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Abstract: Object detection based on Knowledge Distillation can enhance the capabilities and perfor-
mance of 5G and 6G networks in various domains, such as autonomous vehicles, smart surveillance,
and augmented reality. The integration of object detection with Knowledge Distillation techniques is
expected to play a pivotal role in realizing the full potential of these networks. This study presents
Shared Knowledge Distillation (Shared-KD) as a solution to overcome optimization challenges caused
by disparities in cross-layer features between teacher–student networks. The significant gaps in
intermediate-level features between teachers and students present a considerable obstacle to the effi-
cacy of distillation. To tackle this issue, we draw inspiration from collaborative learning in real-world
education, where teachers work together to prepare lessons and students engage in peer learning.
Building upon this concept, our innovative contributions in model construction are highlighted
as follows: (1) A teacher knowledge augmentation module: this module is proposed to combine
lower-level teacher features, facilitating the knowledge transfer from the teacher to the student. (2) A
student mutual learning module is introduced to enable students to learn from each other, mimicking
the peer learning concept in collaborative learning. (3) The Teacher Share Module combines lower-
level teacher features: the specific functionality of the teacher knowledge augmentation module is
described, which involves combining lower-level teacher features. (4) The multi-step transfer process
can be easily optimized due to the minimal gap between the features: the proposed approach breaks
down the knowledge transfer process into multiple steps, which can be easily optimized due to
the minimal gap between the features involved in each step. Shared-KD uses simple feature losses
without additional weights in transformation, resulting in an efficient distillation process that can be
easily combined with other methods for further improvement. The effectiveness of our approach is
validated through experiments on popular tasks such as object detection and instance segmentation.

Keywords: shared knowledge network; knowledge distillation; object detection; cross-layer distillation

1. Introduction

In the fast-changing world of 5G and emerging 6G networks [1–3], precise and efficient
object detection in deep neural networks (DNNs) is crucial. Object detection is essential in
various applications, including autonomous vehicles, smart surveillance, and augmented
reality, where models must be both accurate and computationally efficient.

Despite the remarkable success of deep neural networks in various tasks [4–6], their
widespread adoption is hindered by the high computational costs due to the large number
of parameters. To address this issue, several methods [7–10] have been proposed to reduce
the computational cost of deep learning models. One effective technique is Knowledge
Distillation (KD), which involves transferring knowledge from a high-capacity teacher to
a low-capacity student model. This knowledge transfer enhances the accuracy-efficiency
tradeoff of the student model during runtime. This Shared Knowledge Distillation approach
is a powerful methodology for refining object detection models, ensuring they can handle
current network infrastructures and meet future 5G/6G network demands.
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The initial approach of Knowledge Distillation (KD) [11] utilizes the logit outputs of
the teacher network as a source of knowledge. To enhance this knowledge transfer, feature
distillation techniques [7,8] have been introduced to encourage the student network to
emulate the intermediate features of the teacher network. Subsequent studies [8,12–16]
have focused on extracting and aligning informative features through various loss functions
and transformations. However, these methods primarily concentrate on feature pairs within
the same layer of the teacher–student network, disregarding the potential advantages of
cross-layer feature transfer. The dissimilarities in shape and semantics between cross-
layer features present optimization challenges and may result in information loss during
feature transformations. Recent research has explored meta-learning approaches to identify
optimal cross-layer feature pairs, which adds complexity to the optimization process.
On the other hand, a different study [17] suggests that the front layer features of the teacher
network are more valuable for student training and proposes a complex residual feature
and fusion module for cross-layer distillation. In contrast, AFD [18] argues that the last
layer features of the teacher network contain more relevant knowledge and proposes
self-attention strategies to align cross-layer features in the spatial dimension, and whereas
these approaches achieve performance improvements by leveraging cross-layer feature
knowledge, their reliance on intricate feature transformations and matching strategies
limits their practical usability.

In order to tackle these challenges, we introduce a straightforward and efficient frame-
work called Shared Knowledge Distillation (Shared-KD), as shown in Figure 1. In contrast
to existing methods of cross-layer feature distillation, our approach proposes a novel two-
step process for decomposing the original cross-layer feature supervision from teachers to
students. This process includes identical-layer distillation between teacher and student net-
works and cross-layer distillation within the student network itself. The first step focuses
on identical-layer distillation, which shares similarities in shape and semantics between
the teacher and student networks. The second step involves utilizing the hierarchical
features of the online student network, which exhibit close optimization and semantic
properties. To enhance the efficiency of distillation, we employ simple l2 distances for the
feature mimicking loss and utilize spatial pooling and channel cropping to align feature
shapes without the need for complex feature transformations. This efficient feature transfer
also helps mitigate knowledge reduction. Shared-KD offers three key advantages: (1) Our
framework sheds new light on decoupling cross-layer distillation using multi-step strate-
gies. (2) Shared-KD enhances the effectiveness of KD methods in overcoming unstable
optimization issues, leveraging the full knowledge of teacher features to achieve significant
performance improvements. (3) Shared-KD incorporates a simple feature alignment compo-
nent without introducing additional parameters. In contrast, other cross-layer distillation
techniques require complex feature transformations and optimizations, increasing training
time and resource requirements. Shared-KD can potentially expand the application of
KD and facilitate further research in this area. Shared Knowledge Distillation techniques
improve the efficiency and adaptability of deep neural networks for object detection, paving
the way for advancements in real-time applications and services within the paradigm of
next-generation networks.

Our proposed method is extensively evaluated through experiments on detection and
segmentation tasks to validate its effectiveness. The experimental results demonstrate the
superiority of our approach, surpassing other existing methods by a considerable margin.
Shared-KD consistently improves accuracy across various neural network architectures
and data augmentation techniques. For instance, when applied to the object detection
task on the MS-COCO dataset, Shared-KD outperforms other methods, such as RetinaNet
and Faster R-CNN, by significantly improving the average precision (AP). These results
demonstrate the generalizability and robustness of our approach.

In summary, we make the following principle contributions in this paper:

• Through analysis and exploration of feature gaps and roles in distillation, it is evident
that cross-layer feature gaps within the student network are significantly smaller than
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those between the student and teacher. This observation motivates us to propose a
new Shared Knowledge Distillation (Shared-KD) framework.

• Our Shared-KD technique minimizes the shared features between the teacher–student
layer and the cross-features within the student. This achieves cross-layer distillation
without complex transformations.

• Our Shared-KD outperforms other state-of-the-art feature-distillation methods on various
deep models and datasets, achieving superior performance and training acceleration.

Teacher Network

Student Network

Cross-layer distillation

Identical-layer 
distillation

teacher
share

student
share

Figure 1. A schematic overview of our Shared-KD, including inter-layer and intra-layer parts.
During the training phase, Shared-KD utilizes the same-layer distillation between teacher–student
and the cross-layer distillation within students.

2. Related Work
2.1. Object Detection

There are three typical types of CNN-based object detection networks: two-stage
detectors, one-stage detectors, and anchor-free detectors. Faster R-CNN [19] is a popular
two-stage detector algorithm that proposes a framework for object detection. The sys-
tem comprises a Region Proposal Network (RPN) for generating region proposals and a
detection network for object classification. The YOLO family [20–22] is widely used for
one-stage detectors. It treats detection as a regression problem, predicting bounding boxes
and associated class probabilities. FCOS [23] is a typical anchor-free method that achieves
real-time detection while maintaining competitive accuracy, making it suitable for various
applications. It utilizes a set of predefined feature points across the object. It predicts
the object’s bounding box parameters directly at these locations, eliminating the need for
predefined anchor boxes and offering flexibility and improved accuracy in object localiza-
tion. In comparison to the existing literature, this paper introduces a unique contribution
to the field of Knowledge Distillation for object detection, and whereas previous works
have explored various methods of Knowledge Distillation, such as using soft logit out-
puts or intermediate feature representations, this paper proposes a novel approach called
Shared-KD. Shared-KD addresses the limitations of existing feature-distillation methods
by conditioning the knowledge transfer on intermediate feature representations, ensuring
well-aligned structures between the teacher and student models. This is achieved through
densely connected teacher generation. Additionally, Shared-KD enables direct knowledge
transfer through dense cross-layer feature connections from the student to the teacher
model, eliminating the need for feature matching. This simplifies the distillation process
and enhances the efficiency of knowledge transfer. By leveraging intermediate feature
representations and establishing direct connections between the teacher and student mod-
els, Shared-KD offers a promising alternative to traditional feature-distillation methods.
It is a practical and efficient solution for Knowledge Distillation in object detection, as it
eliminates the complexity of dimension reduction transformations and the reliance on
stage-wise feature matching.
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2.2. Knowledge Distillation

The concept of Knowledge Distillation (KD) [24–28] involves using learned knowledge,
such as logits, feature values, and sample relations, from a high-capacity teacher to guide
the training of a student model. Early pioneering works [11,29] use soft logit outputs of the
pre-trained teacher as the extra supervision to guide the training of the student, in addition
to the ground truth labels. Then, various feature-distillation methods [7,8,30], which rely
on the intermediate feature representations, are proposed. Additionally, relation distillation
methods have been developed to explore the relationships and higher-order dependencies
captured by the teacher model’s logits or intermediate features. Several studies have
been conducted on the use of Knowledge Distillation in object detection. Guo et al. [31]
propose FKD, which uses attention masks to identify foreground object pixels. It also
incorporates a non-local module to facilitate student learning through pixel relations.
Yang et al. [32] introduce FGD, a method that effectively leverages both focal and global
data, enhancing learning by emphasizing the relations among pixels. These approaches
are effective in enhancing the Knowledge Distillation process. However, existing feature-
distillation methods often require dimension reduction transformations and different
distance metrics to match the feature maps of the student and teacher models, which may
result in the loss of valuable information. Additionally, these methods rely on different
feature loss objectives and weight factors to balance the loss terms. In contrast, Shared-
KD presents a new approach to Knowledge Distillation by conditioning on intermediate
feature representations. Shared-KD ensures well-aligned structures between the teacher
and student models through densely connected teacher generation. Furthermore, it allows
for direct knowledge transfer through dense cross-layer feature connections from the
student to the teacher model, eliminating the need for feature matching. The Shared-KD
framework simplifies the process of Knowledge Distillation and enhances the efficiency
of knowledge transfer. It achieves this by leveraging intermediate feature representations
and establishing direct connections between the teacher and student models. Shared-KD
offers a promising alternative to traditional feature-distillation methods. Shared-KD is a
practical and efficient solution for Knowledge Distillation due to its elimination of complex
transformations and reliance on stage-wise feature matching. In summary, whereas existing
methods have made progress in Knowledge Distillation for object detection, Shared-KD
presents a novel approach that addresses the limitations of these methods by enabling
direct knowledge transfer, well-aligned structures, and a simplified and efficient distillation
process without the need for complex feature matching and transformations.

3. Shared Knowledge Distillation

This section begins with a review of feature-distillation methods using a general
formulation. Next, we present the formulation and insights of our Shared Knowledge
Distillation (Shared-KD). Finally, we combine Shared-KD with logits KD.

3.1. Knowledge Distillation

Firstly, we will recap the Knowledge Distillation method proposed by Hinton et al.
[11]. This widely used method involves using category similarity as a guide for student
networks. To regularize the network’s learning, temperature is introduced to soften the
initial categorical information, also referred to as ’dark knowledge’. The output probability
of the teacher network and student network can be calculated as Equations (1) and (2).

pi =
exp(zi/T)

∑j exp(zj/T)
(1)

qi =
exp(zi/T)

∑j exp(zj/T)
(2)

where T represents temperature, which can adjust the softening of the output probability.
zi zj are the logits input for softmax, pi represents the output probability of each category
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in the teacher network, and qi represents the output probability of each category in the
student network.

Cross-entropy between the distilled teacher and student models calculates the soft
loss. The hard loss is calculated based on the predicted values of the student model and the
true values.

Lsoft = −∑
i

pi · log(qi) (3)

Lhard = −∑
i

yi · log(qi) (4)

The ground truth label (also known as the hard target label) for the i-th sample is
represented by yi. The teacher and student models’ predicted probability are represented
by pi and qi, respectively. The total loss function is calculated as below.

L = α · Lsoft + (1 − α) · Lhard (5)

The loss function used in Knowledge Distillation involves two types of losses: soft
target loss Lsoft and hard target loss Lhard. The former guides the student to replicate the
teacher’s probability distribution, whereas the latter reflects the guidance from the actual
ground truth labels. The parameter α balances the effect of these two losses. During the
Knowledge Distillation process, the student receives both the challenging and soft target
knowledge. The loss function can be written as follows:

L = (1 − α)LCE(y, σ(zS)) + 2αT2LCE(σ(
zS
T
), σ(

zT
T
)) (6)

where the loss of the cross-entropy is represented by LCE. The softmax function is rep-
resented by σ. y represents the ground truth label. The output logits of the student and
teacher networks are denoted by zS and zT . The balancing hyperparameter is represented
by α.

3.2. Conventional Cross-Layer Distillation

We then revisit the general formulation of cross-layer distillation methods to under-
stand our approach better. Current feature distillation approaches [7,8] encourage the
student model to mimic the intermediate features of the teacher model by explicitly opti-
mizing the feature distillation loss. To achieve this, we minimize the loss for a target student
model S with middle-level features ϕS and its teacher T with features ϕT , as defined below:

LFD = D f (Ts(ϕS), Tt(ϕT)) (7)

where Ts and Tt are the student and teacher transformation to align feature dimensions (eg,
channel and spatial). D f (·) is the distance function measuring the difference in intermedi-
ate features.

In conventional frameworks, the feature loss is typically combined with the task loss
during training. A pre-trained and fixed teacher model guides the student model. Let x
denote the training data and Q denote a set of layer location pairs for feature distillation; SL
and TL are the layers of student and teacher networks, respectively. The general objective
function can be defined as:

LS = LCE + λ ∑
q∈Q

D f
(
Tq

s (ϕS), Tq
t (ϕT)

)
(8)

Q = {(sl , tl) | ∀ sl ∈ [1, . . . , sL], tl ∈ [1, . . . , tL]}, (9)

LCE = L
(
θS, x

)
(10)
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where LCE is the standard cross-entropy loss function and θS is the parameters of the
student model. λ is a tunable weighting factor to balance loss terms, which is usually
initialized to a relatively large value and decays during training.

3.3. Formulation of Shared Knowledge Distillation

The aim of our Shared-KD is to divide the initial cross-layer feature supervision from
teachers to students into two steps: the same-layer distillation between teachers and the
cross-layer distillation within students. The first step resembles the same level of interaction
between teacher and student in terms of structure and semantic gap. The second step is
based on the hierarchical features of the online student, which have similar optimization
and semantic properties.

Teacher Share Module. The module is shown in Figure 2. The higher-level features
are resized to match the shape of the lower-level features. Then, two features from different
levels are concatenated to produce two H × W attention maps. These attention maps are
element-wise multiplied with the corresponding features and added to yield the final
output. The Teacher Share Module generates different attention maps dynamically based
on input features, allowing for flexible aggregation of the two feature maps. The adaptive
fusion method is considered superior to direct sum because it combines feature maps from
different network stages containing diverse information. This allows for a more reasonable
aggregation of low- and high-level features that may focus on different partitions. The use
of attention maps facilitates this process.

concat

1x1-BN-ReLU

Fpn1

Fpn2

Fpn3 Fpn3

Fpn2

Fpn1

Feature upsampling

Feature pooling

Figure 2. Detailed structure of the Teacher Share Module. It uses privileged self-features from
different layers of a student network in addition to useful information from the teacher layer.

Identical-layer distillation. Features in the same layer of the teacher–student model
typically share semantic features and shape size. Therefore, simple feature permutations
often exist with the same-layer distillation, effectively preserving the teacher model’s useful
feature knowledge. The loss of inter-layer Shared-KD can be expressed as follows:

Lident =
1
m

L−1

∑
i=1

D f
(
Tq

s (ϕS), Tq
t (ϕT)

)
(11)

D f
(
Tq

s (ϕS), Tq
t (ϕT)

)
= ∥Tq

s (ϕS)− Tq
t (ϕT)∥2

2 (12)

where m denotes the number of pair loss, L is the number of layers of selected features, we
use l2 distance as D f , and Ts represents feature alignment. In particular, we use a pooling
operation and channel cropping to align features in spatial and channel dimensions without
complex transformation.



Electronics 2024, 13, 1595 7 of 13

Lcross =
1
m

L−1

∑
i=1

L

∑
j=1

D f
(
Tsi (ϕSi ), Tsj(ϕSj)

)
(13)

D f
(
Tsi (ϕSi ), Tsj(ϕSj)

)
= ∥(Tsi (ϕSi )− Tsj(ϕSj))∥

2
2 (14)

where m denotes the number of pair loss, L is the number of layers of selected features, we
use l2 distance as D f , and Ts represents feature alignment. In particular, we use a pooling
operation and channel cropping to align features in spatial and channel dimensions without
complex transformation.

Shared Knowledge Distillation. Overall, in our Shared-KD method, we train the
student network with three losses:

LShared-KD = LCE + α(Lident + Lcross) (15)

where α is the weighting factor used to scale the losses. Ablation studies are introduced to
demonstrate their effectiveness and robustness. The process of our method is summarized
in Algorithm 1.

Algorithm 1 Shared Knowledge Distillation for Object Detection
Input: Teacher: T, Student: S, Input: x, label: y, hyper-parameter: α

1: Using S to obtain the feature ϕS and output ŷ of Input x
2: Using T to obtain the feature ϕT of Input x
3: Calculating the original loss of the model: LCE
4: Calculating the distillation loss in Equation: (Lident + Lcross)
5: Using LShared-KD = LCE + α(Lident + Lcross) to update S
Output: S

4. Experiments

This section first evaluates our approach for the object detection task on MS-COCO.
Then, comprehensive ablation experiments are performed to analyze the key design in our
Shared-KD. As a novel logit offline approach, the main competitor of Shared-KD is the
FGD [32]. Thus, we conduct detailed experimental comparisons between them and also
compare their performance with recent advanced KD methods. To ensure fair comparisons,
we use the public codes of these approaches with the same training and data preprocessing
settings throughout the experiments.

4.1. Experiments on Object Detection

Implementation. We evaluate Shared-KD on MS-COCO dataset [33] and use the
most popular open-source detector [34] as the strong baseline. We apply Shared-KD to the
two-stage detector (e.g., Faster R-CNN [19]), one-stage detector (e.g., RetinaNet [34]), and
anchor-free detector (e.g., FitNets [7]), which are widely used object detection frameworks.
We choose Faster RCNN-R101 (T) as the teacher detector for the two-stage detector and
Faster RCNN-R50 (S) as the student detector. For one stage detector, we choose RetinaNet-
R101 (T) and RetinaNet-R50 (S) as the teacher and student detectors. For the free detector,
we choose FCOS-R101 (T) and FCOS-R50 (S) as the teacher and student detectors, respec-
tively. Following common practice [34], all models are trained with a 2× learning schedule
(24 epochs). All distillation performances are e valuated in Average Precision (AP).

Comparison results. Table 1 presents a comprehensive evaluation of the proposed
Shared Knowledge Distillation (Shared-KD) method against various baseline detectors and
other state-of-the-art Knowledge Distillation techniques across different object detection
architectures: two-stage detectors, one-stage detectors, and anchor-free detectors, as shown
in Figure 3. Shared-KD achieves an impressive AP (Average Precision) of 40.6 for two-stage
detectors, outperforming the baseline student model (Faster RCNN-R50) by a significant
margin of 2.2. Compared to other Knowledge Distillation methods, Shared-KD demon-
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strates superior performance, surpassing FitNets by 1.7 (40.6 vs. 38.9), GID by 0.4 (40.6
vs. 40.2), FRS by 1.1 (40.6 vs. 39.5), and FGD by 0.2 (40.6 vs. 40.4). These improvements
are consistent across various evaluation metrics, including AP50, AP75, and AP scores for
small, medium, and large objects, highlighting the robustness and effectiveness of Shared-
KD for two-stage detectors. In the case of one-stage detectors, Shared-KD attains an AP of
39.4, outperforming the baseline student model (RetinaNet-R50) by a substantial 2.0. When
compared to other distillation techniques, Shared-KD surpasses FitNets by 2.0 (39.4 vs.
37.4), GID by 0.3 (39.4 vs. 39.1), and FRS by 0.1 (39.4 vs. 39.3), whereas the improvements
over some methods are marginal, the consistent gains across different metrics demonstrate
the effectiveness of Shared-KD for one-stage detectors. Shared-KD demonstrates superior
performance for anchor-free detectors with an AP of 42.2, outperforming the baseline
student model (FCOS-R50) by a remarkable 3.7. Compared to other Knowledge Distillation
techniques, Shared-KD achieves significant improvements, surpassing FitNets by 2.3 (42.2
vs. 39.9), GID by 0.2 (42.2 vs. 42.0), FRS by 1.3 (42.2 vs. 40.9), and FGD by 0.1 (42.2 vs. 42.1).
The results highlight the effectiveness of Shared-KD in improving object detection accuracy
for anchor-free detectors, consistently outperforming the baseline student models and other
state-of-the-art methods. The improvements are particularly notable for anchor-free detec-
tors, where Shared-KD achieves the highest AP gain compared to the student baseline and
other methods. Overall, the experimental results demonstrate the superior performance of
Shared-KD across various object detection architectures, consistently outperforming base-
line student models and other Knowledge Distillation techniques. The improvements are
most significant for anchor-free detectors, followed by two-stage and one-stage detectors.
The robustness and effectiveness of Shared-KD are evident through consistent gains across
different evaluation metrics, further solidifying its potential as a promising Knowledge
Distillation approach for object detection tasks.

Table 1. Comparison with object detection KD methods on MS COCO val set.

Models Distillation AP 50 75 S M L

Two-stage detectors
Faster RCNN-R101 (T) - 39.8 60.1 43.3 22.5 43.6 52.8
Faster RCNN-R50 (S) - 38.4 59.0 42.0 21.5 42.1 50.3
Faster RCNN-R50 (S) FitNets 38.9 (0.5↑) 59.5 42.4 21.9 42.2 51.6
Faster RCNN-R50 (S) GID 40.2 (1.8↑) 60.7 43.8 22.7 44.0 53.2
Faster RCNN-R50 (S) FRS 39.5 (1.1↑) 60.1 43.3 22.3 43.6 51.7
Faster RCNN-R50 (S) FGD 40.4 (2.0↑) - - 22.8 44.5 53.5
Faster RCNN-R50 (S) Shared-KD 40.6 (2.2↑) 61.6 45.0 24.5 45.6 53.7

One-stage detectors
RetinaNet-R101 (T) - 38.9 58.0 41.5 21.0 42.8 52.4
RetinaNet-R50 (S) - 37.4 56.7 39.6 20.0 40.7 49.7
RetinaNet-R50 (S) FitNets 37.4 (0.0↑) 57.1 40.0 20.8 40.8 50.9
RetinaNet-R50 (S) GID 39.1 (1.7↑) 59.0 42.3 22.8 43.1 52.3
RetinaNet-R50 (S) FRS 39.3 (1.9↑) 58.8 42.0 21.5 43.3 52.6
RetinaNet-R50 (S) Shared-KD 39.4 (2.0↑) 59.0 42.5 21.5 43.9 54.0

Anchor-free detectors
FCOS-R101 (T) - 40.8 60.0 44.0 24.2 44.3 52.4
FCOS-R50 (S) - 38.5 57.7 41.0 21.9 42.8 48.6
FCOS-R50 (S) FitNets 39.9 (1.4↑) 58.6 43.1 23.1 43.4 52.2
FCOS-R50 (S) GID 42.0 (3.5↑) 60.4 45.5 25.6 45.8 54.2
FCOS-R50 (S) FRS 40.9 (2.4↑) 60.3 43.6 25.7 45.2 51.2
FCOS-R50 (S) FGD 42.1 (3.6↑) - - 27.0 46.0 54.6
FCOS-R50 (S) Shared-KD 42.2 (3.7↑) 60.9 46.1 25.7 46.7 54.1

↑ The rising arrow indicates an improvement in performance.
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Figure 3. Comparison of our Shared-KD with other methods for different detector architectures,
including two-stage detectors, one-stage detectors, and anchor-free detectors.

4.2. Instance Segmentation

We also apply our method to the more challenging instance segmentation task. We
take Mask R-CNN [35] as our baseline models and distill between different backbone
architectures. The models are trained on the COCO2017 training set and are evaluated
on the validation set. Table 2 provides a detailed analysis of the experimental results, for
instance segmentation on the MS COCO 2017 dataset. The table presents the performance
of various Knowledge Distillation methods, including the proposed Shared Knowledge
Distillation (Shared-KD) approach, in comparison with the baseline student model (Mask
RCNN-R50) and other state-of-the-art techniques such as FKD, FGD, and MGD. In terms
of overall Average Precision (AP), Shared-KD achieves an impressive score of 41.3, signifi-
cantly outperforming the baseline student model by a substantial margin of 5.9 (41.3 vs.
35.4). This remarkable improvement highlights the effectiveness of Shared-KD in boosting
the performance of the student model for instance segmentation tasks.

Table 2. Experiments of instance segmentation on MS COCO2017. The teacher detector is Cascade
Mask R-CNN with ResNeXt-101 backbones. AP means average precision.

Models Distillation AP S M L

Mask RCNN-R50 (S) - 35.4 19.1 38.6 48.4
Mask RCNN-R50 (S) FKD 37.4 19.7 40.5 52.1
Mask RCNN-R50 (S) FGD 37.8 17.1 40.7 56.0
Mask RCNN-R50 (S) MGD 38.1 17.1 41.1 56.3
Mask RCNN-R50 (S) Shared-KD 41.3 23.1 45.0 55.2

Comparison results. Compared to other Knowledge Distillation methods, Shared-KD
demonstrates superior performance, surpassing FKD by 3.9 (41.3 vs. 37.4), FGD by 3.5
(41.3 vs. 37.8), and MGD by 3.2 (41.3 vs. 38.1). These significant gains underscore the
robustness and efficacy of Shared-KD in transferring valuable knowledge from the teacher
model to the student model, enabling the student to achieve state-of-the-art performance
in instance segmentation. Further analysis of the AP scores for different object scales
reveals the strengths of Shared-KD in handling objects of varying sizes. For small objects,
Shared-KD achieves an AP of 23.1, outperforming the baseline student model by 4.0
and other methods like FKD (19.7), FGD (17.1), and MGD (17.1). This demonstrates
Shared-KD’s ability to effectively capture and transfer knowledge related to small object
instances, which can be challenging for traditional object detection and segmentation
models. For medium objects, Shared-KD obtains an AP of 45.0, significantly surpassing
the baseline student model by 6.4 and other distillation methods such as FKD (40.5), FGD
(40.7), and MGD (41.1). This highlights Shared-KD’s capability in accurately detecting
and segmenting medium-sized objects, which are often the most common and critical
instances in real-world scenarios, and whereas Shared-KD performs slightly better than the
baseline student model for large objects, with an AP of 55.2 compared to 48.4, it is slightly
outperformed by some other methods like FGD (56.0) and MGD (56.3). However, the overall
superior performance of Shared-KD across different object scales, particularly for small and
medium objects, demonstrates its robustness and generalization capabilities. In summary,
the experimental results for instance segmentation on the MS COCO 2017 dataset clearly
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demonstrate the effectiveness of Shared-KD in boosting the performance of the student
model. Shared-KD consistently outperforms the baseline student model and other state-of-
the-art Knowledge Distillation techniques, achieving significant improvements in overall
Average Precision and across different object scales, particularly for small and medium
objects. These impressive results highlight the potential of Shared-KD as a powerful
Knowledge Distillation approach for instance segmentation tasks, paving the way for
further advancements in this domain.

4.3. Ablation Study

Analysis for different components in our method. In our method, we conducted
experiments to evaluate the impact of different design components, as shown in Table 3.
When the identical-layer distillation component is removed, the performance drops slightly,
with a decrease in overall AP to 40.1%, AP50 to 57.0%, and AP scores for small and large
objects to 21.0% and 52.5%, respectively. This indicates that the identical-layer distillation
plays a role in aligning the teacher and student models, contributing to better performance,
particularly for small and large objects. On the other hand, removing the cross-layer
distillation component also leads to a performance degradation, with a decrease in overall
AP to 40.3%, AP75 to 43.9%, and AP scores for small and medium objects to 23.0% and 44.5%,
respectively. This suggests that the cross-layer distillation effectively facilitates knowledge
transfer between different layers of the teacher and student models, improving the detection
accuracy, especially for small and medium-sized objects. The analysis demonstrates that
both the identical-layer distillation and cross-layer distillation components contribute to
the overall effectiveness of the proposed method, with each component playing a distinct
role in enhancing object detection performance.

Table 3. Results of different components in our method.

Method AP 50 75 S M L

Ours 40.6 61.6 45.0 24.5 45.6 53.7
without Teacher Share Module 40.5 61.2 44.6 24.2 45.2 53.3
without identical-layer distillation 40.1 57.0 43.5 21.0 44.0 52.5
without cross-layer distillation 40.3 60.9 43.9 23.0 44.5 53.0

Compare to other cross-layer distillation techniques. In comparison with other
cross-layer distillation methods, such as SemCKD [17], our proposed method, referred to as
Shared-KD, demonstrates superior performance on the MS COCO validation set, as shown
in Table 4. The results in the table clearly illustrate the effectiveness of our approach
in improving the object detection accuracy of the RetinaNet-R50 (Student) model when
distilled from the RetinaNet-R101 (Teacher) model. Our Shared-KD method outperforms
SemCKD in terms of AP50 (59.0 vs. 58.5) and AP for large objects (AP_L: 54.0 vs. 52.0),
indicating its superior performance in detecting objects with high confidence and handling
large-scale objects. Additionally, our Shared-KD method demonstrates computational
advantages over SemCKD. It requires fewer training hours (10.5 h compared to 13.8 h for
SemCKD) and consumes less memory (3.8 GB compared to 4.5 GB for SemCKD), making it
more efficient and resource-friendly. The performance gains achieved by our Shared-KD
method can be attributed to the effective knowledge transfer from the teacher model to the
student model, leveraging shared representations and feature alignment techniques.
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Table 4. Comparison with other cross-layer distillation (SemCKD [17]) on MS COCO val set.

Models Distillation AP 50 75 S M L Time Memory

RetinaNet-R101 (T) - 38.9 58.0 41.5 21.0 42.8 52.4 - -
RetinaNet-R50 (S) - 37.4 56.7 39.6 20.0 40.7 49.7 - -
RetinaNet-R50 (S) SemCKD [17] 38.8 (1.4↑) 58.5 49.5 22.0 43.0 52.0 13.8 h 4.5 GB
RetinaNet-R50 (S) Shared-KD 39.4 (2.0↑) 59.0 42.5 21.5 43.9 54.0 10.5 h 3.8 GB

↑ The rising arrow indicates an improvement in performance.

Sensitivity study for hyper-parameters. As shown in Table 5, experiments are con-
ducted to study the hyper-parameter sensitivity. We vary the weight α from 2, 5, 10, and 20
to compare their performance. Furthermore, the AP is 39.4, 38.6, 37.8, and 37.2, respectively.
The results demonstrate that the weight α of 2 is the best solution for the hyper-parameter
setting. These results demonstrate that our approach can achieve robust performance
improvements under different hyper-parameters.

Table 5. Ablation study of individual distillation loss with RetinaNet-R50 as student, RetinaNet-X101
as teacher.

Method AP 50 75 S M L

Baseline 37.4 56.7 39.6 20.0 40.7 49.7
2 39.4 58.3 42.3 22.6 43.5 51.2
5 38.6 57.9 41.0 21.6 42.0 51.8
10 37.8 57.2 40.6 21.2 41.8 51.4
20 37.2 56.8 40.1 20.8 41.2 51.0

Qualitative analysis. Figure 4 shows significant improvements of our proposed
approach compared to the baseline methods and the FGD technique, showing results
that are closer to the ground truth (GT) annotations. For small objects, our approach is
able to more accurately localize and classify them, overcoming the challenges that often
arise when dealing with small-scale instances. The specialized handling of foreground
and background classes, as well as the robust feature distillation strategies, contribute to
the enhanced small object detection capabilities. Furthermore, our method demonstrates
a notable improvement in preventing missed detections. By decoupling the training
process for different class types and employing tailored masking and loss functions, our
framework is better equipped to capture the subtleties and contextual cues that are crucial
for comprehensive object detection. This leads to a reduction in the number of missed
detections, resulting in detection outputs that more closely align with the ground truth
annotations. The qualitative analysis showcases the strengths of our approach in handling
small objects and mitigating missed detections, underscoring its effectiveness in advancing
the state-of-the-art in object detection tasks. The ability to produce detection results that are
visually more accurate and aligned with the ground truth highlights the practical benefits
of our proposed method.

Baseline FGD Ours GT Baseline FGD Ours GT

Figure 4. Qualitative analysis of baseline, FGD, our method, and GT for RetinaNet on COCO bench-
marks.



Electronics 2024, 13, 1595 12 of 13

5. Conclusions

Object detection based on Knowledge Distillation has the potential to enhance the
functionality and efficiency of 5G and 6G networks across diverse domains. This paper
presents the Shared-KD network, a simple, effective, and new framework for address-
ing the challenges associated with cross-layer feature discrepancies in teacher–student
networks. It has been demonstrated that the significant gaps between teacher and stu-
dent models at the intermediate level pose obstacles to the success of feature distillation.
By drawing inspiration from collaborative learning in education, we have proposed a
knowledge augmentation module for teachers and a mutual learning module for students.
This approach has allowed us to decompose the original feature supervision into two
steps: identical-layer distillation between teacher and student, and cross-layer distillation
within students. Through experiments on various tasks, including object detection and
instance segmentation, we have shown that Shared-KD consistently outperforms other
methods, achieving significant performance gains across different neural network architec-
tures. Moreover, the simplicity and efficiency of Shared-KD, which eliminates the need for
complex transformations and extra training parameters, make it a practical and versatile
solution for Knowledge Distillation. We believe that the insights provided by Shared-KD
and its success in improving model performance will inspire further advancements in
Knowledge Distillation research and contribute to a deeper understanding of feature distil-
lation. Within the 5G/6G next-generation network paradigm, this will pave the way for
advances in real-time applications and services.
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