Dai, B.; Pei, M.; Lu, P.; Zhao, J.; Chen, M.; Wang, B. Combined approach for short-term wind power forecasting based on
wave division and Seq2Seq model using deep learning. IEEE Trans. Ind. Appl. 2022, 58, 2586–2596. [CrossRef]

22. Wang, H.; Han, S.; Liu, Y.; Yan, J.; Li, L. Sequence transfer correction algorithm for numerical weather prediction wind speed and
its application in a wind power forecasting system. Appl. Energy 2019, 237, 1–10. [CrossRef]

https://doi.org/10.1016/j.energy.2020.119515
https://doi.org/10.1109/TSTE.2018.2794622
https://doi.org/10.1109/TSTE.2019.2920255
https://doi.org/10.1016/j.rser.2021.111758
https://doi.org/10.1016/j.rser.2014.03.033
https://www.doc88.com/p-35729449244944.html
https://doi.org/10.1016/j.renene.2019.01.018
https://doi.org/10.1109/ACCESS.2020.2978098
https://doi.org/10.1016/j.cnsns.2011.06.003
https://doi.org/10.1016/j.apenergy.2021.116851
https://doi.org/10.1109/TPWRS.2013.2249596
https://doi.org/10.1109/TPWRS.2008.922526
https://doi.org/10.1016/j.apenergy.2010.10.035
https://doi.org/10.1002/we.401
https://doi.org/10.1002/we.2460
https://doi.org/10.1016/j.enconman.2023.116916
https://doi.org/10.1016/j.energy.2022.125231
https://doi.org/10.1109/TIA.2022.3146224
https://doi.org/10.1016/j.apenergy.2018.12.076


Electronics 2024, 13, 1559 22 of 22

23. Wang, H.; Yan, J.; Liu, Y.; Han, S.; Li, L.; Zhao, J. Multi-step-ahead method for wind speed prediction correction based on
numerical weather prediction and historical measurement data, Journal of Physics: Conference Series. IOP Publ. 2017, 926, 012007.

24. Ding, M.; Zhou, H.; Xie, H.; Wu, M.; Nakanishi, Y.; Yokoyama, R. A gated recurrent unit neural networks based wind speed error
correction model for short-term wind power forecasting. Neurocomputing 2019, 365, 54–61. [CrossRef]

25. Liu, Y.; Wang, Y.; Li, L.; Han, S.; Infield, D. Numerical weather prediction wind correction methods and its impact on computational
fluid dynamics based wind power forecasting. J. Renew. Sustain. Energy 2016, 8, 033302. [CrossRef]

26. Hu, S.; Xiang, Y.; Zhang, H.; Xie, S.; Li, J.; Gu, C.; Sun, W.; Liu, J. Hybrid forecasting method for wind power integrating spatial
correlation and corrected numerical weather prediction. Appl. Energy 2021, 293, 116951. [CrossRef]

27. Zjavka, L. Wind speed forecast correction models using polynomial neural networks. Renew. Energy 2015, 83, 998–1006. [CrossRef]
28. Cai, H.; Jia, X.; Feng, J.; Li, W.; Hsu, Y.-M.; Lee, J. Gaussian process regression for numerical wind speed prediction enhancement.

Renew. Energy 2020, 146, 2112–2123. [CrossRef]
29. Hu, S.; Xiang, Y.; Huo, D.; Jawad, S.; Liu, J. An improved deep belief network based hybrid forecasting method for wind power.

Energy 2021, 224, 120185. [CrossRef]
30. Wang, L.; Li, X.; Bai, Y. Short-term wind speed prediction using an extreme learning machine model with error correction. Energy

Convers. Manag. 2018, 162, 239–250. [CrossRef]
31. Dong, L.; Ren, L.; Gao, S.; Gao, Y.; Liao, X. Studies on wind farms ultra-short term NWP wind speed correction methods.

In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 1576–1579.

32. Suo, L.; Peng, T.; Song, S.; Zhang, C.; Wang, Y.; Fu, Y.; Nazir, M.S. Wind speed prediction by a swarm intelligence based deep
learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm. Energy
2023, 127526. [CrossRef]

33. Lu, Y.N.; Bai, Y.L.; Tang, L.H.; Wan, W.D.; Ma, Y.J. Secondary factor induced wind speed time-series prediction using self-adaptive
interval type-2 fuzzy sets with error correction. Energy Rep. 2021, 7, 7030–7047. [CrossRef]

34. Wang, C.; Yang, M.; Yu, Y.; Li, M.; Si, Z.; Liu, Y.; Yan, F. A Multi-dimensional Copula Wind Speed Correction Method for
Ultra-Short-Term Wind Power Prediction. In Proceedings of the 2022 4th Asia Energy and Electrical Engineering Symposium
(AEEES), Chengdu, China, 25–28 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 219–225.

35. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003.
36. Bommidi, B.S.; Teeparthi, K.; Kosana, V. Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel

loss function. Energy 2023, 265, 126383. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2019.07.058
https://doi.org/10.1063/1.4950972
https://doi.org/10.1016/j.apenergy.2021.116951
https://doi.org/10.1016/j.renene.2015.04.054
https://doi.org/10.1016/j.renene.2019.08.018
https://doi.org/10.1016/j.energy.2021.120185
https://doi.org/10.1016/j.enconman.2018.02.015
https://doi.org/10.1016/j.energy.2023.127526
https://doi.org/10.1016/j.egyr.2021.09.150
https://doi.org/10.1016/j.energy.2022.126383

	Introduction 
	Error Cause Analysis 
	Short-Term Wind Power Prediction Method Based on NWP Trend Correction 
	Wind Speed Trend Extraction Based on ICEEMDAN 
	Similar NWP Fragment Selection Mechanism Based on Double Constraints 
	Trend Compensation-Based NWP Fragment Correction Method 

	Case Study 
	NWP Wind Speed Correction 
	NWP Similar Fragment Error Correction Based on Dual Constraints 
	Wind Power Prediction 

	Discussion and Analysis 
	Analysis of Seasonal Characteristics 
	Analysis of the Applicability of Wind Power Prediction Methods 

	Conclusions 
	References

