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Abstract: The purpose of the paper is to propose a new implementation of the PID (proportional–
integral–derivative) algorithm in digital hardware. The proposed structure is optimized for cost. It
follows a serialized, rather than parallel, scheme. It uses only one arithmetic block, performing the
multiply-and-add operation. The calculations are carried out in a sequentially cyclic manner. The
proposed circuit operates on standard single-precision (32-bit) floating-point numbers. It implements
an extended PID formula, containing a non-ideal derivative component, and weighting coefficients,
which enable reducing the influence of setpoint changes in the proportional and derivative compo-
nents. The circuit was implemented in a Cyclone V FPGA (Field-Programmable Gate Array) device
from Intel, Santa Clara, CA, USA. The proper operation of the circuit was verified in a simulation.
For the specific implementation, which is reported in the paper, the sampling period of 516 ns was
obtained, which means that the proposed solution is comparable in terms of speed with other hard-
ware implementations of the PID algorithm operating on single-precision floating-point numbers.
However, the presented solution is much more efficient in terms of cost. It uses 1173 LUT (Look-up
Table) blocks, 1026 registers, and 1 DSP (Digital Signal Processing) block, i.e., about 30% of logic
resources required by comparable solutions.
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1. Introduction
1.1. PID Regulators in Contemporary Technologies

For several decades, the PID (proportional–integral–derivative) algorithm has been
accepted as a standard tool to control continuous processes at industrial plants. Its popu-
larity is driven by its versatility, relatively simple principle of operation, and simplicity of
application, i.e., usually only some basic information about the parameters of the controlled
object is required to achieve an acceptable quality of the control process.

First PID regulators were implemented as mechanical or electromechanical devices,
operating in the continuous time domain. PID regulators used in contemporary equipment
are implemented as digital electronic circuits, operating in discrete time.

PID regulators used in contemporary technologies can be, in general, classified as
software-based or hardware-based. The software-based solutions comprise implementations
on Programmable Logic Controllers (PLCs), and dedicated Microcontroller Units (MCUs).
The second option also includes implementations on Digital Signal Processors (DSPs).

If the PID algorithm is executed using a digital device, e.g., a microprocessor, one of
the most important parameters to be considered is the sampling period TS. The minimum
sampling period achievable for a particular digital regulator limits the speed of the process
the regulator is capable of controlling. A practical rule of thumb says that the sampling
period TS should be at least an order of magnitude shorter than the equivalent delay (which
includes the dominant time constant) characterizing the controlled object [1].
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The most popular way of implementing the PID algorithm in contemporary control
systems is to include appropriate instructions in a PLC program. In such a case, the
PID formula is calculated using the main CPU (central processing unit) of the PLC while
executing the control program. The PID instruction should be invoked inside a cyclic
interrupt handling procedure.

The CPU is required to process the overall control program at a sufficient speed;
therefore, handling interrupt routines must not consume too much CPU time. Although the
PID instructions themselves can be executed in microseconds [2,3], in the case of practical
applications, sampling periods of as long as several milliseconds can be expected, and
most often, values of 0.1 s, or even 1 s, are used. The number of control loops that a PLC
can handle at the same time is limited to a low value, e.g., 8, which is enough for a typical
industrial plant.

The second option is to implement the PID calculations in a dedicated/standalone
CPU/MCU. Such an approach offers two benefits:

• The dedicated solution can be compact and well tailored to a particular application;
• If the CPU is not overloaded with other tasks, processing the PID algorithm can be

much faster than in a general-purpose PLC.

There are many studies describing applications of PID controllers based on general-
purpose MCUs [4–11]. Such regulators are predominantly used for precise motion
control [4–7,10,11], and control over the operation of voltage converters [8,9]. The sampling
periods reported in the reference papers are generally measured in milliseconds. However,
in [8], a PID regulator is described with the reported sampling period below 20 µs. It is
implemented on the STM32F407 MCU.

A more advanced (and more expensive) option consists of using a DSP instead of a
general-purpose MCU. This is reported in a number of works [12–20].

Nevertheless, some fast-controlled objects require sampling periods as short as tens of
microseconds. In particular, it applies to the stabilization of magnetic bearings [11,16,17]
and precise motion control [21]. In [21], a PID regulator is used to control the operation of
insect-size robots. Reportedly, the sampling frequency required for that task exceeds 10
kHz, which corresponds to sampling periods of less than 100 µs. There are works reporting
that it is possible to achieve sampling periods of tens of microseconds with DSPs [13,15,17].
However, this seems to be the limit for both MCU- and DSP-based solutions. If more
control loops are required for the efficient control of a particular device, more DSP units
must be incorporated into a control system [17,18]. Yet, some other papers state that the
speed provided by MCU- and DSP-based solutions is not sufficient [22–24]. If so, PID
regulators need to be implemented in hardware.

If a hardware implementation of the PID algorithm is considered, Field-Programmable
Gate Arrays (FPGAs) seem to be an easily available and attractive option. The flexibility
and logic capacity of modern FPGA devices make them a convenient platform to implement
functions of various types, including arithmetic operations.

Implementing PID regulators in FPGA devices offers the following benefits:

• Increased speed, due to concurrent operation of hardware components.
• Multichannel operation, i.e., the possibility of implementing more control loops in a

single integrated circuit without degrading the controller performance. Some control
schemes require more than one loop to control a specific device in an efficient and
reliable way [5,7,18]. If implemented in an MCU or DSP, more control loops slow down
the controller operation due to the sequential execution of program instructions, which
is inherent for these devices. This does not concern implementations in an FPGA, as
the same controller circuitry can be easily replicated, and operate concurrently [25].

• The possibility of combining a PID regulator with other functions and integrating
them conveniently in a single device. In particular, it includes CPU cores and elements
of artificial intelligence [26–31].
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• If compared to MCU/DSP implementations, FPGAs enable obtaining a more compact
circuit, containing fewer integrated circuits, and, thus, are less sensitive to electromag-
netic noise.

• Implementing the same algorithms in FPGA is usually more efficient in terms of
power consumption than in MCU or DSP chips, which require clock rates ranging up
to hundreds of megahertz to achieve the required performance. This is reported in a
number of works, e.g., in [21], and [32]. In [21], the authors describe the application of
PID regulators to control the operation of insect-size robots with a very low power
budget. The authors solved the problem by implementing the required functionality
in a small FPGA chip from Lattice Semiconductor, Hillsboro, OR, USA.

The use of FPGAs as a hardware platform for the implementation of PID regulators
is reported in a number of works [21–43]. The PID regulators are mostly used for precise
motion control tasks [21–24,26,28,31–33]. Papers from recent years often describe combining
within a single device a PID regulator with elements of artificial intelligence (AI), i.e., neural
networks [28,30], fuzzy logic [26,27,30,31], and particle swarm optimization algorithms [29].
The AI part is responsible for continuously autotuning the regulator parameters. Even if
implementing the PID regulator alone in an MCU or DSP was possible, it would usually
be unfeasible to implement the AI part running at the required speed. Nevertheless, it is
feasible in FPGAs due to the concurrent operation of their hardware components [28,30,31].

1.2. Motivation

Although the implementation of the PID algorithm in FPGA devices is described in
many research papers, only some of them deal directly with the circuit microarchitecture,
i.e., how the digital circuit is made up of its hardware components. These include the
studies reported in [21,25,32,36,37,39–43]. The same functionality can be implemented in a
digital circuit following various structural schemes. In particular, parallel and serialized
structures can be considered. The way in which the hardware components are arranged in
a digital circuit may radically affect the results of logic synthesis, i.e., the resulting circuit
speed, and the amount of logic resources consumed by the particular solution (the cost).

The studies reported in the reference materials follow, in general, parallel schemes,
which seem to be the most obvious implementation of the formulas describing how the
result is calculated. If a digital circuit is implemented as a parallel structure, a faster solution
is expected but paid off with a large amount of logic resources.

However, an analysis of available solutions and a comparison between them needs to
account for one more factor besides the cost and speed: the number format.

The PID algorithm is represented by formulas describing relationships between real
numbers. Real numbers can be represented in digital systems using fixed-point, and
floating-point formats. The implementation of arithmetic functions operating on fixed-
point numbers is much simpler and cheaper in terms of logic resources consumed. In most
of the aforementioned works, fixed-point representations are used, with the length of the
binary number ranging from 8 [25,36,37] to 32 bits [13].

Nevertheless, using fixed-point arithmetic for complex calculations is always bound
with the risk of too low an accuracy and too narrow a range. For a recursive algorithm,
where the n-th sample depends on previous samples, the errors may build up, and it is
difficult to determine how many bits of a number are needed to assure the required accuracy.
This problem is highly avoided when using floating-point formats. For this reason, using
single-precision (32-bit) floating-point numbers has become a de facto standard, at least for
PID blocks/functions implemented in modern PLCs.

If an implementation in a digital circuit is considered, floating-point formats are,
in general, avoided. It is believed that the implementation of floating-point operations
directly in hardware leads to large, expensive, and slow structures. In general, this is true if
sufficient attention is not paid to the circuit microarchitecture.

Only a scarce number of papers could be found where the hardware implementation
of a PID controller with floating-point arithmetic is disclosed. These include [21,39–43].
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In [39], the circuit was implemented with regulator parameters defined as constants. It
radically simplified the structure of the resulting circuit and reduced its cost, but it cannot
be adopted as a general approach. The solution disclosed in [40] seems to be very redundant
since it used large amounts of logic resources (almost 9000 LUTs, and a similar number of
registers) and, in addition, is very slow (sampling period over 20 us at 50 MHz clock). All
other works, except [42], reveal the use of resources at the level of ca. 4000 LUT blocks, and
similar numbers of registers. In [42], the resource consumption is less, but it is achieved
owing to the reduced length of the binary numbers used for the calculations (21 bits, instead
of 32 bits). All the aforementioned studies follow the parallel architecture of the system.

Even a brief survey of parameters achieved in solutions obtained by various re-
searchers indicates that virtually any FPGA-based implementation of the PID regulator
should be fast enough to reach microsecond sampling periods and to fulfill the speed
requirements of even the fastest control objects described in the reference studies. This ob-
servation, supported by the experiences of the authors themselves, has led to a conclusion
that the most reasonable option for a possible PID regulator implementation in hardware is
to optimize the solution for cost, rather than for speed.

The purpose of this paper is to propose a regulator structure that operates on standard
single-precision floating-point numbers (32 bits) and follows a serialized scheme, rather
than parallel. The proposed structure benefits from the register-rich architecture of FPGA
devices. The calculations are carried out in a serially cyclic manner, using just a single
arithmetic block. If compared to other works reported in the references, the solution
presented herein is significantly cheaper in terms of logic resource consumption, while
still being fast enough to reach microsecond sampling periods. Moreover, our solution
implements the extended PID formula described by Equation (4), while most of the works
reported in references implement the basic form.

2. The PID Algorithm

A typical application of the PID algorithm assumes that the PID regulator is included
in a feedback loop (Figure 1).
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Figure 1. A structure of a typical control system containing a PID regulator in the feedback loop.

The PID regulator is expected to tune the process variable x, which is not directly
accessible, as close as possible to the setpoint w. This is accomplished through the appropri-
ate adjustment of the manipulated variable y. The regulator evaluates the required value
of the manipulated variable based on the error signal e = w − x, which is formed in the
summing node.

In the classical form, the algorithm executed by the regulator is described by the
formula presented in Equation (1) [44].

Y(S) = YP(S) + YI(S) + YD(S) = KP

(
E(S) +

1
TIS

·E(S) + TDS·E(S)
)

(1)

where
E(S) = W(S)− X(S) (2)

The result generated with the regulator consists of three components: proportional YP,
integral YI, and derivative YD.
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However, for practical applications, the basic formula, described by Equation (1),
is often extended. Probably the most popular extension concerns the ideal derivative
component, which is replaced by a high-pass filter function as described by Equation (3):

YD(S) = KP
TDS

a·TDS + 1
E(S) (3)

There are two reasons why this is performed:

• The ideal derivative function is not feasible in practical circuits;
• The gain of the ideal derivative function goes to infinity along with frequency, and,

thus, it tends to amplify high-frequency noise, which can increase the output error
(this problem was considered, e.g., in [45]). The gain of a high-pass filter transfer
function goes with frequency to a constant value, so the influence of high-frequency
components can be kept at a moderate level.

Another popular extension consists of introducing weighting coefficients b and c,
which suppress the influence of the setpoint on the proportional and derivative components.
The resulting formula is presented in Equation (4).

Y(S) = KP

(
(b·W(S)− X(S)) +

1
TIS

(W(S)− X(S)) +
TDS

a·TDS + 1
(c·W(S)− X(S))

)
(4)

The output signal y, described by Equations (1) and (2), depends on the error signal
e = w− x, and, thus, it responds with equal intensity to changes in both the process variable
x and the setpoint w. In practice, only rare changes in the setpoint are expected, but they
are usually step changes. This leads to the overreaction of the regulator, which results from
the contributions of the proportional and the derivative components. By introducing and
appropriately tuning the b and c weighting coefficients, a smoother and more “bumpless”
operation of the regulator can be achieved, when the setpoint is changed in the step mode.
It prevents the unnecessary wear-out of the actuators.

The extended PID formula presented in Equation (4) will be the base for the solution
presented in this paper.

3. Discretization of the PID Formula

Before a relationship described in the continuous time domain is implemented in a
digital system, it needs to be discretized, i.e. converted to the discrete-time domain. To
accomplish this, the backwards difference method shall be used, which, in fact, is the most
popular approach. The discretization of a continuous-time formula using the backwards
difference method is most conveniently carried out in the operator domain and consists of
substituting 1

TS

(
1 − z−1) for S.

The most obvious and popular approach to the discretization of the PID formula
consists of separately discretizing all three components contributing to the result, i.e., the
proportional, integral, and derivative functions. The application of the foregoing approach
to the formula described by Equation (4) leads to the following:

YP(z) = KP(b·W(z)− X(z)) (5)

YI(z) = KP
TS

TI(1 − z−1)
(W(z)− X(z)) (6)

YD(z) = KP
TD

(
1 − z−1)

a·TD(1 − z−1) + TS
(c·W(z)− X(z)) (7)

and
Y(z) = YP(z) + YI(z) + YD(z) (8)
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Converting to the time-domain yields to

yP(n) = KP(b·w(n)− x(n)) (9)

yI(n) = KP
TS
TI

(w(n)− x(n)) +yI(n − 1) (10)

yD(n) = KP
c·(w(n)− w(n − 1))− (x(n)− x(n − 1))(

a + TS
TD

) +
a(

a + TS
TD

)yD(n − 1) (11)

and
y(n) = yP(n) + yI(n) + yD(n) (12)

Besides the integral component yI(n), the derivative component yD(n) also depends
on its previous samples. It means that the yI(n − 1) and yD(n − 1) values need to be
stored somewhere in the system, and the yP(n), yI(n), and yD(n) components have to be
calculated separately. It is not a problem when the formulas are implemented in software.
However, in the case of hardware implementations, it leads to an irregular, and less
optimal structure.

However, a different approach is proposed in this paper, namely the one-shot dis-
cretization of the PID formula as a whole. By substituting 1

TS

(
1 − z−1) for S in Equation (4),

the following formulations are obtained:

Y(z) = KP

(
(b·W(z)− X(z)) + TS

TI(1−z−1)
(W(z)− X(z))

+
TD(1−z−1)

a·TD(1−z−1)+TS
(c·W(z)− X(z))

) (13)

Both sides of the equation can be multiplied by
(
1 − z−1)[(1 − z−1)+ TS

a·TD

]
to elimi-

nate the denominators from the integral and derivative components:

Y(z)
(
1 − z−1)[(1 − z−1)+ TS

aTD

]
= KP

{(
1 − z−1)[(1 − z−1)+ TS

aTD

]
(b·W(z)− X(z))

+ TS
TI

[(
1 − z−1)+ TS

aTD

]
(W(z)− X(z))

+ 1
a
(
1 − z−1)2

(c·W(z)− X(z))
}

(14)

The formula needs to be rearranged by grouping together the components depending
on the W and X signals, respectively:[(

1 + TS
aTD

)
−

(
2 + TS

aTD

)
z−1 + z−2

]
Y(z)

= KP

{{
b
[(

1 + TS
aTD

)
−

(
2 + TS

aTD

)
z−1 + z−2

]
+ TS

TI

[(
1 + TS

aTD

)
− z−1

]
+ c

a

(
1 − 2z−1 + z−2

)}
W(z)

−
{(

1 + TS
aTD

)
−

(
2 + TS

aTD

)
z−1 + z−2 + TS

TI

[(
1 + TS

aTD

)
− z−1

]
+ 1

a

(
1 − 2z−1 + z−2

)}
X(z)

} (15)

The next manipulations assume the grouping of components according to the negative
powers of z:[

aTD+TS
aTD

− 2aTD+TS
aTD

z−1 + z−2
]
Y(z)

= KP

{{[(
b + TS

TI

)
aTD+TS

aTD
+ c

a

]
−

[
b 2aTD+TS

aTD
+ TS

TI
+ 2 c

a

]
z−1 +

(
b + c

a
)
z−2

}
W(z)

−
{[(

1 + TS
TI

)
aTD+TS

aTD
+ 1

a

]
−

[
2aTD+TS

aTD
+ TS

TI
+ 2

a

]
z−1 +

[
1 + 1

a

]
z−2

}
X(z)

} (16)
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Thus, Y(z) can be derived:

Y(z) = 2aTD+TS
aTD+TS

z−1Y(z)− aTD
aTD+TS

z−2Y(z) + KP
b(aTD+TS)+

TS
TI

(aTD+TS)+cTD

aTD+TS
W(z)

−KP
b(2aTD+TS)+a TS

TI
TD+2cTD

aTD+TS
z−1W(z) + KP

(ab+c)TD
aTD+TS

z−2W(z)

−KP
aTD+TS+

TS
TI

(aTD+TS)+TD

aTD+TS
X(z) + KP

2aTD+TS+a TS
TI

TD+2TD

aTD+TS
z−1X(z)

−KP
(a+1)TD
aTD+TS

z−2X(z)

(17)

The last transformation consists of converting the formula to the discrete-time domain:

y(n) = c0 y(n − 1) + c1 y(n − 2) + c2 w(n) + c3 w(n − 1) + c4 w(n − 2)
+c5 x(n) + c6 x(n − 1) + c7 x(n − 2)

(18)

The c0–c7 coefficients depend on the regulator parameters KP, TI, TD, a, b, c, and the
sampling period TS as follows:

c0 =
2aTD + TS
aTD + Ts

(19)

c1 = − aTD
aTD + Ts

(20)

c2 = KP
b(aTD + TS) +

TS
TI
(aTD + TS) + cTD

aTD + Ts
(21)

c3 = −KP
b(2aTD + TS) + a TS

TI
TD + 2cTD

aTD + Ts
(22)

c4 = KPTD
ab + c

aTD + Ts
(23)

c5 = −KP
(aTD + TS) +

TS
TI
(aTD + TS) + TD

aTD + Ts
(24)

c6 = KP
(2aTD + TS) + a TS

TI
TD + 2TD

aTD + Ts
(25)

c7 = −KPTD
a + 1

aTD + Ts
(26)

According to Equation (18), the current sample of the regulator output signal y(n) can
be calculated using current values of the process variable x and the setpoint w, as well as
two preceding samples of x, w, and y.

Should the same method be applied to the basic PID formula shown in Equation (1),
the regulator is reduced to a second-order IIR (Infinite Impulse Response) filter.

The PID formula described by Equation (18) is very regular. For a hardware designer, it
offers many options to arrange hardware components that perform the relevant arithmetic
operations. These options include parallel, serial, and mixed structures.

Two preceding samples of the regulator output y, the process variable x, and the
setpoint w need to be stored in the system. However, this is more convenient than storing
samples of the integral and derivative components. The y, x, and w signals are directly
available either at the regulator inputs, or outputs, so they do not need to be calculated
separately using dedicated hardware.

4. The Proposed Circuit Structure

As it was mentioned above, the regular form of Equation (18) offers a hardware
designer plenty of freedom in designing the structure of the circuit for the calculation of
the PID formula. One of the remarkable solutions is the parallel, tree-shaped structure
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presented in Figure 2. Typically, parallel structures are supposed to provide the fastest
operation of a system.
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Figure 2. A parallel implementation of the PID formula.

The implementation of the structure presented in Figure 2 requires eight two-input
multipliers and seven two-input adders. As the calculations need to be performed on
floating-point numbers, it is expected that the implementation will consume a significant
amount of logic resources.

Further on in this paper, the assumption shall be made that the floating-point opera-
tions will be handled by “ready-made” IP (Intellectual Property) cores shipped together
with synthesis software, which will be used to design the whole system. IP cores of various
types, in particular, IP cores performing arithmetic operations on floating-point numbers,
became a standard utility available in CAD software supporting FPGA design, delivered
by all key FPGA vendors [46–48]. IP cores developed by FPGA vendors are carefully
optimized, based on expertise in details of device architectures. Although one’s own IP
core can be independently developed, it is quite unlikely to obtain a solution that is more
efficient in terms of both performance and cost.

Sample experiments were carried out to estimate the parameters of the assumed paral-
lel structure. The tests were accomplished using the Quartus Prime software (version 22.1,
Lite edition) from Intel, Santa Clara, CA, USA, and a Cyclone V (5CGTFD9E5F35C7 [49])
device. For a given frequency of 100 MHz, the implementation of a floating-point multiplier
IP core (the “FP Functions Intel FPGA” core [46]) requires 2 onboard fixed-point multipliers
and 242 LUT (Look-up Table) blocks. The latency estimated by the IP Core generator is
4 clock cycles. The implementation of a floating-point adder (again, the “FP Functions
Intel FPGA” core) requires 873 LUTs, and the latency is 5 clock cycles. This means that
the implementation of the parallel structure presented in Figure 2 would consume at least
6303 LUTs, and the expected latency would be at least 19 clock cycles, i.e., 190 ns. Latency,
divided by the maximum clock frequency, constitutes the low limit on the sampling period,
and, as a consequence, the limit for the maximum speed achievable for a regulator.

As it was mentioned before, a serialized approach shall be proposed further on in this
paper, since it is much more efficient in terms of logic resource usage.

The proposed structure is presented in Figure 3. The circuit is fully synchronous, i.e.,
all parallel registers and the MultAdd block are synchronized via a common clock signal.
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Figure 3. The proposed structure of the circuit calculating the PID algorithm.

The heart of the circuit is the MultAdd block, which should be implemented as an
IP Core capable of performing simultaneous multiplication and addition operations on
floating-point numbers (see Equation (27)).

q = a·b + c (27)

Other crucial elements are parallel registers, which are arranged in two rings, with
eight registers in each. The registers in the upper ring (the “variable ring”) store current
and preceding samples of the process variable x(n), x(n − 1), x(n − 2), the setpoint w(n),
w(n − 1), w(n − 2), and the regulator output y(n − 1) and y(n − 2). The registers in the
lower ring (the “parameter ring”) store the values of the c0–c7 coefficients.

The output q of the MultAdd block is routed back to the block input c. In this way, a
structure is obtained that is capable of storing temporary results for further processing, i.e.,
a kind of cumulative adder.

A simplified block diagram, depicting the operation of the circuit, is presented in
Figure 4. The calculations described by Equation (18) are performed sequentially, i.e.,
initially, the c1·y(n − 2) product is calculated; then, the content of the rings is shifted right;
then, the product c0·y(n − 1) is calculated and added to c1·y(n − 2), which is available at
the MultAdd block output q after the first product is calculated. Upon the completion of
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these calculations, the data are shifted once again, and the c4·w(n − 2) product is calculated
and added to the result of previous operations. Subsequently, the c3·w(n − 1), c2·w(n),
c7·x(n − 2), c6·x(n − 1), and c5·x(n) products are calculated and added to the temporary
sum. Upon the completion of eight shift-and-calculate operations, the new sample of the
manipulated variable y(n) is available at the MultAdd block output. The value is stored in a
parallel register to be available for reading using external circuitry, and the circuit is ready
for calculating the next sample of y.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. A simplified block diagram, depicting the operation of the proposed circuit. 

When a set of new values for the 𝑐଴– 𝑐଻ coefficients is ready, they can be simultane-
ously transferred to the R_c0–R_c7 registers. The transfer should be triggered at the be-
ginning of a new calculation cycle. This is accomplished by appropriately driving the En 
(Enable) inputs of the R_c0–R_c7 registers. Apart from the Shift signal, which will be ex-
plained later on, loading new data to the R_c0–R_c7 registers is enabled when the condi-
tion 𝑃𝑎𝑟_𝑊𝑟 𝑎𝑛𝑑 𝑆𝑡𝑎𝑟𝑡 is true. Start and Par_Wr are circuit inputs (see Figure 3). The Start 
signal has to be activated to initiate a new calculation cycle. The Par_Wr signal should be 
activated every time a modification of the regulator parameters is required and a set of 
new, consistent data is available at the 𝑐0_𝑛𝑒𝑤– 𝑐7_𝑛𝑒𝑤 inputs. Updating the 𝑐଴– 𝑐଻ coef-
ficients will be commented on in a more detailed way in Section 7. 

The operation of the whole circuit is governed by the Control block. The internal struc-
ture of the Control block incorporates two counter-like circuits. The first of them is respon-
sible for generating the Shift signal, which triggers the shift operation in both rings, i.e., 
transferring data from R_x(n) to R_x(n − 1), from R_x(n − 1) to R_x(n − 2), etc. in the “vari-
able ring”, and from R_c5 to R_c6, from R_c6 to R_c7, etc. in the “parameter ring”. 

Performing the multiply-and-add operation on floating-point numbers is a complex 
task, for which a number of clock cycles is required. Assuming that the MultAdd block 
generates a valid result after l clock cycles, the first counter-like circuit activates the Shift 
signal every l-th clock cycle. 

The second counter-like circuit is responsible for counting the subsequent multiply-
and-add operations. After eight multiply-and-add calculations followed by shift opera-
tions are completed, the counter triggers loading the result to the R_y(i) register, activates 
the Ready output, and blocks the operation of the whole circuit until a new calculation 
cycle is initiated by activating the Start input. 

  

Start = 1 ?No

Yes

Par_Wr = 1 ?

No

YesUpdate samples of
x, w, and y

Reset partial sum Update
c0 ÷  c7

No

Rotate variable ring
Rotate parameter ring

8 MultAdd
operations
counted ?

No

Yes

l clock cycles
elapsed ?

Update y(n)
Activate Ready

Yes

Calculate next partial 
sum

Figure 4. A simplified block diagram, depicting the operation of the proposed circuit.

Before a new calculation cycle is started, samples of the process variable x, the set-
point w, and the regulator output y must be updated. This is accomplished through the
incorporation of 2-to-1 multiplexers at appropriate positions into the “variable” register
ring. The “Select” inputs of the multiplexers are controlled by the external Start signal. The
Start signal should be activated for one clock cycle before the actual calculations begin. The
activation of the Start signal allows for new data to be loaded to the registers that store
x(n), w(n), and y(n − 1). The remaining data are shifted right, following the ring direction.
In this way, the old value of the x(n) sample is transferred to the register storing x(n − 1),
while x(n − 1) is transferred to x(n − 2), w(n) to w(n − 1), and so on.

Updating the c0–c7 coefficients is accomplished in a similar manner. The registers in
the “parameter ring” are interlaced with 2-to-1 multiplexers, and the “Select” inputs of the
multiplexers are controlled by the Start input. However, it is assumed that the values of the
coefficients do not need to be updated every time a new calculation cycle is initiated.

When a set of new values for the c0–c7 coefficients is ready, they can be simultaneously
transferred to the R_c0–R_c7 registers. The transfer should be triggered at the beginning
of a new calculation cycle. This is accomplished by appropriately driving the En (Enable)
inputs of the R_c0–R_c7 registers. Apart from the Shift signal, which will be explained
later on, loading new data to the R_c0–R_c7 registers is enabled when the condition
Par_Wr and Start is true. Start and Par_Wr are circuit inputs (see Figure 3). The Start
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signal has to be activated to initiate a new calculation cycle. The Par_Wr signal should be
activated every time a modification of the regulator parameters is required and a set of new,
consistent data is available at the c0_new–c7_new inputs. Updating the c0–c7 coefficients
will be commented on in a more detailed way in Section 7.

The operation of the whole circuit is governed by the Control block. The internal
structure of the Control block incorporates two counter-like circuits. The first of them is
responsible for generating the Shift signal, which triggers the shift operation in both rings,
i.e., transferring data from R_x(n) to R_x(n − 1), from R_x(n − 1) to R_x(n − 2), etc. in the
“variable ring”, and from R_c5 to R_c6, from R_c6 to R_c7, etc. in the “parameter ring”.

Performing the multiply-and-add operation on floating-point numbers is a complex
task, for which a number of clock cycles is required. Assuming that the MultAdd block
generates a valid result after l clock cycles, the first counter-like circuit activates the Shift
signal every l-th clock cycle.

The second counter-like circuit is responsible for counting the subsequent multiply-
and-add operations. After eight multiply-and-add calculations followed by shift operations
are completed, the counter triggers loading the result to the R_y(i) register, activates the
Ready output, and blocks the operation of the whole circuit until a new calculation cycle is
initiated by activating the Start input.

5. Implementation of the Proposed Circuit

The circuit presented in Figure 3 was implemented in the Quartus Prime, v. 22.1, Lite
Edition software from Intel. The register blocks, the control unit, and the whole circuit struc-
ture were described in the Verilog language. The MultAdd block was implemented using
the “FP Functions Intel FPGA” IP core [46] configured for the multiply-and-add operation.
The single-precision floating-point (32-bit) number format was selected for calculations.

The IP core generates a valid result after a number of clock cycles (i.e., latency), which
can be selected within a certain range during the core configuration. Setting the latency
parameter influences the maximum clock frequency at which the core is able to run, and its
cost, i.e., the amount of logic resources required to have it synthesized. In general, setting a
low latency (e.g., l = 2) leads to solutions requiring fewer logic resources but running at
lower frequencies. On the other hand, when high latency values are selected, the eventual
solutions are more expensive, but a benefit in operation frequency is achieved. So, setting
the right parameters for the IP core is a kind of trade-off between speed and cost.

For the solution presented in this paper, the latency l was set to 10. The IP core
generator estimated the maximum clock frequency of 102 MHz and the cost at 2 multiplier
blocks plus 1192 LUTs.

The evaluation of the formula presented in Equation (18) requires eight multiply-
and-add operations. With such an assumption, it is clear that the actual calculations take
8 × l = 80 clock cycles. One additional clock cycle is necessary to transfer the result to the
output register after the result is ready. So, the whole calculation cycle for generating one
sample of the output signal takes 81 clock cycles.

The circuit was synthesized for a Cyclone V device (5CGTFD9E5F35C7 [49]), which
is classified as a cost-efficient option for an FPGA designer. After the design was actu-
ally synthesized, it turned out that the estimation of both the maximum clock frequency
and resource usage delivered by the IP core generator was too pessimistic. The static
timing analyzer module of the Quartus Prime system estimated the maximum clock fre-
quency at 157.1 MHz. Therefore, it could be estimated that the execution time TE, i.e., the
time delay, which is required, before a valid result is available at the circuit output, is
81 × 1/157.1 = 516 ns.

A comparison of parameters obtained for the proposed solution against some other
ones presented in the references is shown in Table 1. The terms “basic” and “extended”, in
the column of the table labeled “PID formula”, refer to the “basic” and “extended” PID
formulas described by Equations (1) and (4).
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Table 1. A comparison of parameters obtained for various implementations of a PID regulator in
FPGA devices.

Work PID
Formula

Number
Format

FPGA
Device Logic Resources fclk [MHz] Clock

Cycles tE [ns]

Sreenivasappa, B. V.;
Udaykumar, R. Y [37] basic Fixed-point,

8 bits Cyclone I 224 LUTs,
32 registers 75 1 13

Yuen Fong Chan;
Moallem, M. [38]

(parallel structure)
extended Fixed-point,

16 bits Spartan 2E 1142 slices (2284 LUTs),
327 registers 15 1 67

Yuen Fong Chan;
Moallem, M. [38]
(serial structure)

extended Fixed-point,
16 bits Spartan 2E 437 slices (874 LUTs),

406 registers 47 17 361

Milik, A.,
Hrynkiewicz, E. [50] extended Fixed-point,

32 bits Spartan 6 271 LUTs, 442 registers,
2 DSP48 blocks 231.5 18 78

Yankai Xu; et al. [42] extended

Floating-point
(mantissa—

16 bits,
exponent—5 bits)

Cyclone I
1377 Les

(1377 LUTs,
1377 registers)

50 30 600

Ziębiński, A. et al. [43] basic Floating-point,
32 bits Virtex 4 4457 registers, 83,695

equivalent logic gates 190 41 215

Ziębiński, A. et al. [43] basic Floating-point,
32 bits Spartan 2E 4482 registers, 83,799

equivalent logic gates 76 41 539

Dedania, R., Sang-Woo
Jun [21] basic Floating-point,

32 bits
iCE40
UP5K

3998 LUTs,
3998 registers,
3 DSP blocks

26 41 1560

Bagni, D.,
Mackay, D. [51] extended Floating-point,

32 bits Zynq
1770 LUTs,

870 registers,
5 DSP48 blocks

116 37 320

This work extended Floating-point,
32 bits Cyclone V

1173 LUTs (339 with
more than 4 inputs),

1026 registers,
1 DSP block

157 81 516

Most of the structures presented in the table require a number of clock cycles to
calculate a valid result. Thus, the tE (i.e., “execution time”) parameter was introduced
to enable the realistic assessment of the speed achievable for the proposed solutions.
The “execution time” is equal to the number of clock cycles N required to complete the
calculations, divided by the estimation for maximum clock frequency fMax provided by
static timing analysis tools.

tE =
N

fMax
(28)

The TE parameter constitutes the low limit for the sampling period, which is achievable
for a particular case.

While analyzing the results presented in the table, one should keep in mind that
the comparison is somewhat blurred by the fact that the designs use different FPGA
devices, which may differ in logic resources available onboard (e.g., the availability of
multiplier/DSP blocks) and their properties. In particular, the Spartan 6, Cyclone V, and
Zynq FPGAs contain LUT blocks with six inputs, and, thus, offer bigger logic capacity, than
four-input LUTs contained in all the other devices. If synthesized for structures featuring
only four-input LUTs, the solutions reported for these FPGAs would possibly require
more resources.

The shortest execution times TE, along with the smallest resource usage, were reported by
Sreenivasappa and Udaykumar [37]. Similar results were obtained by Dhanabalan et al. [25].
The actual calculations are carried out with combinatorial structures capable of generating
the result in one clock cycle. However, the question remains open as to whether the
accuracy and dynamic range provided by the 8-bit fixed-point number format is sufficient
for a wider class of applications than the ones described in the papers.

Yuen Fong Chan and Moallem [38] experimented with two regulator structures operat-
ing on 16-bit fixed-point numbers. The first structure incorporated parallel multipliers and
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was capable of generating the result in one clock cycle. The second implementation used
serial multipliers, for which a number of clock cycles was required to obtain a valid result.

Applying a floating-point format for number representation makes the circuit much
more complex; therefore, the implemented solutions are slower and more demanding for
logic resources.

The flexibility of FPGA devices allows for the easy manipulation of the lengths of the
mantissa and the exponent components in the floating-point representation. A question
is how such manipulations affect the quality of regulation, and what lengths are required
to assure a stable and reliable process. The use of the standard, single-precision, 32-bit
floating-point number format, with 8 bits assigned for the exponent, and 23 bits for the
mantissa, is commonly accepted, at least in PLCs. Such an approach is believed to provide
sufficient accuracy for the great majority of regulation tasks.

Yankai Xu et al. [42] used a number format that resembles the conventional floating-
point concept but used a 5-bit exponent, and 16-bit mantissa.

The standard single-precision floating-point format was used by Ziębiński et al. [43],
Dedania and Sang-Woo Jun [21], and in this study. Unfortunately, exact data concerning
the usage of logic resources expressed in LUT blocks are not reported in [43]. Nevertheless,
the results comparable to the register counts can be expected, i.e., thousands. However,
to be honest, the solution implemented by Ziębiński et al. comprises not only the actual
arithmetic unit calculating samples of the y(n) signal but also contains some additional
circuitry responsible for updating the regulator parameters.

The authors decided to enhance the comparison with two other cases and to present
results obtained for structures, which were not directly designed by a human but generated
automatically by software tools, right from a description in a high-level programming
language. The first one [50] was generated for fixed-point numbers and the second one [51]
was for the floating-point case. The authors believe that these examples enable readers to
develop a more general view of what is possible and feasible.

Research works carried out by Milik are focused on developing algorithms that make
it possible to directly transfer functions described originally by a PLC program into hard-
ware resources available in FPGA devices. The solution reported in [50] was one of the
benchmarks used by the authors to verify the efficiency of their algorithms. The regu-
lator structure was generated using software algorithms from a program developed in
the IL (Instruction List) language. Some more examples following this approach can be
found in [52].

The solution presented in [51] was prepared to demonstrate the possibilities of high-
level synthesis tools from Xilinx, San Jose, CA, USA. It was generated by the Vivado HLS
system from a description in the C language. The solution uses a moderate number of LUT
blocks but at the expense of as many as 5 DSP48 blocks.

The comparison presented in Table 1 indicates that the structure proposed in this
study is comparable with the other implementations operating on floating-point numbers
when considering operation speed, while being significantly cheaper. It is also worth
mentioning that the regulators described by Ziębiński et al. and Dedania and Sang-Woo
Jun implemented the basic PID formula (Equation (1)), while the circuit proposed in this
paper uses the extended form (Equation (4)).

6. Testing and Verification

The correctness of the proposed circuit structure and its proper operation were verified
through a number of functional tests. The tests were carried out with the use of the Questa
Intel Starter FPGA Edition-64 2021.2 simulator from Siemens, Munich, Germany.

A simple Verilog testbench was prepared to supply appropriate samples of the x(n)
and w(n) signals to the circuit inputs and to collect samples of the output signal y(n). The
open-loop configuration was tested, i.e., the regulator as a standalone block without the
manipulated object, and not surrounded by the negative feedback loop (see Figure 1).
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The operation of the circuit was simulated for unit-step excitations applied to the
circuit inputs x and w. A unit-step response in the time domain contains full information
concerning the dynamic properties of an object subjected to the analysis, being also much
easier for generation by means of common simulation tools, as compared to any response
in the frequency domain.

In total, 1000 samples of the output signal, being a response to the unit step supplied to
the input, were recorded for various sets of regulator parameters KP, TI, TD, a, b, c, and TS.

To provide the relevant reference data, a simple program in the C++ language was writ-
ten. The program implements the “obvious” approach, i.e., the PID formula with the pro-
portional, integral, and derivative components discretized separately (Equations (9)–(12)).
The program operates on double-precision (64-bit) floating-point numbers.

Samples of the y(n) signal, obtained from simulation in the Questa software (Questa
Intel Starter FPGA Edition-64 2021.2), were compared against the reference data provided
by the C++ program. The highest value of relative error, which was recorded for parameter
sets containing only the P and PD components is 1.2 × 10−6. This is a result of the limited
accuracy of single-precision floating-point number representation, which is estimated at
ca. 6–7 significant digits.

Errors greater by an order of magnitude were, in general, recorded for parameter sets
containing the integral component. The greatest value of the relative error recorded during
experiments was 7.6 × 10−5. The errors resulting from the limited precision of the number
format tend to build up in the integral component.

Nevertheless, similar effects can be expected in the analog counterparts, which suffer
from the limited precision of analog components, e.g., offset voltage. These effects are
highly reduced in the closed-loop configuration containing the negative feedback (see
Figure 1).

Sample plots, showing a comparison of the data obtained from the simulation against
the reference data generated by the C++ program, are presented in Figure 5. Figure 5a
shows data obtained for a PD regulator with the following parameters: KP = 1, TI = ∞,
TD = 1, a = 0.1, b = 1, c = 1, and TS = 1. Figure 5b presents data obtained for a PID regulator
with KP = 0.5, TI = 0.75, TD = 0.2, a = 0.1, b = 0.62, c = 0, and TS = 0.1. The latter set
of parameters was generated with the autotuner included in the TIA Portal software
from Siemens for a popular S7-1200 PLC controlling a small DC drive. In both cases, the
simulated circuit was excited by unit step signals with magnitudes of 0.1 and 1 applied,
respectively, to the x and w inputs.
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The analysis of the data obtained from the verification process, as described above,
indicates that the circuit proposed in this study properly implements the digitalized version
of the extended PID formula described by Equation (4).
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7. A General Concept of the Entire Regulator Device

The circuit described in Section 4 can serve as the “execution unit”, i.e., the main part
of an actual regulator. However, such a unit must be accompanied by some additional
circuitry to make up a fully functional device. The proposed concept of the entire regulator
is presented in Figure 6.
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Figure 6. A general structure of the proposed PID regulator device.

The “PID calculator” described in Section 4 operates on floating-point numbers. Sam-
ples of the process variable x need to be delivered to its inputs in the appropriate format.
Similarly, samples of the manipulated variable y, calculated using the “PID calculator”,
need to be converted and transferred to the regulator output. These operations should be
accomplished with the “Input read and format conversion” and “Format conversion and
output write” blocks.

The process variable x is expected to be an analog signal. Thus, the “Input read and
format conversion” block should comprise in particular an A/D converter and circuitry that
converts a fixed-point number, delivered by the A/D converter, to the floating-point format
processed with the execution unit. Similarly, the “Format conversion and output write”
block should contain a kind of D/A converter (e.g., circuitry generating a pulse-width
modulation signal), and a circuit that converts the floating-point number calculated by the
executive unit to a fixed-point representation, which is appropriate for D/A conversion.

If modifying the regulator parameters is a required function of the device, the circuit
should contain a CPU/MCU core, responsible in particular for the conversion of the
regulator parameters KP, TI, TD, a, b, c, and TS to the c0–c7 coefficients suitable for the
execution unit. During the typical operation of a PID regulator, the KP, TI, TD, a, b, c, and TS
parameters are accessed and manipulated, rather than c0–c7. This concerns both a human
operator, and a high-level application software, e.g., an autotuner, which is capable of
finding the best values of the regulator parameters for a particular object.

The c0–c7 coefficients are complex functions of KP, TI, TD, a, b, c, and TS, containing, in
particular, the division operation (see Equations (19)–(26)). Implementing the conversion
functions in hardware would be very expensive in terms of logic resource usage. On the
other hand, a change in the PID regulator parameters is quite a rare case, if compared to
cyclic and permanent calculations of new samples at the regulator output. Calculating
new values of the c0–c7 coefficients is not a time-critical task, and it can be conveniently
handled using software running on the CPU. Moreover, introducing a CPU core to the
device structure facilitates the implementation of many additional useful functionalities,
like handling user interface, network communication, self-diagnostic, or, in particular,
autotuning algorithms.

The analysis of Equations (19)–(26) makes it possible to draw the conclusion that
modifying even a single regulator parameter usually leads to changes in most of the c0–c7
coefficients. Thus, a possible update of the coefficients should always affect all of them.
The need to modify a single coefficient separately is very unlikely.
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To enable the smooth operation of the regulator, without the need to stop the regulation
every time, when a parameter needs modification, the regulator structure should comprise a
set of eight parallel registers that shall serve as the source of new data for the c0_new–c7_new
inputs (see Figure 3). The registers should be integrated with the CPU system, e.g., as
parallel I/O ports. In that way, the CPU core will be able to access them freely, at moments
convenient for the program the CPU is executing. When a consistent set of new values of the
coefficients is ready to be accessed with the execution unit, the CPU can trigger parameter
updates by activating the Par_Wr input together with the Start input (see Figure 3). It
is important to change all the coefficients at once in order to prevent the unpredictable
behavior of the regulator.

Another possible application of the circuit presented in Figure 3 consists of using it
as a regulator, which is dedicated to a specific object (e.g., a DC–DC converter). In such a
case, it is quite possible that the regulator parameters will not change during the whole
lifecycle of the device. Thus, the set of regulator parameters can be calculated only once,
before the circuit is actually synthesized, and the new values for the c0–c7 coefficients can
be implemented as constants. In such a case, the CPU/MCU core is not required, and the
components of the circuit presented in Figure 3, responsible for controlling the coefficient
update, i.e., the Par_Wr input, together with the corresponding And functor, can be deleted.

Furthermore, in certain technologies, e.g., modern SRAM-based FPGA devices, it is
possible to freely set the initial values of all memory elements. Should the regulator be im-
plemented in such a device, the c0–c7 coefficients can be downloaded to the Reg_c0–Reg_c7
registers after reset, together with the device configuration, and the Mux_c0–Mux_c7 multi-
plexers can be eliminated as well.

Alternatively, the CPU can be substituted with an AI circuit, e.g., a neural network to
be used for parameter tuning.

8. Conclusions

The paper proposes a new implementation of the PID algorithm in digital hardware.
The proposed circuit implements the extended PID formula (Equation (4)), containing
a non-ideal derivative component, as well as weighting coefficients in the proportional
and derivative components, which enables reducing the influence of rapid changes in the
setpoint to the regulator output.

The PID formula is discretized and converted to a form where samples of the output
signal y depend on current values of the process variable x, the setpoint w, and two
preceding samples of y, x, and w (Equation (18)). The evaluation of the results needs eight
multiplication and seven addition operations. The final formula is very regular, which
offers many options to a hardware designer to arrange hardware components necessary to
perform the relevant arithmetic operations.

The implementation presented in the paper operates on standard, single-precision
(32-bit) floating-point numbers. The proposed circuit structure is optimized for cost, i.e.,
the amount of logic resources required for implementation. It contains only one arithmetic
block. The structure consists of three main parts: the MultAdd block, responsible for
performing the actual calculations, and two sets of parallel registers arranged in two rings:
the “variable ring” and the “parameter ring” (see Figure 3). The “variable ring” stores
current and preceding samples of the y, x, and w variables, while the “parameter ring”
contains a set of eight coefficients, which depend on the actual regulator parameters KP, TI,
TD, a, b, c, and TS.

The calculations are accomplished in a sequential manner: the data in both rings are
shifted and subsequently applied to the MultAdd block inputs, in which the partial and
final results are actually evaluated.

The circuit was implemented in a Cyclone V FPGA device from Intel, using the Quartus
Prime software (version 22.1, Lite edition). The MultAdd block was implemented as an IP
core available in the tool. The validation of the circuit was carried out as a simulation in
the Questa Sim simulator (Questa Intel Starter FPGA Edition-64 2021.2).



Electronics 2024, 13, 1598 17 of 19

For the particular implementation, which is described in the paper, 81 clock cycles
are required to evaluate one sample of the output signal. Since the maximum clock
frequency was estimated using the static timing analysis tools at ca. 150 MHz, the delay,
which is required, before a valid result is available at the circuit output, can be estimated
at ca. 550 ns. So, the solution presented in the paper is comparable, in terms of speed,
with other hardware implementations of the PID algorithm operating on standard single-
precision floating-point numbers presented in the references, where the delay ranges from
215 ns to 1560 ns. The parameters offered by the solution disclosed in this paper should meet
speed requirements demanded by the fastest control tasks reported in the literature, i.e.,
precise motion control, controlling the operation of voltage converters, or the stabilization
of magnetic bearings, where sampling periods within the range of tens of microseconds
are required.

However, the solution presented in the paper is much more efficient in the usage of
logic resources. It uses 1173 LUT blocks, 1026 registers, and 1 DSP block, while most of
the other structures require ca. 4000 LUT blocks and a similar number of registers. The
solution presented herein is, thus, much cheaper, leaving more space in the FPGA for other
functionalities, like CPU/MCU cores, or elements of artificial intelligence.

Should the modification of the regulator parameters be a mandatory function of the
device, the circuit described in the paper should be included as the “execution unit” in
a bigger system governed by a CPU/MCU core. Such a system can be conveniently im-
plemented in an SoC (System-on-Chip), or SoPC (System-on-Programmable-Chip) device,
i.e., a device, that, apart from the “FPGA fabric”, also contains a CPU core. Devices of
this type are on offer by all main PLD vendors and are becoming more and more popular
among designers.
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