
Citation: Kulisz, J.; Jokiel, F. A

Hardware Implementation of the PID

Algorithm Using Floating-Point

Arithmetic. Electronics 2024, 13, 1598.

https://doi.org/10.3390/

electronics13081598

Academic Editor: Luis Gomes

Received: 24 March 2024

Revised: 14 April 2024

Accepted: 15 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Hardware Implementation of the PID Algorithm Using
Floating-Point Arithmetic
Józef Kulisz 1,* and Filip Jokiel 2

1 Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology,
44-100 Gliwice, Poland

2 Cadence Design Systems, 40-001 Katowice, Poland; jokiel.filip@gmail.com
* Correspondence: jozef.kulisz@polsl.pl

Abstract: The purpose of the paper is to propose a new implementation of the PID (proportional–
integral–derivative) algorithm in digital hardware. The proposed structure is optimized for cost. It
follows a serialized, rather than parallel, scheme. It uses only one arithmetic block, performing the
multiply-and-add operation. The calculations are carried out in a sequentially cyclic manner. The
proposed circuit operates on standard single-precision (32-bit) floating-point numbers. It implements
an extended PID formula, containing a non-ideal derivative component, and weighting coefficients,
which enable reducing the influence of setpoint changes in the proportional and derivative compo-
nents. The circuit was implemented in a Cyclone V FPGA (Field-Programmable Gate Array) device
from Intel, Santa Clara, CA, USA. The proper operation of the circuit was verified in a simulation.
For the specific implementation, which is reported in the paper, the sampling period of 516 ns was
obtained, which means that the proposed solution is comparable in terms of speed with other hard-
ware implementations of the PID algorithm operating on single-precision floating-point numbers.
However, the presented solution is much more efficient in terms of cost. It uses 1173 LUT (Look-up
Table) blocks, 1026 registers, and 1 DSP (Digital Signal Processing) block, i.e., about 30% of logic
resources required by comparable solutions.

Keywords: PID regulator; control systems; FPGA; hardware implementation; floating-point arithmetic

1. Introduction
1.1. PID Regulators in Contemporary Technologies

For several decades, the PID (proportional–integral–derivative) algorithm has been
accepted as a standard tool to control continuous processes at industrial plants. Its popu-
larity is driven by its versatility, relatively simple principle of operation, and simplicity of
application, i.e., usually only some basic information about the parameters of the controlled
object is required to achieve an acceptable quality of the control process.

First PID regulators were implemented as mechanical or electromechanical devices,
operating in the continuous time domain. PID regulators used in contemporary equipment
are implemented as digital electronic circuits, operating in discrete time.

PID regulators used in contemporary technologies can be, in general, classified as
software-based or hardware-based. The software-based solutions comprise implementations
on Programmable Logic Controllers (PLCs), and dedicated Microcontroller Units (MCUs).
The second option also includes implementations on Digital Signal Processors (DSPs).

If the PID algorithm is executed using a digital device, e.g., a microprocessor, one of
the most important parameters to be considered is the sampling period TS. The minimum
sampling period achievable for a particular digital regulator limits the speed of the process
the regulator is capable of controlling. A practical rule of thumb says that the sampling
period TS should be at least an order of magnitude shorter than the equivalent delay (which
includes the dominant time constant) characterizing the controlled object [1].

Electronics 2024, 13, 1598. https://doi.org/10.3390/electronics13081598 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081598
https://doi.org/10.3390/electronics13081598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3810-3473
https://doi.org/10.3390/electronics13081598
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081598?type=check_update&version=2

Electronics 2024, 13, 1598 2 of 19

The most popular way of implementing the PID algorithm in contemporary control
systems is to include appropriate instructions in a PLC program. In such a case, the
PID formula is calculated using the main CPU (central processing unit) of the PLC while
executing the control program. The PID instruction should be invoked inside a cyclic
interrupt handling procedure.

The CPU is required to process the overall control program at a sufficient speed;
therefore, handling interrupt routines must not consume too much CPU time. Although the
PID instructions themselves can be executed in microseconds [2,3], in the case of practical
applications, sampling periods of as long as several milliseconds can be expected, and
most often, values of 0.1 s, or even 1 s, are used. The number of control loops that a PLC
can handle at the same time is limited to a low value, e.g., 8, which is enough for a typical
industrial plant.

The second option is to implement the PID calculations in a dedicated/standalone
CPU/MCU. Such an approach offers two benefits:

• The dedicated solution can be compact and well tailored to a particular application;
• If the CPU is not overloaded with other tasks, processing the PID algorithm can be

much faster than in a general-purpose PLC.

There are many studies describing applications of PID controllers based on general-
purpose MCUs [4–11]. Such regulators are predominantly used for precise motion
control [4–7,10,11], and control over the operation of voltage converters [8,9]. The sampling
periods reported in the reference papers are generally measured in milliseconds. However,
in [8], a PID regulator is described with the reported sampling period below 20 µs. It is
implemented on the STM32F407 MCU.

A more advanced (and more expensive) option consists of using a DSP instead of a
general-purpose MCU. This is reported in a number of works [12–20].

Nevertheless, some fast-controlled objects require sampling periods as short as tens of
microseconds. In particular, it applies to the stabilization of magnetic bearings [11,16,17]
and precise motion control [21]. In [21], a PID regulator is used to control the operation of
insect-size robots. Reportedly, the sampling frequency required for that task exceeds 10
kHz, which corresponds to sampling periods of less than 100 µs. There are works reporting
that it is possible to achieve sampling periods of tens of microseconds with DSPs [13,15,17].
However, this seems to be the limit for both MCU- and DSP-based solutions. If more
control loops are required for the efficient control of a particular device, more DSP units
must be incorporated into a control system [17,18]. Yet, some other papers state that the
speed provided by MCU- and DSP-based solutions is not sufficient [22–24]. If so, PID
regulators need to be implemented in hardware.

If a hardware implementation of the PID algorithm is considered, Field-Programmable
Gate Arrays (FPGAs) seem to be an easily available and attractive option. The flexibility
and logic capacity of modern FPGA devices make them a convenient platform to implement
functions of various types, including arithmetic operations.

Implementing PID regulators in FPGA devices offers the following benefits:

• Increased speed, due to concurrent operation of hardware components.
• Multichannel operation, i.e., the possibility of implementing more control loops in a

single integrated circuit without degrading the controller performance. Some control
schemes require more than one loop to control a specific device in an efficient and
reliable way [5,7,18]. If implemented in an MCU or DSP, more control loops slow down
the controller operation due to the sequential execution of program instructions, which
is inherent for these devices. This does not concern implementations in an FPGA, as
the same controller circuitry can be easily replicated, and operate concurrently [25].

• The possibility of combining a PID regulator with other functions and integrating
them conveniently in a single device. In particular, it includes CPU cores and elements
of artificial intelligence [26–31].

Electronics 2024, 13, 1598 3 of 19

• If compared to MCU/DSP implementations, FPGAs enable obtaining a more compact
circuit, containing fewer integrated circuits, and, thus, are less sensitive to electromag-
netic noise.

• Implementing the same algorithms in FPGA is usually more efficient in terms of
power consumption than in MCU or DSP chips, which require clock rates ranging up
to hundreds of megahertz to achieve the required performance. This is reported in a
number of works, e.g., in [21], and [32]. In [21], the authors describe the application of
PID regulators to control the operation of insect-size robots with a very low power
budget. The authors solved the problem by implementing the required functionality
in a small FPGA chip from Lattice Semiconductor, Hillsboro, OR, USA.

The use of FPGAs as a hardware platform for the implementation of PID regulators
is reported in a number of works [21–43]. The PID regulators are mostly used for precise
motion control tasks [21–24,26,28,31–33]. Papers from recent years often describe combining
within a single device a PID regulator with elements of artificial intelligence (AI), i.e., neural
networks [28,30], fuzzy logic [26,27,30,31], and particle swarm optimization algorithms [29].
The AI part is responsible for continuously autotuning the regulator parameters. Even if
implementing the PID regulator alone in an MCU or DSP was possible, it would usually
be unfeasible to implement the AI part running at the required speed. Nevertheless, it is
feasible in FPGAs due to the concurrent operation of their hardware components [28,30,31].

1.2. Motivation

Although the implementation of the PID algorithm in FPGA devices is described in
many research papers, only some of them deal directly with the circuit microarchitecture,
i.e., how the digital circuit is made up of its hardware components. These include the
studies reported in [21,25,32,36,37,39–43]. The same functionality can be implemented in a
digital circuit following various structural schemes. In particular, parallel and serialized
structures can be considered. The way in which the hardware components are arranged in
a digital circuit may radically affect the results of logic synthesis, i.e., the resulting circuit
speed, and the amount of logic resources consumed by the particular solution (the cost).

The studies reported in the reference materials follow, in general, parallel schemes,
which seem to be the most obvious implementation of the formulas describing how the
result is calculated. If a digital circuit is implemented as a parallel structure, a faster solution
is expected but paid off with a large amount of logic resources.

However, an analysis of available solutions and a comparison between them needs to
account for one more factor besides the cost and speed: the number format.

The PID algorithm is represented by formulas describing relationships between real
numbers. Real numbers can be represented in digital systems using fixed-point, and
floating-point formats. The implementation of arithmetic functions operating on fixed-
point numbers is much simpler and cheaper in terms of logic resources consumed. In most
of the aforementioned works, fixed-point representations are used, with the length of the
binary number ranging from 8 [25,36,37] to 32 bits [13].

Nevertheless, using fixed-point arithmetic for complex calculations is always bound
with the risk of too low an accuracy and too narrow a range. For a recursive algorithm,
where the n-th sample depends on previous samples, the errors may build up, and it is
difficult to determine how many bits of a number are needed to assure the required accuracy.
This problem is highly avoided when using floating-point formats. For this reason, using
single-precision (32-bit) floating-point numbers has become a de facto standard, at least for
PID blocks/functions implemented in modern PLCs.

If an implementation in a digital circuit is considered, floating-point formats are,
in general, avoided. It is believed that the implementation of floating-point operations
directly in hardware leads to large, expensive, and slow structures. In general, this is true if
sufficient attention is not paid to the circuit microarchitecture.

Only a scarce number of papers could be found where the hardware implementation
of a PID controller with floating-point arithmetic is disclosed. These include [21,39–43].

Electronics 2024, 13, 1598 4 of 19

In [39], the circuit was implemented with regulator parameters defined as constants. It
radically simplified the structure of the resulting circuit and reduced its cost, but it cannot
be adopted as a general approach. The solution disclosed in [40] seems to be very redundant
since it used large amounts of logic resources (almost 9000 LUTs, and a similar number of
registers) and, in addition, is very slow (sampling period over 20 us at 50 MHz clock). All
other works, except [42], reveal the use of resources at the level of ca. 4000 LUT blocks, and
similar numbers of registers. In [42], the resource consumption is less, but it is achieved
owing to the reduced length of the binary numbers used for the calculations (21 bits, instead
of 32 bits). All the aforementioned studies follow the parallel architecture of the system.

Even a brief survey of parameters achieved in solutions obtained by various re-
searchers indicates that virtually any FPGA-based implementation of the PID regulator
should be fast enough to reach microsecond sampling periods and to fulfill the speed
requirements of even the fastest control objects described in the reference studies. This ob-
servation, supported by the experiences of the authors themselves, has led to a conclusion
that the most reasonable option for a possible PID regulator implementation in hardware is
to optimize the solution for cost, rather than for speed.

The purpose of this paper is to propose a regulator structure that operates on standard
single-precision floating-point numbers (32 bits) and follows a serialized scheme, rather
than parallel. The proposed structure benefits from the register-rich architecture of FPGA
devices. The calculations are carried out in a serially cyclic manner, using just a single
arithmetic block. If compared to other works reported in the references, the solution
presented herein is significantly cheaper in terms of logic resource consumption, while
still being fast enough to reach microsecond sampling periods. Moreover, our solution
implements the extended PID formula described by Equation (4), while most of the works
reported in references implement the basic form.

2. The PID Algorithm

A typical application of the PID algorithm assumes that the PID regulator is included
in a feedback loop (Figure 1).

Electronics 2024, 13, x FOR PEER REVIEW 4 of 20

If an implementation in a digital circuit is considered, floating-point formats are, in
general, avoided. It is believed that the implementation of floating-point operations di-
rectly in hardware leads to large, expensive, and slow structures. In general, this is true if
sufficient attention is not paid to the circuit microarchitecture.

Only a scarce number of papers could be found where the hardware implementation
of a PID controller with floating-point arithmetic is disclosed. These include [21,39–43]. In
[39], the circuit was implemented with regulator parameters defined as constants. It radi-
cally simplified the structure of the resulting circuit and reduced its cost, but it cannot be
adopted as a general approach. The solution disclosed in [40] seems to be very redundant
since it used large amounts of logic resources (almost 9000 LUTs, and a similar number of
registers) and, in addition, is very slow (sampling period over 20 us at 50 MHz clock). All
other works, except [42], reveal the use of resources at the level of ca. 4000 LUT blocks,
and similar numbers of registers. In [42], the resource consumption is less, but it is
achieved owing to the reduced length of the binary numbers used for the calculations (21
bits, instead of 32 bits). All the aforementioned studies follow the parallel architecture of
the system.

Even a brief survey of parameters achieved in solutions obtained by various research-
ers indicates that virtually any FPGA-based implementation of the PID regulator should
be fast enough to reach microsecond sampling periods and to fulfill the speed require-
ments of even the fastest control objects described in the reference studies. This observa-
tion, supported by the experiences of the authors themselves, has led to a conclusion that
the most reasonable option for a possible PID regulator implementation in hardware is to
optimize the solution for cost, rather than for speed.

The purpose of this paper is to propose a regulator structure that operates on stand-
ard single-precision floating-point numbers (32 bits) and follows a serialized scheme, ra-
ther than parallel. The proposed structure benefits from the register-rich architecture of
FPGA devices. The calculations are carried out in a serially cyclic manner, using just a
single arithmetic block. If compared to other works reported in the references, the solution
presented herein is significantly cheaper in terms of logic resource consumption, while
still being fast enough to reach microsecond sampling periods. Moreover, our solution
implements the extended PID formula described by Equation (4), while most of the works
reported in references implement the basic form.

2. The PID Algorithm
A typical application of the PID algorithm assumes that the PID regulator is included

in a feedback loop (Figure 1).

Figure 1. A structure of a typical control system containing a PID regulator in the feedback loop.

The PID regulator is expected to tune the process variable x, which is not directly
accessible, as close as possible to the setpoint w. This is accomplished through the appro-
priate adjustment of the manipulated variable y. The regulator evaluates the required
value of the manipulated variable based on the error signal e = w − x, which is formed in
the summing node.

In the classical form, the algorithm executed by the regulator is described by the for-
mula presented in Equation (1) [44]. 𝑌(𝑆) = 𝑌௉(𝑆) + 𝑌ூ(𝑆) + 𝑌஽(𝑆) = 𝐾௉ ቆ𝐸(𝑆) + 1𝑇ூ𝑆 ∙ 𝐸(𝑆) + 𝑇஽𝑆 ∙ 𝐸(𝑆)ቇ (1)

where

PID
regulator

Controlled
object

y

w

xe

Figure 1. A structure of a typical control system containing a PID regulator in the feedback loop.

The PID regulator is expected to tune the process variable x, which is not directly
accessible, as close as possible to the setpoint w. This is accomplished through the appropri-
ate adjustment of the manipulated variable y. The regulator evaluates the required value
of the manipulated variable based on the error signal e = w − x, which is formed in the
summing node.

In the classical form, the algorithm executed by the regulator is described by the
formula presented in Equation (1) [44].

Y(S) = YP(S) + YI(S) + YD(S) = KP

(
E(S) +

1
TIS

·E(S) + TDS·E(S)
)

(1)

where
E(S) = W(S)− X(S) (2)

The result generated with the regulator consists of three components: proportional YP,
integral YI, and derivative YD.

Electronics 2024, 13, 1598 5 of 19

However, for practical applications, the basic formula, described by Equation (1),
is often extended. Probably the most popular extension concerns the ideal derivative
component, which is replaced by a high-pass filter function as described by Equation (3):

YD(S) = KP
TDS

a·TDS + 1
E(S) (3)

There are two reasons why this is performed:

• The ideal derivative function is not feasible in practical circuits;
• The gain of the ideal derivative function goes to infinity along with frequency, and,

thus, it tends to amplify high-frequency noise, which can increase the output error
(this problem was considered, e.g., in [45]). The gain of a high-pass filter transfer
function goes with frequency to a constant value, so the influence of high-frequency
components can be kept at a moderate level.

Another popular extension consists of introducing weighting coefficients b and c,
which suppress the influence of the setpoint on the proportional and derivative components.
The resulting formula is presented in Equation (4).

Y(S) = KP

(
(b·W(S)− X(S)) +

1
TIS

(W(S)− X(S)) +
TDS

a·TDS + 1
(c·W(S)− X(S))

)
(4)

The output signal y, described by Equations (1) and (2), depends on the error signal
e = w− x, and, thus, it responds with equal intensity to changes in both the process variable
x and the setpoint w. In practice, only rare changes in the setpoint are expected, but they
are usually step changes. This leads to the overreaction of the regulator, which results from
the contributions of the proportional and the derivative components. By introducing and
appropriately tuning the b and c weighting coefficients, a smoother and more “bumpless”
operation of the regulator can be achieved, when the setpoint is changed in the step mode.
It prevents the unnecessary wear-out of the actuators.

The extended PID formula presented in Equation (4) will be the base for the solution
presented in this paper.

3. Discretization of the PID Formula

Before a relationship described in the continuous time domain is implemented in a
digital system, it needs to be discretized, i.e. converted to the discrete-time domain. To
accomplish this, the backwards difference method shall be used, which, in fact, is the most
popular approach. The discretization of a continuous-time formula using the backwards
difference method is most conveniently carried out in the operator domain and consists of
substituting 1

TS

(
1 − z−1) for S.

The most obvious and popular approach to the discretization of the PID formula
consists of separately discretizing all three components contributing to the result, i.e., the
proportional, integral, and derivative functions. The application of the foregoing approach
to the formula described by Equation (4) leads to the following:

YP(z) = KP(b·W(z)− X(z)) (5)

YI(z) = KP
TS

TI(1 − z−1)
(W(z)− X(z)) (6)

YD(z) = KP
TD

(
1 − z−1)

a·TD(1 − z−1) + TS
(c·W(z)− X(z)) (7)

and
Y(z) = YP(z) + YI(z) + YD(z) (8)

Electronics 2024, 13, 1598 6 of 19

Converting to the time-domain yields to

yP(n) = KP(b·w(n)− x(n)) (9)

yI(n) = KP
TS
TI

(w(n)− x(n)) +yI(n − 1) (10)

yD(n) = KP
c·(w(n)− w(n − 1))− (x(n)− x(n − 1))(

a + TS
TD

) +
a(

a + TS
TD

)yD(n − 1) (11)

and
y(n) = yP(n) + yI(n) + yD(n) (12)

Besides the integral component yI(n), the derivative component yD(n) also depends
on its previous samples. It means that the yI(n − 1) and yD(n − 1) values need to be
stored somewhere in the system, and the yP(n), yI(n), and yD(n) components have to be
calculated separately. It is not a problem when the formulas are implemented in software.
However, in the case of hardware implementations, it leads to an irregular, and less
optimal structure.

However, a different approach is proposed in this paper, namely the one-shot dis-
cretization of the PID formula as a whole. By substituting 1

TS

(
1 − z−1) for S in Equation (4),

the following formulations are obtained:

Y(z) = KP

(
(b·W(z)− X(z)) + TS

TI(1−z−1)
(W(z)− X(z))

+
TD(1−z−1)

a·TD(1−z−1)+TS
(c·W(z)− X(z))

) (13)

Both sides of the equation can be multiplied by
(
1 − z−1)[(1 − z−1)+ TS

a·TD

]
to elimi-

nate the denominators from the integral and derivative components:

Y(z)
(
1 − z−1)[(1 − z−1)+ TS

aTD

]
= KP

{(
1 − z−1)[(1 − z−1)+ TS

aTD

]
(b·W(z)− X(z))

+ TS
TI

[(
1 − z−1)+ TS

aTD

]
(W(z)− X(z))

+ 1
a
(
1 − z−1)2

(c·W(z)− X(z))
}

(14)

The formula needs to be rearranged by grouping together the components depending
on the W and X signals, respectively:[(

1 + TS
aTD

)
−

(
2 + TS

aTD

)
z−1 + z−2

]
Y(z)

= KP

{{
b
[(

1 + TS
aTD

)
−

(
2 + TS

aTD

)
z−1 + z−2

]
+ TS

TI

[(
1 + TS

aTD

)
− z−1

]
+ c

a

(
1 − 2z−1 + z−2

)}
W(z)

−
{(

1 + TS
aTD

)
−

(
2 + TS

aTD

)
z−1 + z−2 + TS

TI

[(
1 + TS

aTD

)
− z−1

]
+ 1

a

(
1 − 2z−1 + z−2

)}
X(z)

} (15)

The next manipulations assume the grouping of components according to the negative
powers of z:[

aTD+TS
aTD

− 2aTD+TS
aTD

z−1 + z−2
]
Y(z)

= KP

{{[(
b + TS

TI

)
aTD+TS

aTD
+ c

a

]
−

[
b 2aTD+TS

aTD
+ TS

TI
+ 2 c

a

]
z−1 +

(
b + c

a
)
z−2

}
W(z)

−
{[(

1 + TS
TI

)
aTD+TS

aTD
+ 1

a

]
−

[
2aTD+TS

aTD
+ TS

TI
+ 2

a

]
z−1 +

[
1 + 1

a

]
z−2

}
X(z)

} (16)

Electronics 2024, 13, 1598 7 of 19

Thus, Y(z) can be derived:

Y(z) = 2aTD+TS
aTD+TS

z−1Y(z)− aTD
aTD+TS

z−2Y(z) + KP
b(aTD+TS)+

TS
TI

(aTD+TS)+cTD

aTD+TS
W(z)

−KP
b(2aTD+TS)+a TS

TI
TD+2cTD

aTD+TS
z−1W(z) + KP

(ab+c)TD
aTD+TS

z−2W(z)

−KP
aTD+TS+

TS
TI

(aTD+TS)+TD

aTD+TS
X(z) + KP

2aTD+TS+a TS
TI

TD+2TD

aTD+TS
z−1X(z)

−KP
(a+1)TD
aTD+TS

z−2X(z)

(17)

The last transformation consists of converting the formula to the discrete-time domain:

y(n) = c0 y(n − 1) + c1 y(n − 2) + c2 w(n) + c3 w(n − 1) + c4 w(n − 2)
+c5 x(n) + c6 x(n − 1) + c7 x(n − 2)

(18)

The c0–c7 coefficients depend on the regulator parameters KP, TI, TD, a, b, c, and the
sampling period TS as follows:

c0 =
2aTD + TS
aTD + Ts

(19)

c1 = − aTD
aTD + Ts

(20)

c2 = KP
b(aTD + TS) +

TS
TI
(aTD + TS) + cTD

aTD + Ts
(21)

c3 = −KP
b(2aTD + TS) + a TS

TI
TD + 2cTD

aTD + Ts
(22)

c4 = KPTD
ab + c

aTD + Ts
(23)

c5 = −KP
(aTD + TS) +

TS
TI
(aTD + TS) + TD

aTD + Ts
(24)

c6 = KP
(2aTD + TS) + a TS

TI
TD + 2TD

aTD + Ts
(25)

c7 = −KPTD
a + 1

aTD + Ts
(26)

According to Equation (18), the current sample of the regulator output signal y(n) can
be calculated using current values of the process variable x and the setpoint w, as well as
two preceding samples of x, w, and y.

Should the same method be applied to the basic PID formula shown in Equation (1),
the regulator is reduced to a second-order IIR (Infinite Impulse Response) filter.

The PID formula described by Equation (18) is very regular. For a hardware designer, it
offers many options to arrange hardware components that perform the relevant arithmetic
operations. These options include parallel, serial, and mixed structures.

Two preceding samples of the regulator output y, the process variable x, and the
setpoint w need to be stored in the system. However, this is more convenient than storing
samples of the integral and derivative components. The y, x, and w signals are directly
available either at the regulator inputs, or outputs, so they do not need to be calculated
separately using dedicated hardware.

4. The Proposed Circuit Structure

As it was mentioned above, the regular form of Equation (18) offers a hardware
designer plenty of freedom in designing the structure of the circuit for the calculation of
the PID formula. One of the remarkable solutions is the parallel, tree-shaped structure

Electronics 2024, 13, 1598 8 of 19

presented in Figure 2. Typically, parallel structures are supposed to provide the fastest
operation of a system.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 20

𝑐ହ = −𝐾௉ (𝑎𝑇஽ + 𝑇ௌ) + 𝑇ௌ𝑇ூ (𝑎𝑇஽ + 𝑇ௌ) + 𝑇஽𝑎𝑇஽ + 𝑇௦ (24)

𝑐଺ = 𝐾௉ (2𝑎𝑇஽ + 𝑇ௌ) + 𝑎 𝑇ௌ𝑇ூ 𝑇஽ + 2𝑇஽𝑎𝑇஽ + 𝑇௦ (25)

𝑐଻ = −𝐾௉𝑇஽ 𝑎 + 1𝑎𝑇஽ + 𝑇௦ (26)

According to Equation (18), the current sample of the regulator output signal y(n) can
be calculated using current values of the process variable x and the setpoint w, as well as
two preceding samples of x, w, and y.

Should the same method be applied to the basic PID formula shown in Equation (1),
the regulator is reduced to a second-order IIR (Infinite Impulse Response) filter.

The PID formula described by Equation (18) is very regular. For a hardware designer,
it offers many options to arrange hardware components that perform the relevant arith-
metic operations. These options include parallel, serial, and mixed structures.

Two preceding samples of the regulator output y, the process variable x, and the set-
point w need to be stored in the system. However, this is more convenient than storing
samples of the integral and derivative components. The y, x, and w signals are directly
available either at the regulator inputs, or outputs, so they do not need to be calculated
separately using dedicated hardware.

4. The Proposed Circuit Structure
As it was mentioned above, the regular form of Equation (18) offers a hardware de-

signer plenty of freedom in designing the structure of the circuit for the calculation of the
PID formula. One of the remarkable solutions is the parallel, tree-shaped structure pre-
sented in Figure 2. Typically, parallel structures are supposed to provide the fastest oper-
ation of a system.

Figure 2. A parallel implementation of the PID formula.

The implementation of the structure presented in Figure 2 requires eight two-input
multipliers and seven two-input adders. As the calculations need to be performed on

c0

y(n-1)
c1

y(n-2)
c2

w(n)
c3

w(n-1)

c4

w(n-2)
c5

x(n)

c6

x(n-1)
c7

x(n-2)

y(n)

Figure 2. A parallel implementation of the PID formula.

The implementation of the structure presented in Figure 2 requires eight two-input
multipliers and seven two-input adders. As the calculations need to be performed on
floating-point numbers, it is expected that the implementation will consume a significant
amount of logic resources.

Further on in this paper, the assumption shall be made that the floating-point opera-
tions will be handled by “ready-made” IP (Intellectual Property) cores shipped together
with synthesis software, which will be used to design the whole system. IP cores of various
types, in particular, IP cores performing arithmetic operations on floating-point numbers,
became a standard utility available in CAD software supporting FPGA design, delivered
by all key FPGA vendors [46–48]. IP cores developed by FPGA vendors are carefully
optimized, based on expertise in details of device architectures. Although one’s own IP
core can be independently developed, it is quite unlikely to obtain a solution that is more
efficient in terms of both performance and cost.

Sample experiments were carried out to estimate the parameters of the assumed paral-
lel structure. The tests were accomplished using the Quartus Prime software (version 22.1,
Lite edition) from Intel, Santa Clara, CA, USA, and a Cyclone V (5CGTFD9E5F35C7 [49])
device. For a given frequency of 100 MHz, the implementation of a floating-point multiplier
IP core (the “FP Functions Intel FPGA” core [46]) requires 2 onboard fixed-point multipliers
and 242 LUT (Look-up Table) blocks. The latency estimated by the IP Core generator is
4 clock cycles. The implementation of a floating-point adder (again, the “FP Functions
Intel FPGA” core) requires 873 LUTs, and the latency is 5 clock cycles. This means that
the implementation of the parallel structure presented in Figure 2 would consume at least
6303 LUTs, and the expected latency would be at least 19 clock cycles, i.e., 190 ns. Latency,
divided by the maximum clock frequency, constitutes the low limit on the sampling period,
and, as a consequence, the limit for the maximum speed achievable for a regulator.

As it was mentioned before, a serialized approach shall be proposed further on in this
paper, since it is much more efficient in terms of logic resource usage.

The proposed structure is presented in Figure 3. The circuit is fully synchronous, i.e.,
all parallel registers and the MultAdd block are synchronized via a common clock signal.

Electronics 2024, 13, 1598 9 of 19
Electronics 2024, 13, x FOR PEER REVIEW 10 of 20

Figure 3. The proposed structure of the circuit calculating the PID algorithm.

Before a new calculation cycle is started, samples of the process variable x, the set-
point w, and the regulator output y must be updated. This is accomplished through the
incorporation of 2-to-1 multiplexers at appropriate positions into the “variable” register
ring. The “Select” inputs of the multiplexers are controlled by the external Start signal.
The Start signal should be activated for one clock cycle before the actual calculations begin.
The activation of the Start signal allows for new data to be loaded to the registers that store
x(n), w(n), and y(n − 1). The remaining data are shifted right, following the ring direction.
In this way, the old value of the x(n) sample is transferred to the register storing x(n − 1),
while x(n − 1) is transferred to x(n − 2), w(n) to w(n − 1), and so on.

Updating the 𝑐଴– 𝑐଻ coefficients is accomplished in a similar manner. The registers
in the “parameter ring” are interlaced with 2-to-1 multiplexers, and the “Select” inputs of
the multiplexers are controlled by the Start input. However, it is assumed that the values
of the coefficients do not need to be updated every time a new calculation cycle is initiated.

clk

Q D
En

R_c5 Mux_c5

1
0

s

c5_new

clk

Q D
En

R_c6 Mux_c6

1
0

s

c6_new

clk

Q D
En

R_c7 Mux_c7

1
0

s

c7_new

clk

Q D
En

R_c2 Mux_c2

1
0

s

clk

QD
En

R_c1
1
0

s

Mux_c1

c1_new

clk

QD
En

R_c0
1
0

s

clk

QD
En

R_c4

clk

QD
En

R_c3

clk

QD
En

R_y(i-2)

R

clk

QD
En

R_y(i-1)

R

Mux_y(i-1)

1
0

s

clk

QD
En

R_w(i-2)

R

clk

QD
En

R_w(i-1)

R

clk

Q D
En

R_x(i)

R

clk

Q D
En

R_x(i-2)

R

MultAdd
c
a
b
R

q

y(i)

Control
Start

Start

clk
Reset

Mux_c4Mux_c3
1
0

s

w_new

Mux_w(i)
1
0

s

x_new

1
0

s

clk

clk

Q D
En

R_w(i)

R

clk

clk
Rst

Par_Wr

Shift
y_Write
Ready

Start

Ready

y_Wr

Var_En

Par_En

clk

Q D
En

R_x(i-1)

R

Mux_x(i)

c3_new c4_new

1
0

s

Mux_c0

c0_new

c2_new

clk

QD
En

R_y(i)

RS
ta

rt

y_Wr

R
st

Rst

Start
Par_En

Start

Var_En
Variable

ring

Parameter
ring

Figure 3. The proposed structure of the circuit calculating the PID algorithm.

The heart of the circuit is the MultAdd block, which should be implemented as an
IP Core capable of performing simultaneous multiplication and addition operations on
floating-point numbers (see Equation (27)).

q = a·b + c (27)

Other crucial elements are parallel registers, which are arranged in two rings, with
eight registers in each. The registers in the upper ring (the “variable ring”) store current
and preceding samples of the process variable x(n), x(n − 1), x(n − 2), the setpoint w(n),
w(n − 1), w(n − 2), and the regulator output y(n − 1) and y(n − 2). The registers in the
lower ring (the “parameter ring”) store the values of the c0–c7 coefficients.

The output q of the MultAdd block is routed back to the block input c. In this way, a
structure is obtained that is capable of storing temporary results for further processing, i.e.,
a kind of cumulative adder.

A simplified block diagram, depicting the operation of the circuit, is presented in
Figure 4. The calculations described by Equation (18) are performed sequentially, i.e.,
initially, the c1·y(n − 2) product is calculated; then, the content of the rings is shifted right;
then, the product c0·y(n − 1) is calculated and added to c1·y(n − 2), which is available at
the MultAdd block output q after the first product is calculated. Upon the completion of

Electronics 2024, 13, 1598 10 of 19

these calculations, the data are shifted once again, and the c4·w(n − 2) product is calculated
and added to the result of previous operations. Subsequently, the c3·w(n − 1), c2·w(n),
c7·x(n − 2), c6·x(n − 1), and c5·x(n) products are calculated and added to the temporary
sum. Upon the completion of eight shift-and-calculate operations, the new sample of the
manipulated variable y(n) is available at the MultAdd block output. The value is stored in a
parallel register to be available for reading using external circuitry, and the circuit is ready
for calculating the next sample of y.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 20

Figure 4. A simplified block diagram, depicting the operation of the proposed circuit.

When a set of new values for the 𝑐଴– 𝑐଻ coefficients is ready, they can be simultane-
ously transferred to the R_c0–R_c7 registers. The transfer should be triggered at the be-
ginning of a new calculation cycle. This is accomplished by appropriately driving the En
(Enable) inputs of the R_c0–R_c7 registers. Apart from the Shift signal, which will be ex-
plained later on, loading new data to the R_c0–R_c7 registers is enabled when the condi-
tion 𝑃𝑎𝑟_𝑊𝑟 𝑎𝑛𝑑 𝑆𝑡𝑎𝑟𝑡 is true. Start and Par_Wr are circuit inputs (see Figure 3). The Start
signal has to be activated to initiate a new calculation cycle. The Par_Wr signal should be
activated every time a modification of the regulator parameters is required and a set of
new, consistent data is available at the 𝑐0_𝑛𝑒𝑤– 𝑐7_𝑛𝑒𝑤 inputs. Updating the 𝑐଴– 𝑐଻ coef-
ficients will be commented on in a more detailed way in Section 7.

The operation of the whole circuit is governed by the Control block. The internal struc-
ture of the Control block incorporates two counter-like circuits. The first of them is respon-
sible for generating the Shift signal, which triggers the shift operation in both rings, i.e.,
transferring data from R_x(n) to R_x(n − 1), from R_x(n − 1) to R_x(n − 2), etc. in the “vari-
able ring”, and from R_c5 to R_c6, from R_c6 to R_c7, etc. in the “parameter ring”.

Performing the multiply-and-add operation on floating-point numbers is a complex
task, for which a number of clock cycles is required. Assuming that the MultAdd block
generates a valid result after l clock cycles, the first counter-like circuit activates the Shift
signal every l-th clock cycle.

The second counter-like circuit is responsible for counting the subsequent multiply-
and-add operations. After eight multiply-and-add calculations followed by shift opera-
tions are completed, the counter triggers loading the result to the R_y(i) register, activates
the Ready output, and blocks the operation of the whole circuit until a new calculation
cycle is initiated by activating the Start input.

Start = 1 ?No

Yes

Par_Wr = 1 ?

No

YesUpdate samples of
x, w, and y

Reset partial sum Update
c0 ÷ c7

No

Rotate variable ring
Rotate parameter ring

8 MultAdd
operations
counted ?

No

Yes

l clock cycles
elapsed ?

Update y(n)
Activate Ready

Yes

Calculate next partial
sum

Figure 4. A simplified block diagram, depicting the operation of the proposed circuit.

Before a new calculation cycle is started, samples of the process variable x, the set-
point w, and the regulator output y must be updated. This is accomplished through the
incorporation of 2-to-1 multiplexers at appropriate positions into the “variable” register
ring. The “Select” inputs of the multiplexers are controlled by the external Start signal. The
Start signal should be activated for one clock cycle before the actual calculations begin. The
activation of the Start signal allows for new data to be loaded to the registers that store
x(n), w(n), and y(n − 1). The remaining data are shifted right, following the ring direction.
In this way, the old value of the x(n) sample is transferred to the register storing x(n − 1),
while x(n − 1) is transferred to x(n − 2), w(n) to w(n − 1), and so on.

Updating the c0–c7 coefficients is accomplished in a similar manner. The registers in
the “parameter ring” are interlaced with 2-to-1 multiplexers, and the “Select” inputs of the
multiplexers are controlled by the Start input. However, it is assumed that the values of the
coefficients do not need to be updated every time a new calculation cycle is initiated.

When a set of new values for the c0–c7 coefficients is ready, they can be simultaneously
transferred to the R_c0–R_c7 registers. The transfer should be triggered at the beginning
of a new calculation cycle. This is accomplished by appropriately driving the En (Enable)
inputs of the R_c0–R_c7 registers. Apart from the Shift signal, which will be explained
later on, loading new data to the R_c0–R_c7 registers is enabled when the condition
Par_Wr and Start is true. Start and Par_Wr are circuit inputs (see Figure 3). The Start

Electronics 2024, 13, 1598 11 of 19

signal has to be activated to initiate a new calculation cycle. The Par_Wr signal should be
activated every time a modification of the regulator parameters is required and a set of new,
consistent data is available at the c0_new–c7_new inputs. Updating the c0–c7 coefficients
will be commented on in a more detailed way in Section 7.

The operation of the whole circuit is governed by the Control block. The internal
structure of the Control block incorporates two counter-like circuits. The first of them is
responsible for generating the Shift signal, which triggers the shift operation in both rings,
i.e., transferring data from R_x(n) to R_x(n − 1), from R_x(n − 1) to R_x(n − 2), etc. in the
“variable ring”, and from R_c5 to R_c6, from R_c6 to R_c7, etc. in the “parameter ring”.

Performing the multiply-and-add operation on floating-point numbers is a complex
task, for which a number of clock cycles is required. Assuming that the MultAdd block
generates a valid result after l clock cycles, the first counter-like circuit activates the Shift
signal every l-th clock cycle.

The second counter-like circuit is responsible for counting the subsequent multiply-
and-add operations. After eight multiply-and-add calculations followed by shift operations
are completed, the counter triggers loading the result to the R_y(i) register, activates the
Ready output, and blocks the operation of the whole circuit until a new calculation cycle is
initiated by activating the Start input.

5. Implementation of the Proposed Circuit

The circuit presented in Figure 3 was implemented in the Quartus Prime, v. 22.1, Lite
Edition software from Intel. The register blocks, the control unit, and the whole circuit struc-
ture were described in the Verilog language. The MultAdd block was implemented using
the “FP Functions Intel FPGA” IP core [46] configured for the multiply-and-add operation.
The single-precision floating-point (32-bit) number format was selected for calculations.

The IP core generates a valid result after a number of clock cycles (i.e., latency), which
can be selected within a certain range during the core configuration. Setting the latency
parameter influences the maximum clock frequency at which the core is able to run, and its
cost, i.e., the amount of logic resources required to have it synthesized. In general, setting a
low latency (e.g., l = 2) leads to solutions requiring fewer logic resources but running at
lower frequencies. On the other hand, when high latency values are selected, the eventual
solutions are more expensive, but a benefit in operation frequency is achieved. So, setting
the right parameters for the IP core is a kind of trade-off between speed and cost.

For the solution presented in this paper, the latency l was set to 10. The IP core
generator estimated the maximum clock frequency of 102 MHz and the cost at 2 multiplier
blocks plus 1192 LUTs.

The evaluation of the formula presented in Equation (18) requires eight multiply-
and-add operations. With such an assumption, it is clear that the actual calculations take
8 × l = 80 clock cycles. One additional clock cycle is necessary to transfer the result to the
output register after the result is ready. So, the whole calculation cycle for generating one
sample of the output signal takes 81 clock cycles.

The circuit was synthesized for a Cyclone V device (5CGTFD9E5F35C7 [49]), which
is classified as a cost-efficient option for an FPGA designer. After the design was actu-
ally synthesized, it turned out that the estimation of both the maximum clock frequency
and resource usage delivered by the IP core generator was too pessimistic. The static
timing analyzer module of the Quartus Prime system estimated the maximum clock fre-
quency at 157.1 MHz. Therefore, it could be estimated that the execution time TE, i.e., the
time delay, which is required, before a valid result is available at the circuit output, is
81 × 1/157.1 = 516 ns.

A comparison of parameters obtained for the proposed solution against some other
ones presented in the references is shown in Table 1. The terms “basic” and “extended”, in
the column of the table labeled “PID formula”, refer to the “basic” and “extended” PID
formulas described by Equations (1) and (4).

Electronics 2024, 13, 1598 12 of 19

Table 1. A comparison of parameters obtained for various implementations of a PID regulator in
FPGA devices.

Work PID
Formula

Number
Format

FPGA
Device Logic Resources fclk [MHz] Clock

Cycles tE [ns]

Sreenivasappa, B. V.;
Udaykumar, R. Y [37] basic Fixed-point,

8 bits Cyclone I 224 LUTs,
32 registers 75 1 13

Yuen Fong Chan;
Moallem, M. [38]

(parallel structure)
extended Fixed-point,

16 bits Spartan 2E 1142 slices (2284 LUTs),
327 registers 15 1 67

Yuen Fong Chan;
Moallem, M. [38]
(serial structure)

extended Fixed-point,
16 bits Spartan 2E 437 slices (874 LUTs),

406 registers 47 17 361

Milik, A.,
Hrynkiewicz, E. [50] extended Fixed-point,

32 bits Spartan 6 271 LUTs, 442 registers,
2 DSP48 blocks 231.5 18 78

Yankai Xu; et al. [42] extended

Floating-point
(mantissa—

16 bits,
exponent—5 bits)

Cyclone I
1377 Les

(1377 LUTs,
1377 registers)

50 30 600

Ziębiński, A. et al. [43] basic Floating-point,
32 bits Virtex 4 4457 registers, 83,695

equivalent logic gates 190 41 215

Ziębiński, A. et al. [43] basic Floating-point,
32 bits Spartan 2E 4482 registers, 83,799

equivalent logic gates 76 41 539

Dedania, R., Sang-Woo
Jun [21] basic Floating-point,

32 bits
iCE40
UP5K

3998 LUTs,
3998 registers,
3 DSP blocks

26 41 1560

Bagni, D.,
Mackay, D. [51] extended Floating-point,

32 bits Zynq
1770 LUTs,

870 registers,
5 DSP48 blocks

116 37 320

This work extended Floating-point,
32 bits Cyclone V

1173 LUTs (339 with
more than 4 inputs),

1026 registers,
1 DSP block

157 81 516

Most of the structures presented in the table require a number of clock cycles to
calculate a valid result. Thus, the tE (i.e., “execution time”) parameter was introduced
to enable the realistic assessment of the speed achievable for the proposed solutions.
The “execution time” is equal to the number of clock cycles N required to complete the
calculations, divided by the estimation for maximum clock frequency fMax provided by
static timing analysis tools.

tE =
N

fMax
(28)

The TE parameter constitutes the low limit for the sampling period, which is achievable
for a particular case.

While analyzing the results presented in the table, one should keep in mind that
the comparison is somewhat blurred by the fact that the designs use different FPGA
devices, which may differ in logic resources available onboard (e.g., the availability of
multiplier/DSP blocks) and their properties. In particular, the Spartan 6, Cyclone V, and
Zynq FPGAs contain LUT blocks with six inputs, and, thus, offer bigger logic capacity, than
four-input LUTs contained in all the other devices. If synthesized for structures featuring
only four-input LUTs, the solutions reported for these FPGAs would possibly require
more resources.

The shortest execution times TE, along with the smallest resource usage, were reported by
Sreenivasappa and Udaykumar [37]. Similar results were obtained by Dhanabalan et al. [25].
The actual calculations are carried out with combinatorial structures capable of generating
the result in one clock cycle. However, the question remains open as to whether the
accuracy and dynamic range provided by the 8-bit fixed-point number format is sufficient
for a wider class of applications than the ones described in the papers.

Yuen Fong Chan and Moallem [38] experimented with two regulator structures operat-
ing on 16-bit fixed-point numbers. The first structure incorporated parallel multipliers and

Electronics 2024, 13, 1598 13 of 19

was capable of generating the result in one clock cycle. The second implementation used
serial multipliers, for which a number of clock cycles was required to obtain a valid result.

Applying a floating-point format for number representation makes the circuit much
more complex; therefore, the implemented solutions are slower and more demanding for
logic resources.

The flexibility of FPGA devices allows for the easy manipulation of the lengths of the
mantissa and the exponent components in the floating-point representation. A question
is how such manipulations affect the quality of regulation, and what lengths are required
to assure a stable and reliable process. The use of the standard, single-precision, 32-bit
floating-point number format, with 8 bits assigned for the exponent, and 23 bits for the
mantissa, is commonly accepted, at least in PLCs. Such an approach is believed to provide
sufficient accuracy for the great majority of regulation tasks.

Yankai Xu et al. [42] used a number format that resembles the conventional floating-
point concept but used a 5-bit exponent, and 16-bit mantissa.

The standard single-precision floating-point format was used by Ziębiński et al. [43],
Dedania and Sang-Woo Jun [21], and in this study. Unfortunately, exact data concerning
the usage of logic resources expressed in LUT blocks are not reported in [43]. Nevertheless,
the results comparable to the register counts can be expected, i.e., thousands. However,
to be honest, the solution implemented by Ziębiński et al. comprises not only the actual
arithmetic unit calculating samples of the y(n) signal but also contains some additional
circuitry responsible for updating the regulator parameters.

The authors decided to enhance the comparison with two other cases and to present
results obtained for structures, which were not directly designed by a human but generated
automatically by software tools, right from a description in a high-level programming
language. The first one [50] was generated for fixed-point numbers and the second one [51]
was for the floating-point case. The authors believe that these examples enable readers to
develop a more general view of what is possible and feasible.

Research works carried out by Milik are focused on developing algorithms that make
it possible to directly transfer functions described originally by a PLC program into hard-
ware resources available in FPGA devices. The solution reported in [50] was one of the
benchmarks used by the authors to verify the efficiency of their algorithms. The regu-
lator structure was generated using software algorithms from a program developed in
the IL (Instruction List) language. Some more examples following this approach can be
found in [52].

The solution presented in [51] was prepared to demonstrate the possibilities of high-
level synthesis tools from Xilinx, San Jose, CA, USA. It was generated by the Vivado HLS
system from a description in the C language. The solution uses a moderate number of LUT
blocks but at the expense of as many as 5 DSP48 blocks.

The comparison presented in Table 1 indicates that the structure proposed in this
study is comparable with the other implementations operating on floating-point numbers
when considering operation speed, while being significantly cheaper. It is also worth
mentioning that the regulators described by Ziębiński et al. and Dedania and Sang-Woo
Jun implemented the basic PID formula (Equation (1)), while the circuit proposed in this
paper uses the extended form (Equation (4)).

6. Testing and Verification

The correctness of the proposed circuit structure and its proper operation were verified
through a number of functional tests. The tests were carried out with the use of the Questa
Intel Starter FPGA Edition-64 2021.2 simulator from Siemens, Munich, Germany.

A simple Verilog testbench was prepared to supply appropriate samples of the x(n)
and w(n) signals to the circuit inputs and to collect samples of the output signal y(n). The
open-loop configuration was tested, i.e., the regulator as a standalone block without the
manipulated object, and not surrounded by the negative feedback loop (see Figure 1).

Electronics 2024, 13, 1598 14 of 19

The operation of the circuit was simulated for unit-step excitations applied to the
circuit inputs x and w. A unit-step response in the time domain contains full information
concerning the dynamic properties of an object subjected to the analysis, being also much
easier for generation by means of common simulation tools, as compared to any response
in the frequency domain.

In total, 1000 samples of the output signal, being a response to the unit step supplied to
the input, were recorded for various sets of regulator parameters KP, TI, TD, a, b, c, and TS.

To provide the relevant reference data, a simple program in the C++ language was writ-
ten. The program implements the “obvious” approach, i.e., the PID formula with the pro-
portional, integral, and derivative components discretized separately (Equations (9)–(12)).
The program operates on double-precision (64-bit) floating-point numbers.

Samples of the y(n) signal, obtained from simulation in the Questa software (Questa
Intel Starter FPGA Edition-64 2021.2), were compared against the reference data provided
by the C++ program. The highest value of relative error, which was recorded for parameter
sets containing only the P and PD components is 1.2 × 10−6. This is a result of the limited
accuracy of single-precision floating-point number representation, which is estimated at
ca. 6–7 significant digits.

Errors greater by an order of magnitude were, in general, recorded for parameter sets
containing the integral component. The greatest value of the relative error recorded during
experiments was 7.6 × 10−5. The errors resulting from the limited precision of the number
format tend to build up in the integral component.

Nevertheless, similar effects can be expected in the analog counterparts, which suffer
from the limited precision of analog components, e.g., offset voltage. These effects are
highly reduced in the closed-loop configuration containing the negative feedback (see
Figure 1).

Sample plots, showing a comparison of the data obtained from the simulation against
the reference data generated by the C++ program, are presented in Figure 5. Figure 5a
shows data obtained for a PD regulator with the following parameters: KP = 1, TI = ∞,
TD = 1, a = 0.1, b = 1, c = 1, and TS = 1. Figure 5b presents data obtained for a PID regulator
with KP = 0.5, TI = 0.75, TD = 0.2, a = 0.1, b = 0.62, c = 0, and TS = 0.1. The latter set
of parameters was generated with the autotuner included in the TIA Portal software
from Siemens for a popular S7-1200 PLC controlling a small DC drive. In both cases, the
simulated circuit was excited by unit step signals with magnitudes of 0.1 and 1 applied,
respectively, to the x and w inputs.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 20

proportional, integral, and derivative components discretized separately (Equations (9)–
(12)). The program operates on double-precision (64-bit) floating-point numbers.

Samples of the y(n) signal, obtained from simulation in the Questa software (Questa
Intel Starter FPGA Edition-64 2021.2), were compared against the reference data provided
by the C++ program. The highest value of relative error, which was recorded for parameter
sets containing only the P and PD components is 1.2 × 10−6. This is a result of the limited
accuracy of single-precision floating-point number representation, which is estimated at
ca. 6–7 significant digits.

Errors greater by an order of magnitude were, in general, recorded for parameter sets
containing the integral component. The greatest value of the relative error recorded dur-
ing experiments was 7.6 × 10−5. The errors resulting from the limited precision of the num-
ber format tend to build up in the integral component.

Nevertheless, similar effects can be expected in the analog counterparts, which suffer
from the limited precision of analog components, e.g., offset voltage. These effects are
highly reduced in the closed-loop configuration containing the negative feedback (see Fig-
ure 1).

Sample plots, showing a comparison of the data obtained from the simulation against
the reference data generated by the C++ program, are presented in Figure 5. Figure 5a
shows data obtained for a PD regulator with the following parameters: KP = 1, TI = ∞, TD =
1, a = 0.1, b = 1, c = 1, and TS = 1. Figure 5b presents data obtained for a PID regulator with
KP = 0.5, TI = 0.75, TD = 0.2, a = 0.1, b = 0.62, c = 0, and TS = 0.1. The latter set of parameters
was generated with the autotuner included in the TIA Portal software from Siemens for a
popular S7-1200 PLC controlling a small DC drive. In both cases, the simulated circuit was
excited by unit step signals with magnitudes of 0.1 and 1 applied, respectively, to the x
and w inputs.

(a) (b)

Figure 5. Sample plots showing a response to a unit step of (a) a PD regulator; and (b) a PID regu-
lator.

The analysis of the data obtained from the verification process, as described above,
indicates that the circuit proposed in this study properly implements the digitalized ver-
sion of the extended PID formula described by Equation (4).

7. A General Concept of the Entire Regulator Device
The circuit described in Section 4 can serve as the “execution unit”, i.e., the main part

of an actual regulator. However, such a unit must be accompanied by some additional
circuitry to make up a fully functional device. The proposed concept of the entire regulator
is presented in Figure 6.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8 9 10
Sample

y(n)

Questa simulation
Reference data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10
Sample

y(n)

Questa simuation
Reference data

Figure 5. Sample plots showing a response to a unit step of (a) a PD regulator; and (b) a PID regulator.

The analysis of the data obtained from the verification process, as described above,
indicates that the circuit proposed in this study properly implements the digitalized version
of the extended PID formula described by Equation (4).

Electronics 2024, 13, 1598 15 of 19

7. A General Concept of the Entire Regulator Device

The circuit described in Section 4 can serve as the “execution unit”, i.e., the main part
of an actual regulator. However, such a unit must be accompanied by some additional
circuitry to make up a fully functional device. The proposed concept of the entire regulator
is presented in Figure 6.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20

Figure 6. A general structure of the proposed PID regulator device.

The “PID calculator” described in Section 4 operates on floating-point numbers. Sam-
ples of the process variable x need to be delivered to its inputs in the appropriate format.
Similarly, samples of the manipulated variable y, calculated using the “PID calculator”,
need to be converted and transferred to the regulator output. These operations should be
accomplished with the “Input read and format conversion” and “Format conversion and
output write” blocks.

The process variable x is expected to be an analog signal. Thus, the “Input read and
format conversion” block should comprise in particular an A/D converter and circuitry
that converts a fixed-point number, delivered by the A/D converter, to the floating-point
format processed with the execution unit. Similarly, the “Format conversion and output
write” block should contain a kind of D/A converter (e.g., circuitry generating a pulse-
width modulation signal), and a circuit that converts the floating-point number calculated
by the executive unit to a fixed-point representation, which is appropriate for D/A con-
version.

If modifying the regulator parameters is a required function of the device, the circuit
should contain a CPU/MCU core, responsible in particular for the conversion of the regu-
lator parameters KP, TI, TD, a, b, c, and TS to the 𝑐଴–𝑐଻ coefficients suitable for the execution
unit. During the typical operation of a PID regulator, the KP, TI, TD, a, b, c, and TS parame-
ters are accessed and manipulated, rather than 𝑐଴– 𝑐଻. This concerns both a human oper-
ator, and a high-level application software, e.g., an autotuner, which is capable of finding
the best values of the regulator parameters for a particular object.

The 𝑐଴– 𝑐଻ coefficients are complex functions of KP, TI, TD, a, b, c, and TS, containing,
in particular, the division operation (see Equations (19)–(26)). Implementing the conver-
sion functions in hardware would be very expensive in terms of logic resource usage. On
the other hand, a change in the PID regulator parameters is quite a rare case, if compared
to cyclic and permanent calculations of new samples at the regulator output. Calculating
new values of the 𝑐଴– 𝑐଻ coefficients is not a time-critical task, and it can be conveniently
handled using software running on the CPU. Moreover, introducing a CPU core to the
device structure facilitates the implementation of many additional useful functionalities,
like handling user interface, network communication, self-diagnostic, or, in particular, au-
totuning algorithms.

The analysis of Equations (19)–(26) makes it possible to draw the conclusion that
modifying even a single regulator parameter usually leads to changes in most of the 𝑐଴– 𝑐଻
coefficients. Thus, a possible update of the coefficients should always affect all of them.
The need to modify a single coefficient separately is very unlikely.

To enable the smooth operation of the regulator, without the need to stop the regu-
lation every time, when a parameter needs modification, the regulator structure should
comprise a set of eight parallel registers that shall serve as the source of new data for the 𝑐0_𝑛𝑒𝑤– 𝑐7_𝑛𝑒𝑤 inputs (see Figure 3). The registers should be integrated with the CPU
system, e.g., as parallel I/O ports. In that way, the CPU core will be able to access them

PID
calculator

Input read
and format
conversion

x(n) Format
conversion

and output write

CPU

Parallel
registersc0 c1 c2 c7w . . .

y(n)

. . .

x(t) y(t)

Network
interface

User
interface

Figure 6. A general structure of the proposed PID regulator device.

The “PID calculator” described in Section 4 operates on floating-point numbers. Sam-
ples of the process variable x need to be delivered to its inputs in the appropriate format.
Similarly, samples of the manipulated variable y, calculated using the “PID calculator”,
need to be converted and transferred to the regulator output. These operations should be
accomplished with the “Input read and format conversion” and “Format conversion and
output write” blocks.

The process variable x is expected to be an analog signal. Thus, the “Input read and
format conversion” block should comprise in particular an A/D converter and circuitry that
converts a fixed-point number, delivered by the A/D converter, to the floating-point format
processed with the execution unit. Similarly, the “Format conversion and output write”
block should contain a kind of D/A converter (e.g., circuitry generating a pulse-width
modulation signal), and a circuit that converts the floating-point number calculated by the
executive unit to a fixed-point representation, which is appropriate for D/A conversion.

If modifying the regulator parameters is a required function of the device, the circuit
should contain a CPU/MCU core, responsible in particular for the conversion of the
regulator parameters KP, TI, TD, a, b, c, and TS to the c0–c7 coefficients suitable for the
execution unit. During the typical operation of a PID regulator, the KP, TI, TD, a, b, c, and TS
parameters are accessed and manipulated, rather than c0–c7. This concerns both a human
operator, and a high-level application software, e.g., an autotuner, which is capable of
finding the best values of the regulator parameters for a particular object.

The c0–c7 coefficients are complex functions of KP, TI, TD, a, b, c, and TS, containing, in
particular, the division operation (see Equations (19)–(26)). Implementing the conversion
functions in hardware would be very expensive in terms of logic resource usage. On the
other hand, a change in the PID regulator parameters is quite a rare case, if compared to
cyclic and permanent calculations of new samples at the regulator output. Calculating
new values of the c0–c7 coefficients is not a time-critical task, and it can be conveniently
handled using software running on the CPU. Moreover, introducing a CPU core to the
device structure facilitates the implementation of many additional useful functionalities,
like handling user interface, network communication, self-diagnostic, or, in particular,
autotuning algorithms.

The analysis of Equations (19)–(26) makes it possible to draw the conclusion that
modifying even a single regulator parameter usually leads to changes in most of the c0–c7
coefficients. Thus, a possible update of the coefficients should always affect all of them.
The need to modify a single coefficient separately is very unlikely.

Electronics 2024, 13, 1598 16 of 19

To enable the smooth operation of the regulator, without the need to stop the regulation
every time, when a parameter needs modification, the regulator structure should comprise a
set of eight parallel registers that shall serve as the source of new data for the c0_new–c7_new
inputs (see Figure 3). The registers should be integrated with the CPU system, e.g., as
parallel I/O ports. In that way, the CPU core will be able to access them freely, at moments
convenient for the program the CPU is executing. When a consistent set of new values of the
coefficients is ready to be accessed with the execution unit, the CPU can trigger parameter
updates by activating the Par_Wr input together with the Start input (see Figure 3). It
is important to change all the coefficients at once in order to prevent the unpredictable
behavior of the regulator.

Another possible application of the circuit presented in Figure 3 consists of using it
as a regulator, which is dedicated to a specific object (e.g., a DC–DC converter). In such a
case, it is quite possible that the regulator parameters will not change during the whole
lifecycle of the device. Thus, the set of regulator parameters can be calculated only once,
before the circuit is actually synthesized, and the new values for the c0–c7 coefficients can
be implemented as constants. In such a case, the CPU/MCU core is not required, and the
components of the circuit presented in Figure 3, responsible for controlling the coefficient
update, i.e., the Par_Wr input, together with the corresponding And functor, can be deleted.

Furthermore, in certain technologies, e.g., modern SRAM-based FPGA devices, it is
possible to freely set the initial values of all memory elements. Should the regulator be im-
plemented in such a device, the c0–c7 coefficients can be downloaded to the Reg_c0–Reg_c7
registers after reset, together with the device configuration, and the Mux_c0–Mux_c7 multi-
plexers can be eliminated as well.

Alternatively, the CPU can be substituted with an AI circuit, e.g., a neural network to
be used for parameter tuning.

8. Conclusions

The paper proposes a new implementation of the PID algorithm in digital hardware.
The proposed circuit implements the extended PID formula (Equation (4)), containing
a non-ideal derivative component, as well as weighting coefficients in the proportional
and derivative components, which enables reducing the influence of rapid changes in the
setpoint to the regulator output.

The PID formula is discretized and converted to a form where samples of the output
signal y depend on current values of the process variable x, the setpoint w, and two
preceding samples of y, x, and w (Equation (18)). The evaluation of the results needs eight
multiplication and seven addition operations. The final formula is very regular, which
offers many options to a hardware designer to arrange hardware components necessary to
perform the relevant arithmetic operations.

The implementation presented in the paper operates on standard, single-precision
(32-bit) floating-point numbers. The proposed circuit structure is optimized for cost, i.e.,
the amount of logic resources required for implementation. It contains only one arithmetic
block. The structure consists of three main parts: the MultAdd block, responsible for
performing the actual calculations, and two sets of parallel registers arranged in two rings:
the “variable ring” and the “parameter ring” (see Figure 3). The “variable ring” stores
current and preceding samples of the y, x, and w variables, while the “parameter ring”
contains a set of eight coefficients, which depend on the actual regulator parameters KP, TI,
TD, a, b, c, and TS.

The calculations are accomplished in a sequential manner: the data in both rings are
shifted and subsequently applied to the MultAdd block inputs, in which the partial and
final results are actually evaluated.

The circuit was implemented in a Cyclone V FPGA device from Intel, using the Quartus
Prime software (version 22.1, Lite edition). The MultAdd block was implemented as an IP
core available in the tool. The validation of the circuit was carried out as a simulation in
the Questa Sim simulator (Questa Intel Starter FPGA Edition-64 2021.2).

Electronics 2024, 13, 1598 17 of 19

For the particular implementation, which is described in the paper, 81 clock cycles
are required to evaluate one sample of the output signal. Since the maximum clock
frequency was estimated using the static timing analysis tools at ca. 150 MHz, the delay,
which is required, before a valid result is available at the circuit output, can be estimated
at ca. 550 ns. So, the solution presented in the paper is comparable, in terms of speed,
with other hardware implementations of the PID algorithm operating on standard single-
precision floating-point numbers presented in the references, where the delay ranges from
215 ns to 1560 ns. The parameters offered by the solution disclosed in this paper should meet
speed requirements demanded by the fastest control tasks reported in the literature, i.e.,
precise motion control, controlling the operation of voltage converters, or the stabilization
of magnetic bearings, where sampling periods within the range of tens of microseconds
are required.

However, the solution presented in the paper is much more efficient in the usage of
logic resources. It uses 1173 LUT blocks, 1026 registers, and 1 DSP block, while most of
the other structures require ca. 4000 LUT blocks and a similar number of registers. The
solution presented herein is, thus, much cheaper, leaving more space in the FPGA for other
functionalities, like CPU/MCU cores, or elements of artificial intelligence.

Should the modification of the regulator parameters be a mandatory function of the
device, the circuit described in the paper should be included as the “execution unit” in
a bigger system governed by a CPU/MCU core. Such a system can be conveniently im-
plemented in an SoC (System-on-Chip), or SoPC (System-on-Programmable-Chip) device,
i.e., a device, that, apart from the “FPGA fabric”, also contains a CPU core. Devices of
this type are on offer by all main PLD vendors and are becoming more and more popular
among designers.

Author Contributions: Conceptualization, J.K. and F.J.; methodology, J.K.; implementation, J.K.;
software, F.J.; validation, J.K. and F.J.; formal analysis, F.J.; resources, J.K. and F.J.; writing—original
draft preparation, J.K.; writing—review and editing, F.J.; supervision, J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by funding from the Ministry of Science and Higher Education
for Statutory Activities of Digital Systems Division of the Silesian University of Technology in Gliwice
(02/150/BK_24/0021).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Conflicts of Interest: Author Filip Jokiel is an employee of the Cadence Design Systems company.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Siemens AG. SIMATIC. Standard PID Control Manual; Documentation No. A5E00204510-02; Edition 03/2003; Siemens AG:

Munich, Germany, 2003.
2. Rockwell Automation. Estimated Logix 5000 Controller Instruction Execution Times. Reference Manual. Rockwell Automation

Publication LOGIX-RM002B-EN-P—July 2019. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&
opi=89978449&url=https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/logix-rm002_-en-p.
pdf&ved=2ahUKEwjcv5CuycWFAxVvslYBHTlSD90QFnoECBgQAQ&usg=AOvVaw043BzUdJatbHjHWUBYEsad (accessed
on 11 March 2024).

3. Siemens, AG. SIMATIC S7-1200, S7-1500 PID Control. Function Manual; Documentation No. A5E35300227-AG; Edition 11/2023;
Siemens AG: Munich, Germany, 2023.

4. Mirac, B.; Kilic, A. Assessment of Several PID Controllers Applied to DC Motors. In Proceedings of the 5th International
Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT’2021, Ankara, Turkey, 21–23 October 2021.

5. Zhang, M.; Guo, L.; He, C.; Bao, B.; Lu, Z. Design and implementation of control system for transport robot based on STM32
microcontroller. In Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications,
ICAICA’2021, Dalian, China, 28–30 June 2021.

6. Zhao, C.; Hua, Z. Design of Motor Speed Control System Based on STM32 Microcontroller. In Proceedings of the IEEE International
Conference on Computation, Big-Data and Engineering, ICCBE’2022, Yunlin, Taiwan, 27–29 May 2022.

https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/logix-rm002_-en-p.pdf&ved=2ahUKEwjcv5CuycWFAxVvslYBHTlSD90QFnoECBgQAQ&usg=AOvVaw043BzUdJatbHjHWUBYEsad
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/logix-rm002_-en-p.pdf&ved=2ahUKEwjcv5CuycWFAxVvslYBHTlSD90QFnoECBgQAQ&usg=AOvVaw043BzUdJatbHjHWUBYEsad
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/logix-rm002_-en-p.pdf&ved=2ahUKEwjcv5CuycWFAxVvslYBHTlSD90QFnoECBgQAQ&usg=AOvVaw043BzUdJatbHjHWUBYEsad

Electronics 2024, 13, 1598 18 of 19

7. Huang, Y.; Chen, H.; Qin, L. Design of self-balancing vehicle based on cascade PID control system. In Proceedings of the 4th
International Conference on Advances in Computer Technology, Information Science and Communications, CTISC’2022, Suzhou,
China, 22–24 April 2022.

8. Blachuta, M.; Bieda, R.; Grygiel, R. Sampling Rate and Performance of DC/AC Inverters with Digital PID Control—A Case Study.
Energies 2021, 14, 5170. [CrossRef]

9. Zhang, X. Research and design of a three-port DC-DC converter based on PID algorithm. In Proceedings of the IEEE 4th
International Conference on Civil Aviation Safety and Information Technology, ICCASIT’2022, Dali, China, 2–14 October 2022.

10. Ren, Z.; Tang, Z.; Wang, R. Research on key technologies of four-rotor UAV flight control system based on STM32 microcontroller.
In Proceedings of the IEEE 6th International Conference on Information Systems and Computer Aided Education, ICISCAE’2023,
Dalian, China, 23–25 September 2023.

11. Chu, C.T.; Chang, Y.S.; Wang, Y.K. Ultra low power MSP432 calculation for PID-neural control in magnetic bearing system. In
Proceedings of the 5th International Symposium on Next-Generation Electronics (ISNE), Hsinchu, Taiwan, 4–6 May 2016; pp. 1–2.
[CrossRef]

12. Zhou, C.; Zhang, Q.; Ezechias, D.D.; Gao, Y.; Deng, H.; Qu, S. A General Digital PID Controller Based on PWM for Buck Converter.
In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June 2014–4 July 2014.

13. Guo, L. Implementation of Digital PID Controllers for DC-DC Converters using Digital Signal Processors. In Proceedings of the
2007 IEEE International Conference on Electro/Information Technology, Chicago, IL, USA, 17–20 May 2007.

14. He, X.; Huang, C.; Li, Y.; Wang, H.; Lei, D.; Yao, M. An Adaptive Dimming System of High-Power LED Based on Fuzzy PID
Control Algorithm for Machine Vision Lighting. In Proceedings of the IEEE 4th Information Technology, Networking, Electronic
and Automation Control Conference, ITNEC’2020, Chongqing, China, 12–14 June 2020.

15. Lei, Y.; Jin, X.; Zhou, Y. An Intelligent Control Strategy for Large Inertia Servo System. In Proceedings of the 5th International
Conference on Smart Grid and Electrical Automation, ICSGEA’2020, Zhangjiajie, China, 13–14 June 2020.

16. Noshadi, A.; Shi, J.; Poolton, S.; Lee, W.S.; Kalam, A. Comprehensive Experimental Study on the Stabilization of Active Magnetic
Bearing System. In Proceedings of the Australasian Universities Power Engineering Conference, AUPEC’2014, Perth, Australia,
28 September–1 October 2014.

17. Cheng, X.; Deng, S.; Cheng, B.-X.; Hu, Y.-F.; Wu, H.-C.; Zhou, R.-G. Design and Implementation of a Fault-Tolerant Magnetic
Bearing Control System Combined With a Novel Fault-Diagnosis of Actuators. IEEE Access 2021, 9, 2454–2465. [CrossRef]

18. Fan, X.; Li, Z.; Tao, Y.; Wang, Y.; Feng, S.; Li, W. Design of Adaptive Backstepping Control for Aircraft Generator Control
System. In Proceedings of the IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics,
PRECEDE’2021, Jinan, China, 20–22 November 2021; pp. 92–97. [CrossRef]

19. Kumar, V.; Nema, S.; Kumar, D.; Nema, R.K. DSP-Based PWM AC-DC Converter for DC voltage Regulation with Linear control
Characteristics. In Proceedings of the IEEE 2nd International Conference on Electrical Power and Energy Systems, ICEPES’2021,
MANIT, Bhopal, India, 10–11 December 2021.

20. Chen, S.-C.; Hoai, H.-K. Studying an Adaptive Fuzzy PID Controller for PMSM with FOC based on MATLAB Embedded
Coder. In Proceedings of the IEEE International Conference on Consumer Electronics–Taiwan, ICCE-TW’2019, Yilan, Taiwan,
20–22 May 2019.

21. Dedania, R.; Jun, S.-W. Very Low Power High-Frequency Floating Point FPGA PID Controller. In Proceedings of the 12th Interna-
tional Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies, HEART’22, HEART2022: International
Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies, Tsukuba, Japan, 9–10 June 2022; pp. 102–107.
[CrossRef]

22. Das, P.; Edavoor, P.J.; Raveendran, S.; Rahulkar, A.D. Design and Implementation of Computationally Efficient Architecture of
PID based Motion Controller for Robotic Land Navigation System in FPGA. In Proceedings of the Conference on Information
and Communication Technology, CICT’17, Gwalior, India, 3–5 November 2017.

23. Miao, Z.; Yang, F.; Li, B.; Gu, K.; He, C. The Application of Feedforward PID Control Based on FPGA in Universal Testing
Machine. In Proceedings of the 38th Chinese Control Conference, Guangzhou, China, 27–30 July 2019.

24. Mie, S.; Okuyama, Y.; Saito, H. Simplified Quadcopter Simulation Model for Spike-based Hardware PID Controller using
SystemC-AMS. In Proceedings of the IEEE 12th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip,
Hanoi, Vietnam, 12–14 September 2018.

25. Dhanabalan, G.; Tamil Selvi, S.; Mahdal, M. Scan Time Reduction of PLCs by Dedicated Parallel-Execution Multiple PID
Controllers Using an FPGA. Sensors 2022, 22, 4584. [CrossRef] [PubMed]

26. Zeng, H.T.; Yuan, J. A Fuzzy Adaptive PID System of DC Brush Motor for Snake Arm Robot. In Proceedings of the 2nd
International Conference on Electrical Engineering and Control Science IC2ECS’2022, Nanjing, China, 16–18 December 2022.

27. Cui, L.; Misdih, M. Adaptive Hierarchical Optimization of Sculpture 3D Printing Based on Fuzzy PID Algorithm. In Proceedings of
the International Conference on Mechatronics, IoT and Industrial Informatics ICMIII’2023, Melbourne, Australia, 9–11 June 2023.

28. Liu, J.; Pei, D.; Liu, M.; Sun, H. FPGA Implementation of Family Service Robot based on Neural Network PID Motion Control
System. In Proceedings of the International Conference on Electronic Engineering and Informatics EEI’2019, Nanjing, China,
8–10 November 2019.

29. Hassan, R.F.; Ajel, A.R.; Abbas, S.J.; Humaidi, A.J. FPGA based HIL co-simulation of 2DOF-PID controller tuned by PSO
optimization algorithm. ICIC Express Lett. 2022, 16, 12.

https://doi.org/10.3390/en14165170
https://doi.org/10.1109/ISNE.2016.7543330
https://doi.org/10.1109/ACCESS.2020.3046668
https://doi.org/10.1109/PRECEDE51386.2021.9681034
https://doi.org/10.1145/3535044.3535060
https://doi.org/10.3390/s22124584
https://www.ncbi.nlm.nih.gov/pubmed/35746367

Electronics 2024, 13, 1598 19 of 19

30. Sung, G.-M.; Chiang, P.-Y.; Tsai, Y.-Y. Predictive Direct Torque Control ASIC with Fuzzy Voltage Vector Control and Neural
Network PID Speed Controller. In Proceedings of the IEEE International Future Energy Electronics Conference IFEEC’2021,
Taipei, Taiwan, 16–19 November 2021. [CrossRef]

31. Wang, J.; Li, M.; Jiang, W.; Huang, Y.; Lin, R. A Design of FPGA-Based Neural Network PID Controller for Motion Control System.
Sensors 2022, 22, 889. [CrossRef] [PubMed]

32. Lee, K.; Kim, Y. Design and Analysis of Digital PID Controller in MCU and FPGA. In Proceedings of the International SoC Design
Conference ISOCC 2018, Daegu, Republic of Korea, 12–15 November 2018.

33. Ngo, H.Q.T.; Nguyen, H.D.; Truong, Q.V. A design of PID Controller Using FPGA-Realization for Motion Control Systems. In
Proceedings of the International Conference on Advanced Computing and Application ACOMP’2020, Quy Nhon, Vietnam,
25–27 November 2020.

34. Rusia, P.; Bhongade, S. Design and Implementation of Digital PID Controller using FPGA for Precision Temperature Control. In
Proceedings of the 6th IEEE Power India International Conference PIICON’2014, Delhi, India, 5–7 December 2014.

35. Kocur, M.; Kozak, S.; Dvorscak, B. Design and Implementation of FPGA—Digital Based PID Controller. In Proceedings of the
15th International Carpathian Control Conference ICCC’2014, Velke Karlovice, Czech Republic, 28–30 May 2014.

36. Trimeche, A.; Sakly, A.; Mtibaa, A.; Benrejeb, M. PID Controller Using FPGA Technology. In Advances in PID Control; Yurkevich,
V.D., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-267-8.

37. Sreenivasappa, B.V.; Udaykumar, R.Y. Design and Implementation of FPGA Based Low Power Digital PID Controllers. In
Proceedings of the Fourth International Conference on Industrial and Information Systems, ICIIS 2009, Peradeniya, Sri Lanka,
28–31 December 2009.

38. Chan, Y.F.; Moallem, M.; Wang, W. Design and Implementation of Modular FPGA-Based PID Controllers. IEEE Trans. Ind.
Electron. 2007, 54, 1898–1906. [CrossRef]

39. Wadgaonkar, J.; Bhole, K.; Singh, P. Floating Point FPGA Architecture of PID Controller. In Proceedings of the International
Conference on Industrial Instrumentation and Control ICIC’2015, Pune, India, 28–30 May 2015.

40. Zurita-Bustamante, E.W.; Linares-Flores, J.; Guzmán-Ramírez, E.; Sira-Ramírez, H. FPGA Implementation of PID Controller for
the Stabilization of a DC-DC “Buck” Converter. In Frontiers in Advanced Control Systems; Ginalber Luiz de Oliveira Serra; InTech:
Rijeka, Croatia, 2012; pp. 215–230.

41. Alinezhad, P.; Ahmadi, A. FPGA Design and Implementation of Digital PID Controller based on floating point arithmetic. In
Proceedings of the 8th Symposium on Advances in Science and Technology 8thSASTech, Mashhad, Iran, 20 November 2014.

42. Xu, Y.; Shuang, K.; Jiang, S.; Wu, X. FPGA Implementation of a Best-precision Fixed-point Digital PID Controller. In Proceedings
of the International Conference on Measuring Technology and Mechatronics Automation ICMTMA’2009, Zhangjiajie, China,
11–12 April 2009.

43. Zębiński, A.; Glinianowicz, M.; Lachowski, G. Implementacja regulatora PID w strukturze FPGA. Pomiary Autom. Kontrola PAK
2008, 54, 523–525. (In Polish)

44. Visioli, A. Practical PID Control; Springer: London, UK, 2006.
45. Liang, Y.; Liu, X. A Method for Improving Transient Response of the Source Measure Unit Based on PID+LPF Controller. In

Proceedings of the IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang,
China, 29–31 January 2023; pp. 748–751. [CrossRef]

46. Intel Corporation. Floating-Point IP Cores User Guide; Documentation No. UG-01058, 2023.05.05; Intel Corporation: Santa Clara,
CA, USA, 2023.

47. AMD Corporation. Floating-Point Operator v7.1, LogiCORE IP Product Guide; Documentation No. PG060; AMD Corporation: Santa
Clara, CA, USA, 2020.

48. Lattice Semiconductor. DFPAU: Floating Point Arithmetic Unit. Available online: https://www.latticesemi.com/products/
designsoftwareandip/intellectualproperty/ipcore/dcdcores/dfpau (accessed on 17 March 2024).

49. Intel Corporation. Cyclone® V Device Handbook; Documentation No. CV-5V2, 2023.10.18; Intel Corporation: Santa Clara,
CA, USA, 2023.

50. Milik, A.; Hrynkiewicz, E. Hardware Mapping Strategies of PLC Programs in FPGAs. In Proceedings of the 15th IFAC Conference
on Programmable Devices and Embedded Systems PDeS 2018, Ostrava, Czech Republic, 23–25 May 2018. [CrossRef]

51. Bagni, D.; Mackay, D. Floating-Point PID Controller Design with Vivado HLS and System Generator for DSP; Xilinx Application Note
XAPP1163 (v1.0). January 23, 2013. Available online: https://www.semanticscholar.org/paper/Floating-Point-PID-Controller-
Design-with-Vivado-Bagni-Mackay/d167958905b1ff4506e29c174b2168f71e617d1a (accessed on 28 February 2024).

52. Milik, A. On hardware synthesis and implementation of PLC programs in FPGAs. Microprocess. Microsyst. 2016, 44, 2–16.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IFEEC53238.2021.9661986
https://doi.org/10.3390/s22030889
https://www.ncbi.nlm.nih.gov/pubmed/35161635
https://doi.org/10.1109/TIE.2007.898283
https://doi.org/10.1109/ICPECA56706.2023.10076250
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/ipcore/dcdcores/dfpau
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/ipcore/dcdcores/dfpau
https://doi.org/10.1016/j.ifacol.2018.07.142
https://www.semanticscholar.org/paper/Floating-Point-PID-Controller-Design-with-Vivado-Bagni-Mackay/d167958905b1ff4506e29c174b2168f71e617d1a
https://www.semanticscholar.org/paper/Floating-Point-PID-Controller-Design-with-Vivado-Bagni-Mackay/d167958905b1ff4506e29c174b2168f71e617d1a
https://doi.org/10.1016/j.micpro.2016.02.003

	Introduction
	PID Regulators in Contemporary Technologies
	Motivation

	The PID Algorithm
	Discretization of the PID Formula
	The Proposed Circuit Structure
	Implementation of the Proposed Circuit
	Testing and Verification
	A General Concept of the Entire Regulator Device
	Conclusions
	References

