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Abstract: The emergence of new instruction set architectures (ISAs) poses challenges in ensuring
compatibility with legacy applications. Dynamic binary translation (DBT) serves as a crucial ap-
proach for achieving cross-ISA compatibility, enabling legacy applications to run compatibly with
cross-ISAs. However, software-based translation encounters significant performance overhead, in-
cluding substantial memory access and insufficient exploitation of target architecture features. The
significant performance overhead challenges hinder the practical implementation of DBT. In this
paper, we investigate a novel peephole optimization approach. First, we perform peephole analysis
to identify redundant memory access and suboptimal instruction sequences. Next, we leverage live
variable analysis to eliminate redundant memory-access instructions. Additionally, we bridge the
gaps between cross-ISAs by exploiting ISA-specific features through instruction fusion. Finally, we
implement the proposed optimization design using the open-source QEMU and extensively evaluate
it on both ARM64 and SW64 platforms. The experimental results reveal that SPEC2006 benchmark
effectively gets a maximum performance speedup of 1.52×, alongside a reduction in code size of up
to 13.98%. These results affirm the effectiveness of our optimization approach in DBT performance
and code sizes.

Keywords: dynamic binary translation; peephole optimization; live variable analysis; instruction
fusion; QEMU

1. Introduction

Recently, the computer hardware landscape has witnessed the emergence of new
instruction set architectures (ISAs) such as RISC-V [1], Loongarch [2], SW64 [3], and
ARM64 [4]. Major industry giants are increasingly moving away from the predominant x86
architecture, opting for these new alternatives to address concerns of performance, power
consumption, and licensing. However, the migration to new architectures is challenging in
ensuring seamless compatibility with legacy applications. Closed-source applications, in
particular, pose obstacles for source code recompilation. Additionally, using architecture-
dependent instructions in the source code hampers its compilation on different platforms [5].
Dynamic binary translation (DBT) emerges as a valuable technology for software migration
by automatically translating code from a guest architecture into functionally equivalent
code for a host architecture [6].

While DBT offers advantages, its significant performance overhead hinders its prac-
tical implementation. As DBT translates and executes the guest code at the same time,
the overall performance of the translated binary is thus sensitive to the overhead of DBT.
To address this challenge, researchers have explored various optimizations. For example,
Hong et al. [7] employed a multi-threaded optimization to generate high-quality codes.
Hu et al. [2] used hardware co-design to enhance the functionality of target machine
instructions. Cota et al. [8] increased floating-point (FP) emulation performance by sur-
rounding the use of host FP unit with a minimal amount of non-FP code. Spink et al. [9]
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and Fu et al. [10] translated guest SIMD instructions to host SIMD instructions, aiming
to exploit ISA-specific features. Clark et al. [11] proposed a register-mapping approach
to reduce memory access and context switching overhead. Wang et al. [12] proposed a
static pre-translation method to improve the overall efficiency of translations. Moreover,
Huang et al. [13] introduced profile-guided optimizations for indirect branches. Despite
these efforts, the performance of DBT still lags behind native execution. This is due to sev-
eral factors: (1) DBT involves an extensive number of memory unit mapping and instruction
simulations, leading to an exceptionally heavy burden on memory access. (2) Differences
in cross-ISA capabilities limit the possibility of achieving optimal end-to-end instruction
mapping. Instead, it is a ‘one(ISA)-to-many(ISAs)’ binary translation. (3) The translation
process is driven by the guest program’s semantics, making it challenging to generate
translated code with advanced host ISA features.

This paper overcomes challenges in cross-ISA DBT by incorporating peephole opti-
mization to emit better-quality host codes. Specifically, we analyze four scenarios related
to redundant memory access in the intermediate code generated by QEMU. We employ
data flow analysis to optimize variable redundancy in write-back operations and flag
redundancy in storage operations, particularly in scenarios like store–store and store–load
(Section 4.2). Additionally, we propose pattern-matching between guest and host ISAs
to facilitate instruction fusion optimization, thereby enhancing the quality of generated
instructions (Section 4.3). The structural framework of this paper is outlined in Figure 1.

Problems:

A. Memory access overhead; B. Poor quality of translation code

Peephole analysis

  Redundant instructions elimination R

Peephole analysis

  Instruction sequence simplification R

Redundant instruction elimination based 

on live variable analysis

Instruction fusion optimization 

based on pattern matching

Figure 1. The structural framework of peephole optimization approach in this paper.

For implementation, we develop a prototype utilizing the open-source QEMU and con-
duct a comprehensive analysis on both ARM64 and SW64 platforms. The CINT2006 bench-
mark achieves notable improvements on SW64, with a maximum performance speedup of
1.52× and an average of 1.13×, alongside an average code size reduction of 5.35%. Simi-
larly, on ARM64, we achieve a maximum performance speedup of 1.32× and an average
of 1.07×, with an average code size reduction of 4.71%. Meanwhile, our fully optimized
approach can achieve an average speedup of 1.16× in x86-to-SW64 translation and 1.08×
in x86-to-ARM64 translation on Nbench benchmark. In summary, the contributions of this
paper are as follows:

• We apply the peephole optimization to DBT, and propose several optimizations to
offset the overhead of consecutive memory access and improve the quality of the
generated code.

• We introduce data flow analysis based on live analysis and successfully address
redundant consecutive memory-access write-backs and unused condition bit status
flag memory storage.

• We utilize instruction fusion techniques based on pattern-matching and apply ISA-
specific instruction sequences to address significant gaps between guest-to-host ISA.

• We conduct several experiments to evaluate our optimization. The results show a
maximum performance speedup of 1.52× on SPEC CINT2006, alongside a reduction
in code size of up to 13.98%.
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The rest of the paper is organized as follows: Section 2 provides preliminaries about
peephole optimization and binary translation. Section 3 outlines our motivation, highlight-
ing potential optimizable code. Section 4 delves into the design details of our optimization
for the identified code. Section 5 presents experimental results, evaluating the impact of
our optimization. Section 6 introduces related works, and Section 7 concludes the paper.

2. Preliminaries

Binary translation methods mainly include static translation and dynamic transla-
tion. In static binary translation, instruction translation is separated from code execution,
enabling offline translation with full code optimization, as depicted in Figure 2a. This
method demonstrates high execution performance. However, static binary translation faces
limitations due to its lack of complete control flow information in advance, encountering
challenges related to the issues of self-modifying code, code mining and relocation during
runtime, limiting its versatility for large-scale applications. On the other hand, dynamic
binary translation adopts a runtime compilation strategy executed simultaneously with
translation, and the translation occupies the program’s execution time. When it encounters
un-translated code, the context switches to the translator for on-the-fly translation, as shown
in Figure 2b. Dynamic binary translation addresses the deficiency of complete control
flow information in static binary translation and is widely used. Despite its popularity, the
requirements of low overhead and high-quality codes are often in conflict with each other.

Translation and

optimization

Guest  code

Host code

Translate

Translation and

optimization

Guest  code

Host code

Translate

Gen code
Contex switch

Execute

Gen code

Execute

(a) Static binary translation process (b) Dynamic binary translation process

Figure 2. Code translation and execution flow of different translation methods. (a) Description of the
code translation and execution flow of static binary translation. (b) Description of the code translation
and execution flow of dynamic binary translation.

No matter whether it is dynamic translation or static translation, binary translation
consists of two essential components: program state virtualization and instruction transla-
tion. Program state virtualization involves updating the CPU state of the host resources,
including registers and memory. Instruction translation involves equivalence transform of
the functionality of guest instructions.

2.1. Program State Virtualization

Program state virtualization dynamically maintains guest resource state in alignment
with the instruction execution flow. One challenge in program state virtualization is dealing
with register sets between different architectures. In practice, guest registers are mapped to
virtual registers within the context of DBT, and these virtual registers are then mapped to
specific host memory addresses. The mappings involve numerous intermediate variables.
Memory-access overhead, however, is significant.

The introduced intermediate variables encompass temporary, local, and global vari-
ables. Optimization becomes feasible through live analysis [14] for temporary and local
variables confined within a basic block (BB). However, global variables pose a unique
challenge as they persist across all translation blocks throughout the entire simulation.
Accessing global variables involves memory access, and defining them requires memory
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synchronization. Optimizing global variables goes beyond live analysis, requiring special
considerations to alleviate the considerable memory-access overhead.

2.2. Instruction Translation

Instruction translation involves a semantic-level equivalent transformation between
different ISAs. To formalize this concept, we first introduce the following definition.

Definition 1. Instruction sequences are semantic-level equivalent if they yield identical output
values for a given input and are executed in the same order without branches in the sequence.

Let I be an instruction set and S be a program state, φI(I) denotes the instruction
simulation function, and φS(S) denotes the program state virtualization function.

The formalization of the translation from a guest instruction sequence (IG =<
IG0, IG1, ..., IGn >) and its corresponding state (SG =< SG0, SG1, ..., SGn >) to a host
instruction sequence (IH =< IH0, IH1, ..., IHm >) and its corresponding state (SH =<
SH0, SH1, ..., SHm >) is denoted as < φI(IG0), φI(IG1), ..., φI(IGn) > 7→< IH0, IH1, ..., IHm >,
where n represents the number of simulated guest codes, and m represents the number
of generated host codes. This translation adheres to Formula (1), ensuring the proper
alignment of states throughout the translation process, m ≥ i > 0, n ≥ j > 0.{

SGi = γ(IG(i-1), IS(i-1))

SHj = φS(SGi)
(1)

2.2.1. Instruction Emulation

In DBT, achieving a full guest-to-host instruction simulation transition, from IGi to IHi,
is considered impractical. Instead, adopting the < φI(IGi) > 7→< IH0, ..., IHj > approach
emerges as a more pragmatic strategy. It is common for a cross DBT system to generate
dozens of host instructions when emulating a single somewhat complex guest instruction.
IR-based instruction translation is the most commonly used method in DBT. Examples
include LLVM IR, TCG IR, VEX IR, etc. The IR serves as a platform-independent code,
allowing flexible translation of cross-platform instructions. The instruction emulation
unfolds through the sequential translation of guest instructions into the elevation process
of IR (designated as ↑R

G), followed by the recompilation and generation of IR (designated as
↑H

R ). The formal definitions for these processes are Definitions 2 and 3. The binary lifting
process can be symbolized by L to achieve code decoding and encoding.

Definition 2. Let ↑R
G : LR

ISA’ → LR
IR be the transformation function that lifts guest ISA’ to IR,

where G denotes the set of guest instructions and R denotes the set of IR.

The ↑R
G is a transformation from platform-dependent to platform-independent. The

φI(IG) applies one-step translation in IG at a time.To offset translation overhead, QEMU,
for example, refrains from extending the correlation analysis to multiple instructions. The
TCG IR (an architecture-independent intermediate representation used by QEMU) solely
focuses on interpreting guest instructions individually.

Definition 3. Let ↑H
R : LR

IR → LISA"
H be the transformation function that transforms IR to host

ISA", where H denotes the set of host instructions.

The ↑H
R is a transformation from platform-independent to platform-dependent. Re-

stricted by the ↑R
G stage, there are limited opportunities for extensive analysis and optimiza-

tion. ISA asymmetry during decoding and encoding incurs considerable memory access.
For example, QEMU utilizes virtual registers for storage and retrieval in the translation of
register transfer instructions, as depicted in Figure 3. This strategy bridges the gap between
distinct ISAs and facilitates the smooth execution of guest programs to the host.
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Figure 3. The register mappings from guest registers to virtual registers in QEMU.

2.2.2. Handling Helper Function

To ease the development, debugging, and maintenance of DBT systems, DBT relies on
helper functions to translate guest instructions with complex semantics and functionalities,
for example, SIMD, FP, and CPUID instructions. That is, φI(IGi) exhibits a specific function.
For example, as illustrated in Figure 4, the translation from ARM64 fdiv (marked red in
Figure 4) to the SW64 platform (an efficient RISC architecture) can be managed through a
float64_div helper function (marked blue in Figure 4).

0x2000f538af4:  ldi     $r11,12056

0x2000f538af8:  addl    $r9,$r11,$r18

0x2000f538afc:  ldl     $r16,3168($r9)

0x2000f538b00:  ldl     $r17,5216($r9)

0x2000f538b04:  ldi     $r27,512

0x2000f538b08:  sll     $r27,0x20,$r27

0x2000f538b0c:  ldih    $r27,272($r27)

0x2000f538b10:  ldi     $r27,1344($r27)

0x2000f538b14:  call    ra,($r27),dest_hint

Guest Code (ARM64)

helper_vfp_divd（a, b,  fpstp）

translate

2f00e408  movi     d8,0

fd43c420  ldr      d0, [x1, #0x788]

1e681800  fdiv     d0, d0, d8

940019c9  bl       #0x406a00

1e681800：

add_i64 tmp4,env,$0x2f18

ld_i64 tmp9,env,$0xc60

ld_i64 tmp14,env,$0x1460

call vfp_divd,$0x0,$1,tmp2,tmp9,tmp14,tmp4

TCG IR

Host Code (SW64)

  tcg_gen_callN(helper_vfp_divd,retval, 3, args)

 float64_div(a, b, fpst)

gen_call

helper function

call function

gen_code

Figure 4. Simulation of the floating-point division instruction through helper functions.

Helper functions bring in the aforementioned benefits for DBT, however, they still face
fundamental drawbacks. One is the considerable code size expansion caused by simulating
one instruction with a separate function. Another is the considerable amount of additional
generated code, which includes function call preparation, handling of passing arguments,
and returning of result values. Furthermore, context switches between the code cache and
function calls are inevitable, leading to an abysmal performance. We conducted an analysis
of QEMU translation using SPEC2006 from x86-64 to SW64, which shows that helper
functions lead to a substantial percentage of the execution time, sometimes exceeding 95%.

2.3. Optimization of QEMU

Optimization of TCG: The performance of TCG IR is suboptimal due to its atomic
operation-like design. QEMU incorporates register live analysis and store-forwarding
optimizations to efficiently release unused registers and eliminate redundant storage
access operations. Nevertheless, the lack of optimization for memory-access operations
involving global variables results in a significant redundant memory-access overhead in
the generated code.
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Condition Bit Simulation: Architectures like x86 and ARM64 rely on the EFLAGS
registers for condition instructions [15]. In essence, subsequent behavior hinges on the
values stored in the EFLAGS register, which contains status flags like overflow (OF),
sign flag (SF), zero flag (ZF), auxiliary carry flag (AF), parity flag (PF), and carry flag
(CF). However, architectures such as MIPS, RISC-V, and SW64 lack EFLAGS registers.
Instead, handling condition instructions’ simulation in these cases involves software-based
simulation, requiring the execution of flag register logic functions to update the flag status
accordingly. Consequently, substantial memory access and computational overhead are
introduced. Li et al. [16] indicated that emulating an ARM condition code instruction
costs up to 16 RISC-V instructions on average. To alleviate this overhead, QEMU [14]
and Harmonia [17] adopt a lazy computation approach until the results are needed. This
strategy effectively reduces redundant evaluations and improves performance. However,
Lazy computation involves storing status flag information, which might be unnecessary if
not used by subsequent instructions.

2.4. Peephole Optimization

High-quality code generation relies on well-designed instruction selection and register
allocation algorithms. One method is to optimize specific parts of the code, which leads to
notable improvements in performance and code quality from a local perspective. Peephole
optimization [18,19] is a technique that focuses on analyzing code sequences within a
sliding window. It aims to find opportunities for making equivalent substitutions, resulting
in higher efficiency or a smaller code size. In DBT, this technique can eliminate redundant
instructions, reduce unnecessary memory overhead, and simplify specific instruction
sequences. Examples include algebraic simplification and specific instruction replacement.

3. Motivation

In this section, we use peephole analysis to identify sequences impacting performance
during translation.

3.1. Eliminating Redundant Instructions

Load and store instructions are essential for accessing memory. The load instruction
fetches data from memory to registers, while the store instruction moves data from registers
to memory. Registers offer significantly faster access compared to traditional DRAM, often
tens of times faster or more. Therefore, eliminating redundant memory access can reduce
unnecessary memory access.

3.1.1. Redundant Memory Access

Figure 5 provides a translation example of x86-64 ‘pushq’ to ARM64. The correspond-
ing TCG IR for ‘pushq’ is shown in Figure 5a, and the translated ARM64 code is shown
in Figure 5b. The x19, x20, and x21 represent different types of registers, and [x19,#0x20]
indicates the memory address corresponding to x19 + 0x20. When two ‘pushq’ instructions
are translated, they both write the values of registers x20 and x21 into the same address
[x19 + 0x20]. However, since the value of x19 remains constant, both ‘pushq %rax’ and
‘pushq %rsp’ are executed directly at the address [x19 + 0x20]. As a result, the former
‘str x20, [x19 + 0x20]’ is overwritten by ‘str x21, [x19 + 0x20],’ leading to write-after-write
redundant memory access. Therefore, ‘str x20, [x19 + 0x20]’ is a redundant operation.

In a broader context, the ‘rsp’ value is synchronized with memory whenever it is
defined, as are other similar directives such as ‘popq’ and other stack operations. Ideally,
the ‘rsp’ should only be written back to memory during the final update. Our study
of memory synchronization in the SPEC2006 [20] suite reveals an average of 2.1 global
variable memory storage occurring in a BB. Accordingly, reducing unnecessary memory
synchronization can significantly decrease memory access.
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----pushq    %rax----

   sub_i64 tmp2,rsp,$0x8

   qemu_st_i64 rax,tmp2,leq,0

   mov_i64 rsp,tmp2

--- pushq    %rsp---

   sub_i64 tmp2,rsp,$0x8

   qemu_st_i64 rsp,tmp2,leq,0

   mov_i64 rsp,tmp2

----pushq    %rax----

    sub     x20, x20, #8

    ldr      x21, [x19]

    str      x21, [x20, xzr]

    str      x20, [x19, #0x20]

 --- pushq    %rsp---

    sub     x21, x20, #8

    str      x20, [x21, xzr]

    str      x21, [x19, #0x20]

  overwrite

(a) The corresponding TCG IR 

of 'pushq' instruction
(b) The translated assembly

for 'pushq' instruction

Figure 5. Example of x86-64 pushq to ARM64 translation with QEMU. (a) Description of the corre-
sponding TCG IR for ‘pushq’ instruction. (b) Description of the generated assembly code for ‘pushq’
instruction on the host.

3.1.2. Unused Status Flag Storage

Status flag used by condition instructions can be categorized into read-only (check),
write-only (update), or read-and-write (check and update). Read corresponds to a load
process, while write corresponds to a store process.

In a BB, the status of condition bits is determined by whether subsequent instructions
utilize them. If utilized, it is active; otherwise, it is inactive. Importantly, not all instructions
utilizing the status are considered active. Consider the following x86-64 assembler code:

(1) movl %eax, 0x100
(2) addl %eax, 0x104
(3) addl %eax, 0x108
(4) cmpl %eax, 0x100
(5) ja Label

The update and check for each status flag in the provided assembler code are drawn as
Figure 6. The ‘movl’ instruction in (1) does not modify any status flags. Sequentially, both
‘addl’ instructions in (2) and (3) update the OF, SF, ZF, AF, PF, and CF. Similarly, the ‘cmpl’
instruction in (4) updates these flags. The ‘ja’ instruction in (5) checks the CF and ZF flags
affected by (4), determining the program’s next state. Notably, the status flags modified by
(2) and (3) are overwritten by (4), and a store-after-store memory occurs. Ideally, only the
required status flags updated by (4) are needed.

(1)  movl     %eax, 0x100

(2)  addl     %eax, 0x104

(3)  addl     %eax, 0x108

(4)  cmpl     %eax, 0x100

(5)  ja       Label

check：none

update：none

check：none

update：OF,SF,ZF,AF,PF,CF

check：none

update：OF,SF,ZF,AF,PF,CF

check：none

update：OF,SF,ZF,AF,PF,CF

check：CF,ZF

update：none

Figure 6. The analysis of update and check for the status flags.

3.2. Simplifying Suboptimal Instruction Sequence

During cross-ISA translation, it is common to employ multiple host instructions to
simulate a single guest instruction, as depicted in < φI(IG0), φI(IG1), ..., φI(IGn) > 7→<
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IH0, IH1, ..., IHm >. When simulating instruction sequences, various mapping methods
can theoretically be applied, resulting in multi-versioned host instruction sequences. One
straightforward solution to this issue is to explore a more effective translation method.

3.2.1. Suboptimal Instruction Simplification

Definition 4. A specific translated instruction sequence in a BB is considered suboptimal if there
exists a superior version that can minimize the execution overhead.

For instance, the pxor x86-64 instruction, which performs a bitwise logical XOR opera-
tion on two input operands, is simulated by QEMU through a pxor_xmm helper function.
However, when the pxor instruction has identical input parameters, it is essentially equiva-
lent to directly writing zero into the output.

We observe that pxor and vpxor instructions with identical input parameters are
prevalent in SPEC2006, constituting over 98% of cases. Leveraging this insight, by writing
‘0’, the target register can effectively enhance the running efficiency while eliminating
helper function calls.

3.2.2. Specific Code Replacement

In general, ISA-specific instructions designed for various purposes, such as data
prefetching, vector operations, and floating-point acceleration, can significantly enhance
computational power. Consider the expression d = a ∗ b + c, where a, b, c, and d are all
double-precision floating-point variables.

By default, x86’s gcc compiler (O2) does not generate a scalar floating-point multiply–
add instruction for this expression. It resorts to ‘mulsd’ and ‘addsd’ instructions. In contrast,
SW64 and ARM64 support more optimized ‘fmad’ (multiply–add) instruction, combining
‘mulsd’ and ‘addsd’ into a single instruction. During x86-to-SW64 and x86-to-ARM64
translation, the original guest semantics are maintained, simulating ‘mulsd’ and ‘addsd’
separately. This results in extensive computational and memory-access operations, as
depicted in Figure 7. As a result, the instruction simulation by DBT is less competitive than
that of native compilers.

 mulsd  %xmm0, %xmm3

 addsd  %xmm1, %xmm3

 

double a,b,c,d;

d= a×b + c

 

fmad r1,r2,r3,r3

qemu_ld_i64 tmp4,$0x6a00f0,leq,0        

 st_i64 tmp4,env,$0x360                  

 st32_i64 $0x0,env,$0x368

 st32_i64 $0x0,env,$0x36c

qemu_ld_i64 tmp4,$0x6a00e8,leq,0         

 st_i64 tmp4,env,$0x320                   

 st32_i64 $0x0,env,$0x328

 st32_i64 $0x0,env,$0x32c

add_i64 tmp8,env,$0x320

add_i64 tmp9,env,$0x360

call mulsd,$0x0,$0,env,tmp8,tmp9

add_i64 tmp8,env,$0x320

add_i64 tmp9,env,$0x360

call addsd,$0x0,$0,env,tmp8,tmp9

instructions of x86-64

instruction of SW64

instructions translated from x86-64 to 

TCG IR

Figure 7. The translation of mulsd and addsd instructions from x86-64 to TCG IR by QEMU.

4. Performance Optimization via Peephole Optimization
4.1. Methodology Overview

To address the performance issues stemming from significant memory-access over-
head and underutilization of host architecture features, we propose integrating peephole
optimization into DBT. Figure 8 provides an overview of our methodology.
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X86 binary

TCG IR

ARM/SW64 binary

Peephole optimization

Guest->IR

IR->Host

Redundant instruction 

elimination

Instruction Fusion

Binary translation

ru
n

ti
m

e

Memory synchronization

Status flag storage

Suboptimal simulation 

 Specific code pattern

Figure 8. The performance optimization via peephole optimization methodology overview.

To tackle the challenges of redundant memory synchronization for global variables
and the unnecessary storage of status flag values, we propose a redundant instruction
elimination optimization approach using live variable analysis. Additionally, to address the
challenge of incongruent semantic gaps between the guest and host ISAs, we investigate
an instruction fusion approach within a specific peephole window, which can be the entire
basic block or a subset.

4.2. Optimization for Consecutive Memory Access
4.2.1. Formalizing Consecutive Memory Access

In theory, redundant consecutive memory-access instructions manifest in the following
four scenarios:

(1) Redundant store–load: If there is no re-definition to the same register ‘reg’ between
the store and load access, the latter load is redundant.

(2) Redundant store–store: If the value of the registers ‘reg’ undergoes the same mem-
ory write through a repetitive store access, and there are no other instructions referencing
the memory during the store–store couple, the former store access is redundant.

(3) Redundant load–load: If there is no re-definition to the same register ‘reg’ between
the load–load couple, the latter load is redundant.

(4) Redundant load–store: If there is no re-definition to the same register after the load
access, the latter store access is redundant.

We formalize the four identified scenarios of redundant memory access as follows:
Store1(M, r) • Load1(M, r) → Store1(M, r) (SAL)
Store1(M, r) • Store2(M, r) → Store2(M, r) (SAS)
Load1(M, r) • Load2(M, r) → Load1(M, r) (LAL)
Load1(M, r) • Store1(M, r) → Load1(M, r) (LAS)
In the formalized context, Store(M, r) denotes writing the value of the register, named

r, to the memory address, named M, and Load(M, r) indicates loading the value from M to
r. Consequently, the store–load operation can be simplified into a single store instruction,
denoted as SAL. Similarly, the optimization for store–store is denoted as SAS, load–load
optimization is denoted as LAL, and load–store optimization is represented as LAS.

4.2.2. Live Variable Analysis in DBT

Live variable analysis (LVA) determines the relationship between variable definitions
and references to determine the exposed active set of variables. Any variables unused
within this set are identified as dead code and can be safely removed. We apply LVA to DBT
by examining variable definitions and references in each block through a reverse linear scan.
Instructions whose output variables are inactive are marked as redundant instructions.

For clarification, we give the following definition first.
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Definition 5. de f [I], set of variables defined by instruction I.

Definition 6. re f [I], set of variables referred by instruction I.

In a BB, de f [I] and re f [I] are determinable through computation from the control flow
graph, establishing them as recognized variables.

Definition 7. Suppose T is a referenced variable at the program point p. If T is live before p and
not defined at p, then T is also live at the position of p, and is marked as live. Otherwise, it is marked
as #live.

The liveness of instruction variables exhibits transitivity. Assuming the instruction
corresponding to program point p is I, if variable T is live before point p and remains
undefined at point p, then T continues to be live after point p.

If a BB references a value to variable T and does not recalculate it afterwards within the
same block, we say that the BB has killed T. Conversely, if the BB references a variable and
does not reassign a value to T later, we say the basic block BB has activated T. Consequently,
the expression transfer function fBB(T) can be represented by Formula (2).

fBB(T) = (T − de fBB) ∪ re fBB (2)

When analyzing liveness for each instruction I in a BB, the current instruction’s live-
ness relies on its own status and the set of live variables from the preceding instructions
(Formula (3)). Here, succ(I) represents the subsequent instruction of I.

live(I) = (
⋃

n∈succ(I)

live(n)− de f (I)) ∪ re f (I) (3)

To identify the redundant instruction I, we examine whether the defining variable,

denoted as de f [I], is not live in its successor instructions (i.e., not in
n

∑
j=I+1

live(j)). If it is met,

it is a redundant definition, as outlined in Formula (4).

de f [I] ∩
n

∑
j=I+1

live(j) = ∅ (4)

Challenge: While Formula (4) is effective in identifying and eliminating redundancies
defined by operations within BBs, integrating it into DBT optimization, such as QEMU,
presents challenges. DBT relies on memory access for simulating global variables, including
cross-procedure registers, stack registers, and variables introduced during translation.
Notably, these global variables are mapped to fixed memory addresses by DBT. Updating
these global variables is managed through memory sync-restore, involving two mappings:
the source platform’s global variable information (GV) to the virtual register, and the virtual
register (vMEM) to the host storage unit. The mapping process is illustrated in Figure 9.

In Figure 9, temp temporarily holds guest register values. However, when leaving the
block, its updated value is lost as temp is released. To ensure accuracy, we promptly sync
the updated global variable with memory after any value-defined operation in the block,
marked as “SYNC” in Figure 9.

QEMU utilizes a real-time memory write-back approach. Upon writing a global
variable in the BB, a memory synchronization is promptly generated. As mentioned
before, applying Formula (4) for optimizing global variables with redundant instructions is
utopian, as it might incorrectly identify variable synchronization to memory operations as
redundant instructions.



Electronics 2024, 13, 1608 1618 of 1632

 

instri:    def GV

 

instrj:     ref GV

 

instrk:    def GV

 

BBy

φ(I)

 

instr(i-1) : load  (vMEM)->Temp

instri :       def Temp

instr(i+1) : store Temp-> (vMEM)

 

instr(j-1) : load  (vMEM)->Temp

instrj :       ref Temp

 

instr(k-1) : load  (vMEM)->Temp

instrk :       def Temp

instr(k+1) : store Temp-> (vMEM)

 

BBy 

SYNC

BBx

 

BBz

 

BBx 

 

BBz 

 

 

SYNC 

Figure 9. The definition and reference to global variables through memory-access simulation.

4.2.3. Eliminating Redundant Memory Access Based on LVA

To ensure global variables synchronize to memory appropriately, we add a ‘sync’
attribute to all of them by default. When a fixed variable carries this attribute, it requires
a memory write-back. Accordingly, excessive and redundant memory write-backs are
employed. In Figure 9, both ‘insti’ and ‘instk’ perform fixed value operations on ‘Temp’,
causing duplicate SYNC operations, like store-load, store-store, and store-load.

Initially, all global variables in the BB undergoing define operations are marked with
the ‘sync’ attribute. During reverse analysis, if we encounter a defining operation of a
global variable with the ‘sync’ attribute, we change it to ‘#sync’. For operations referencing
variables, the ‘sync’ attribute remains unchanged. The reverse analysis guarantees memory
synchronization when the variable is last defined. If the fixed value of this global variable
is encountered elsewhere, we change the attribute to ‘#sync’, indicating that memory
synchronization is no longer necessary at the current position.

To achieve this, we propose a detailed state diagram for variable live transformation, as
illustrated in Figure 10. S1 represents the ‘#live|sync’ state, S2 corresponds to the ‘live|sync’
state, S3 corresponds to the ‘#live|#sync’ state, and S4 indicates the ‘live|#sync’ state.

S1

S4 S3

def

S2

ref

def
ref

ref

def def

ref

Figure 10. State diagram depicting variable live transformation.

For correctness purposes, if an instruction’s defined variable anastomoses ‘#live|#sync’
state, it indicates that the instruction is deemed redundant in terms of synchronization. In
other words, the instruction is redundant, as in Formula (5):

sync ∩ de f [I] ∩
n

∑
j=I+1

live(j) = ∅ (5)

Algorithm 1 shows our redundant instruction elimination based on live variable anal-
ysis (RIE-LVA) algorithm. We perform a bottom-up analysis of each instruction, utilizing
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the live state diagram in Figure 10, and determine the live, dead, and sync attributes of
the variables. After this step, we can identify the global variable T with the ‘#live|#sync’
attribute and mark the corresponding memory-access instructions as redundant.

Algorithm 1 RIE-LVA algorithm.
Input: The definition and reference of variables within BB;
Output: The redundant instruction within BB;
Set all variables in BB to dead;
Set all global variables in BB to sync;
for i = 1 to n do

live[i] = ∅;
sync[i] = ∅;
if de f [i] is global variable then

global[B] = global[B] ∩ de f [i];

end
end
sync[n] = global[B];
for i = n to 1 do

live[i] = (∩live[succ(i)]− de f [i]) ∩ re f [i];

if sync[i] ∩ de f [I] ∩
n

∑
j=I

live(j) = ∅ then

mark i as redundant instruction;
sync[i − 1] = sync[i]− de f [i];

end
end

4.3. Instruction Fusion Optimization
4.3.1. Instruction Semantic-Level Transformation Model

First, we model the instruction transformations as follows: let [guest]ISA represent
the guest ISA function sets, [host]ISA represent the host ISA function sets, and χ(I) be
the functionality of an instruction. Given the x86-64 ‘addq’ and SW64 ‘addl’ instructions,
where both χ(addq) and χ(addl) denote a 64-bit integer addition, we treat x86-64 and SW64
as semantically equivalent when performing 64-bit integer additions. We then further
formalize these transformations in the following manner:

• Case 1:χ(I) ∈ [guest]ISA and χ(I) ∈ [host]ISA. Both the guest ISA and host ISA
encompass the functionality of instruction I.

• Case 2:χ(I) ∈ [guest]ISA and χ(I) /∈ [host]ISA. The guest ISA set encompasses the
functionality of instruction I, but the host does not.

• Case 3:χ(I) /∈ [guest]ISA and χ(I) ∈ [host]ISA. The host ISA set encompasses the
functionality of instruction I, but the guest does not.

Facing < φI(IG0), φI(IG1), ..., φI(IGn) > 7→< IH0, IH1, ..., IHm > translation, for Case 1,
the transformation from IG to IH is straightforward, and the code size is precisely n ≡ m .
For Case 2, multiple instances of IH simulate the transformation of a single IG. This involves
helper functions, resulting in a code size of n ≪ m, despite the significant expansion. Case
3 aims to generate a better-quality host IH compared to IG, in theory, n ≫ m. However, in
practice, guests IG and SG impose restrictions on transformations, creating challenges to
the efficient extension of host-specific instructions. Instead, the less-efficient simulation
method is adopted, similarly to Case 2.

Next, we apply the instruction fusion peephole optimization to the specific instruction
sequence outlined in Case 3.



Electronics 2024, 13, 1608 1620 of 1632

4.3.2. Analyzing Data Dependency

Instruction fusion combines various instructions into more efficient nodes, reducing
overhead associated with instructions, registers, clock cycles, and memory access. More
specifically, Figure 11 depicts the instruction fusion process, where circles represent in-
structions, the virtual circle indicates the instruction for merging, and arrows denote data
dependencies between instructions.

In Figure 11a, instr2 depends on the outcomes of inst0 and inst1, and instr4 relies on
instr2 and instr3. Through fusion optimization in Figure 11b, instr2 and instr4 are combined
into instr5, maintaining the data dependency between instr2 and instr4. This fusion
shortens the data dependency chain from 2 to 1, streamlining the instruction sequence and
reducing associated dependencies.

instr0

instr2

instr4

instr1

instr3

instr0

instr5

instr1 instr3

instruction 

fusion

(a) instruction relation before fusion (b) instruction relation after fusion

Figure 11. The schematic diagram of instruction fusion. (a) The instruction relationships of instr0 to
instr4 before fusion. (b) The instruction relationships of instr0 to instr5 after fusion.

Though the idea of instruction fusion is fairly intuitive, it is quite challenging to put it
into practice due to two reasons: (1) exploring data dependencies within the basic block
is complex, and (2) identifying fusible instruction sequences from [guest]ISA to [host]ISA is
challenging. First, let us explore data dependencies.

Definition 8. The output variable of statement S is denoted as OUT(S).

Definition 9. The input variable of statement S is denoted as IN(S).

Definition 10. Data dependencies stem from interactions with the same data through read-
ing/writing or computing/using. For statements S and T, if variable x satisfies the following
conditions, we denote T as dependent on S, written as SδT; otherwise, there is no dependency
between them.

Flow dependency: For variables x, x ∈ OUT(S), and x ∈ IN(S), if there is a path from
statement S to statement T and T utilizes the value of x computed by S, then T exhibits
stream dependence on S and is marked as Sδ f T.

Anti-dependency: For variables x, x ∈ OUT(S), and x ∈ IN(S), if there is a path from
statement S to statement T but S uses the value of x before T assigns a value to x, then T is
anti-dependent on S and is marked as SδaT .

Output dependency: For variables x, x ∈ OUT(S), and x ∈ OUT(S), if statement S
assigns a value to variable x before statement T also writes x, there is a path from S to T, so
then T is output-dependent on S and is marked as SδoT.

Dependency solving: In the statement Si, Spre denotes the precursor statement of Si
and Ssucc denotes the successor statement of Si. If the specified conditions are fulfilled,
Siδ

f Spre, that is, OUT(Si) ∩ IN(Spre) ̸= ∅. Siδ
aSsucc, that is, IN(Si) ∩ OUT(Ssucc) ̸= ∅,

indicating a dependency relationship either between Si and Spre or between Si and Ssucc;
otherwise, no dependency relationship is maintained. Notably, Si and Spre, as same as
Ssucc and Si no need be contiguous, a strict order between them is sufficient. Thus, in the
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following sections, we will discuss the application of instruction fusion to DBT based on
the dependency relationships between the candidates.

4.3.3. Instruction Fusion Optimization Based on Pattern-Matching

As mentioned before, instruction fusion involves analyzing candidate instruction
sequences and applying equivalence transformations to optimize code. There are two meth-
ods commonly investigated: (1) The directed acyclic graph (DAG) construction method,
which relies on intact data flow and is challenging to obtain in DBT due to the lack of
preserved data flow relationships across BBs. (2) The pattern-matching method, which
involves template-matching based on predefined pattern rules during the instruction selec-
tion stage, independent of data flow. In this paper, we adopt the pattern-matching method
for instruction fusion, called INF-PRM (Instruction Fusion based on Pattern Rule Matching)

To create pattern mapping, we first build a rule base. Following the method in ref-
erence [21], we establish instruction mapping rules between x86-64 and SW64 as well
as x86-64 and ARM64. Considering the substantial overhead, we emphasize the transla-
tion of integer, floating-point, and logical operation instructions, given the poor quality
of the generated code.

Using instruction mapping rules, optimizations can be applied to generate optimized
IR, aligning with the existing DBT. This optimized IR aims to produce characteristic in-
structions that are more consistent with the host ISA. As depicted in Figure 12, during the
lifting process of ↑R

G : LR
ISA’ → LR

IR and ↑H
R : LR

IR → LISA"
H , the corresponding optimized IR

is generated using the established mapping rules. Subsequently, the host instruction is
generated based on this optimized IR.

Guest code Host  code

Mapping rules 

 IR

Optimizated IR

Figure 12. The framework of the rule pattern mapping and the generation of optimized IR.

This approach eliminates the need to delve into register-mapping intricacies as long
as the required data dependency relationships are maintained. The following are three
concrete examples of pattern-matching rules:

Rule C1: Fusion of single-precision FP multiply–add/sub operations into compound
single-precision FP multiply–add/sub instructions.

Rule C2: Fusion of double-precision FP multiply–add/sub operations into compound
double-precision FP multiply–add/sub instructions.

Rule C3: Fusing logical operations involves performing an XOR operation with the
same source and destination operands, resulting in writing zero to the destination.

As illustrated in Figure 13, we provide an example of our instruction fusion optimiza-
tion based on pattern-matching. We first formulate the matching rules. Throughout the
translation of instructions, we implement the mapping from guest to host for instructions
that satisfy dependency relationships. After optimizing, the ‘pxor’ instruction transitions
from invoking a helper function to a straightforward TCG assignment operation, as de-
picted in Figure 13b. Simultaneously, the double-precision FP multiply and add instructions,
following fusion, are efficiently translated into a single helper function that implements the
fused FP multiply–add.
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Rule C3

 Guest (x86-64)

   pxor reg0,reg0,reg1

 Host (SW64)

   mov 0,reg1

Rule C2

Guest (x86-64)

   mulsd  reg0,reg1

   addsd  reg2,reg1

Host (SW64)

 fmad reg0,reg1,reg2,reg1
 mulsd    %xmm1, %xmm0

addsd    %xmm1, %xmm0

call mulsd_helper_function

call addsd_helper_function

pxor  %xmm2，%xmm2 

call pxor_helper_function

Call fmad_helper_function

 st_i64 $0x0,(xmm2)

Rule C3

X86-64 Guest

IR (before optimization) IR (after optimization)

Rule C2

(a) Pattern rules (b)Instruction fusion optimization based on the  pattern rules

Figure 13. Example of instruction fusion optimization based on pattern-matching. (a) The instruction
matching rules between the guest and the host. (b) Instruction fusion optimization based on the
pattern rules provided in (a) for ‘pxor’ and floating-point multiply/add instructions.

Instruction fusion optimization can be implemented at different stages of DBT:
(1) Guest-to-IR stage: Fusion is performed while parsing the guest binary code snippet.
Specific instructions are directly merged based on the instruction context within the BB.
For example, the optimization shown in Figure 7. (2) IR-based stage: This stage involves
analyzing the internal data flow dependencies of BBs using IR. Optimizations, such as the
‘pxor’ simplification mentioned in Section 3.1.2, can be applied at this stage. (3) IR-to-host
stage: In this stage, instruction fusion is applied during the conversion of the IR operation
into host code, involving the use of specific host instructions.

5. Experimental Results
5.1. Experimental Setup

Testbed. We take SW64 [3] and ARM64 [22] as the host ISA and x86-64 [23] as the
guest ISA.

• SW64 host: The host machine has 2.40 GHZ and SW3231 processors for a total of
32 cores. The machine is equipped with 512 GB of RAM, 32 KB of L1 cache, 512 KB of
L2 cache, and 64 MB of shared L3 cache and runs UOS V20 with Linux kernel v4.19.0.

• ARM64 host: The host machine has 2.1 GHZ and Phytium S2500 processors for a total
of 64 cores. The machine is equipped with 2 MB of L2 cache and 64 MB of shared L3
cache and runs Kylin Linux kernel v4.19.0.

Benchmark. We take SPEC2006 [20], Nbench BYTEmark [24], and Stream [25] as
benchmarks. SPEC2006 is an industry-standardized test suite that comprises two test sets,
CINT2006 and CFP2006. It provides a comprehensive set of tests for evaluating binary
translation systems, enabling an effective analysis of DBT’s translation efficiency. We
conduct our SPEC2006 experiments with single-threaded execution.

Nbench, short for native mode benchmark and later known as BYTEmark, is a syn-
thetic computing benchmark program intended to measure a computer’s CPU, FPU, and
memory system speed. Nbench is single-threaded.

In addition, we utilized the Stream benchmark [25] to evaluate the impact of our opti-
mizations on multi-threaded execution. Notably, SW3231 and S2500 support a maximum
of 32 and 64 threads, respectively. To maintain a consistent comparison of key indicators,
we conduct the experiments with the thread count set to a maximum of 32.

Methodology. We use performance speedup to measure the optimization effects on
the translated code compared to the runtime before optimization. The reduction in code
size serves as a measure to assess the extent of code optimization, which can be calculated
using the formula (B − A)/B, B is the code size before optimization and A is the code size
after our optimization. The benchmark defaults with reference input. To minimize the
effect of measurement noise, we repeat each test three times and report an average result.
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All source codes are compiled with GCC v8.3.0 -O2. The baseline is derived from the
latest QEMU v6.0 [14]. As the open-source QEMU does not support SW64 architecture, we
modify the backend of QEMU to support SW64 before conducting our optimizations.

Baselines. We compare three versions of translators:

• QEMU base version: Compiles the QEMU v6.0 using GCC on both ARM64 and SW64
platforms, employing the default configuration settings.

• ARM64-opt version: Combines ARM64 with the QEMU base version, incorporating
RIE-LVA and INF-PRM optimizations.

• SW64-opt version: Combines SW64 with the QEMU base version, incorporating
RIE-LVA and INF-PRM optimizations.

5.2. Overall Impact on Performance

Before comparing overall performance, we conducted tests on the translation effi-
ciency of the QEMU base version. We employed the SW64-base for x86-to-SW64 translation,
achieving an average translation efficiency of 25.08% for CINT2006 and a translation effi-
ciency of 7.29% for CFP2006. For the x86-to-ARM64 base version, there was an average
translation efficiency result of 24.14% for CINT2006 and a efficiency of 8.24% for CFP2006.
These results indicate that our SW64 base version matches ARM64 base version in transla-
tion efficiency.

To evaluate the performance speedup achieved by our optimization proposed in
this paper, SPEC2006 and Nbench tests were conducted using the following versions:
ARM64-opt and SW64-opt.

The normalized speedup results for CINT2006 are illustrated in Figure 14. In SW64
architecture, 456.hmmer achieves a maximum speedup of 1.52×, with an average speedup
of 1.13×. Similarly, in ARM64 architecture, 429.mcf achieves a maximum speedup of 1.32×
and an average speedup of 1.07×.

Figure 14. The overall performance speedup achieved on CINT2006.

Figure 15 shows the normalized speedup achieved by our optimization on CFP2006
suite. In SW64, 482.sphinx3 exhibits a maximum speedup of 1.09×, with an average
speedup of 1.03×. On the other hand, for ARM64, 416.gamess showcases a speedup of
1.11×, with an average speedup of 1.05×.
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Figure 15. The overall performance speedup achieved on CFP2006.

Figure 16 shows the normalized speedup achieved by our optimization on Nbench
suite. In SW64 architecture, BITFIELD exhibits a maximum speedup of 1.64×, with an
average speedup of 1.16×. On the other hand, for ARM64 architecture, BITFIELD show-
cases a speedup of 1.19×, with an average speedup of 1.08×. Interestingly, BITFIELD is
sensitive to our optimization, this is because the hotspot of BITFIELD primarily involves
extracting memory data, performing calculations, and then writing the result back to the
original location. In QEMU, both arithmetic and logic operations require significant status
flag storage. Our optimization proposed in this paper effectively amortizes the memory
storage overhead.

Figure 16. The overall performance speedup achieved on Nbench.

5.2.1. RIE-LVA Performance

Figure 17 shows the impact of the RIE-LVA optimization on CINT2006 benchmarks.
For SW64, our approach achieves the maximum speedup of 1.48× (456.hmmer), while
an average of 1.09×. Similarly, on ARM64 architecture, our approach achieves the maxi-
mum speedup of 1.28× (429.mcf), with an average of 1.05×. The RIE-LVA optimization
demonstrates effectiveness on CFP2006 benchmarks, with a speedup ranging from 0.98×
to 1.08× on SW64 and ARM64. This indicates that the optimization has a noticeable impact
on integer benchmarks, while not significantly affecting FP benchmarks.
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Figure 17. Performance speedup achieved by RIE-LVA on CINT2006.

The limited effectiveness of RIE-LVA on FP benchmarks can be attributed to its primary
focus on live analysis and the optimization of IR. This optimization does not extend its
analysis to redundant instructions within helper functions, unfortunately, FP translation
relies heavily on helper functions.

An interesting observation arises when comparing the impact on specific benchmarks.
For example, the 456.hmmer benchmark for SW64 experiences a significant acceleration
effect, while the 403.gcc benchmark does not. Further analysis of the hotspot blocks in the
456.hmmer reveals that a substantial portion (59.2%) of instructions involve operations
between memory and general access, such as ‘mov’ and ‘adds’. As a result, this benchmark
entails a large number of memory-access instructions. In contrast, the hotspot block in the
403.gcc benchmark involves relatively fewer memory access events.

5.2.2. INF-PRM Performance

Figure 18 presents the impact of INF-PRM optimization on the CFP2006 bench-
marks for both SW64 and ARM64. For SW64, the maximum speedup achieved is 1.08×
(453.povray), with an average speedup of 1.04×. Similarly, for ARM64, the maximum
speedup reaches 1.11× (416.gamess), with an average speedup of 1.03×.

Figure 18. Performance speedup achieved by INF-PRM on CFP2006.
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We find the results demonstrate a direct correlation between pattern-matching success
rates and optimization effectiveness. A higher success rate corresponds to greater perfor-
mance improvements. For SW64, the 444.namd benchmark exhibits 2708 occurrences of FP
multiplication and addition combination, while the 454.calculix benchmark shows only
373 occurrences. This discrepancy explains why the optimization effect on SW64 is signifi-
cant for 444.namd but less pronounced for 454.calculix. Similarly, on the ARM64 platform,
the optimization impact is prominent for 416.gamess but not for 410.bwaves.

5.2.3. Multi-Thread Suite Performance

We evaluate our proposed techniques using Stream with multiple threads. Specif-
ically, we configured the number of threads to 32 and executed the binary code gener-
ated from DBT. The acceleration effect is summarized in Figure 19, showing a speedup
ranging between 1.0× and 1.02×. This indicates that our optimization is applicable to
multi-threaded applications.

Figure 19. Performance speedup achieved for Stream benchmark with multi-threads.

5.2.4. Translation Overhead Impact

We next study the translation overhead caused by our approach. The results indicate
that the RIE-LVA optimization incurs a translation overhead of less than 0.5%, which is
negligible. On the other hand, the INF-PRM optimization introduces overhead typically
ranging from 0.1% to 3%; the overhead can be attributed to its reliance on pattern-matching
and data dependency analysis. In cases where instruction replacements are infrequent, the
additional overhead from these checks may amortize the benefit from the performance
gains obtained through optimization. This phenomenon explains the observed negative
acceleration effects in the 454.calculix and 410.bwaves tests.

5.3. Overall Impact on Code Size

Finally, we study the impact of our approach on code sizes. Figure 20 shows the code
size reduction on SPEC2006.

As the data show, when all optimizations are applied, for CINT2006 on SW64, the
code size reduction ranges from 1.65% to 12.04%, with an average of 5.35%. For CFP2006
tests, the reduction ranges from 0.31% to 13.74%, with an average of 2.64%. On ARM64,
the reduction for CINT2006 ranges from 1.63% to 9.25%, with an average of 4.71%. For
CFP2006 tests, the reduction ranges from 0.14% to 13.98%, with an average of 2.36%.

To better understand the effect of our approach impact on code size, we evaluate a
concrete example referred in Section 3.2.1. The corresponding TCG IR in Figure 21a shows
that (2e), (3d), and (4c) define cc_dst, which belongs to SAS redundant memory access. The
last definition of cc_dst is at (4c). After applying the RIE-LVA optimization, both (2e) and
(3d) can be eliminated, leading to the optimization effect displayed in Figure 21b. As a
result, the size of IR decreases from 13 to 11.
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Figure 20. The overall code size reduction on SPEC2006 benchmark.

BB entry:

/* （1）movl     %eax, 0x100 */

(1a) qemu_st_i64 rax,0x100,leul,0  

/* （2）addl     %eax, 0x104 */

(2a)qemu_ld_i64 tmp0,0x104,leul,0   

(2b)add_i64 tmp0,tmp0,rax 

(2c)qemu_st_i64 tmp0,0x104,leul,0   

(2d)mov_i64 cc_src, rax    

(2e)mov_i64 cc_dst, tmp0  

/*（3）addl     %eax, 0x108 */

(3a)qemu_ld_i64 tmp0,0x100,leul,0   

(3b)add_i64 tmp0,tmp0,cc_src  

(3c)qemu_st_i64 tmp0,0x108,leul,0   

(3d)mov_i64 cc_dst, tmp0    

/* （4） cmpl     %eax, 0x100*/

(4a)qemu_ld_i64 tmp0,0x100,leul,0   

(4b)mov_i64 loc10,tmp0

(4c)sub_i64 cc_dst,loc10,cc_src

exit: 

ref(3d)={tmp0}
def(3d)={cc_dst}
live(3d)={cc_src,t
mp0}
sync(3d)={cc_src}

ref(3c)={}
def(3c)={tmp0}
live(3c)={cc_src,tmp0}
sync(3c)={cc_src}

ref(3b)={tmp0,cc_src}
def(3b)={tmp0}
live(3b)={cc_src}
sync(3b)={cc_src}

ref(3a)={}
def(3a)={tmp0}
live(3a)={cc_src}
sync(3a)={cc_src}

ref(2e)={tmp0}
def(2e)={cc_dst}
live(2e)={tmp0,cc_src}
sync(2e)={cc_src}

ref(2d)={rax}
def(2d)={cc_src}
live(2d)={tmp0,rax}
sync(2d)={cc_src}

ref(2c)={tmp0}
def(2c)={}
live(2c)={tmp0,rax}
sync(2c)={}

ref(2b)={tmp0,rax}
def(2b)={tmp0}
live(2b)={rax}
sync(2b)={}

ref(2a)={}
def(2a)={tmp0}
live(2a)={rax}
sync(2a)={}

ref(1a)={rax}
def(1a)={0}
live(1a)={rax}
sync(1a)={}

BB:

(1a) qemu_st_i64 rax,0x100,leul,0  

(2a)qemu_ld_i64 tmp0,0x104,leul,0   

(2b)add_i64 tmp0,tmp0,rax 

(2c)qemu_st_i64 tmp0,0x104,leul,0   

(2d)mov_i64 cc_src, rax    

(2e)mov_i64 cc_dst, tmp0  

(3a)qemu_ld_i64 tmp0,0x100,leul,0   

(3b)add_i64 tmp0,tmp0,cc_src  

(3c)qemu_st_i64 tmp0,0x108,leul,0   

(3d)mov_i64 cc_dst, tmp0    

(4a)qemu_ld_i64 tmp0,0x100,leul,0   

(4b)mov_i64 loc10,tmp0

(4c)sub_i64 cc_dst,loc10,cc_src

exit:

ref(4a)={}
def(4a)={tmp0}
live(4a)={cc_src}
sync(4a)={cc_src}

ref(4b)={tmp10}
def(4b)={loc10}
live(4b)={cc_src,tmp0}
sync(4b)={cc_src}

ref(4c)={cc_src,loc10}
def(4c)={cc_dst}
live(4c)={cc_src,loc10}
sync(4c)={cc_dst,cc_src}

live(entry)={}

(a) Suboptimal TCG IR (b)Optimized TCG IR

execution direction liveness analysis

RIE-LVA optimizated

Figure 21. Example of RIE-LVA optimization for the status flag redundant storage. (a) The TCG IR
and live analysis of each variable corresponding to the example in Section 3.2.1. (b) Optimized TCG
IR after applying the RIE-LVA optimization.
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Additionally, the INF-PRM optimization targets specific conditions, like FP multipli-
cation and addition, FP multiplication and subtraction, FP negative multiplication and
subtraction, and ‘pxor’ return to zero sequences, aiming to reduce the frequency of calls to
helper functions and produce concise host-translated code. For example, DBT simulates
‘mulsd’ and ‘addsd’ by utilizing helper functions, as depicted in Figure 22. The INF-PRM
optimization merges ‘mulsd’ and ‘addsd’ instructions into ‘fmad’. This optimization not
only streamlines the code but also eliminates an extra helper function call.

 mulsd  %xmm0, %xmm3

 addsd  %xmm1, %xmm3

 

double a,b,c,d;

d= a×b + c

 

fmad r1,r2,r3,r3

qemu_ld_i64 tmp4,$0x6a00f0,leq,0        

 st_i64 tmp4,env,$0x360                  

 st32_i64 $0x0,env,$0x368

 st32_i64 $0x0,env,$0x36c

qemu_ld_i64 tmp4,$0x6a00e8,leq,0         

 st_i64 tmp4,env,$0x320                   

 st32_i64 $0x0,env,$0x328

 st32_i64 $0x0,env,$0x32c

add_i64 tmp8,env,$0x320

add_i64 tmp9,env,$0x360

call mulsd,$0x0,$0,env,tmp8,tmp9

add_i64 tmp8,env,$0x320

add_i64 tmp9,env,$0x360

call addsd,$0x0,$0,env,tmp8,tmp9

instructions of x86-64

instruction of SW64

instructions translated from 

x86-64 to TCG IR

qemu_ld_i64 tmp4,$0x6a00f0,leq,0        

 st_i64 tmp4,env,$0x360                  

 st32_i64 $0x0,env,$0x368

 st32_i64 $0x0,env,$0x36c

qemu_ld_i64 tmp4,$0x6a00e8,leq,0         

st_i64 tmp4,env,$0x320                   

st32_i64 $0x0,env,$0x328

st32_i64 $0x0,env,$0x32c

add_i64 tmp8,env,$0x320

add_i64 tmp9,env,$0x360

call fmad,$0x0,$0,env,tmp8,tmp9

instructions translated from x86-64 to TCG 

IR via INF-PRM optimization

Figure 22. Example of FP multiply–add instruction fusion optimization.

5.4. Discussion and Limitations
5.4.1. Limitations

This paper focuses on DBT performance, primarily targeting user-level translation.
However, this is not suitable for system-level translation. This is due to the requirements
of maintaining virtual-to-physical address coordination and real-time CPU state synchro-
nization in system-level translation. Our optimization may lead to belated memory state
synchronization in system-level issues. Additionally, our optimization aims to address
instruction quality issues from x86 to RISC architectures translation. While our approach
can guarantee correctness for RISC platform guests, its optimization benefit may be limited.
Furthermore, our implementation relies on QEMU and has not been verified for other
frameworks. It will be interesting to see how our work benefits other DBTs in the future.

5.4.2. Benefiting Other Applications

Our optimizations are architecture-independent and significantly enhance QEMU-
based binary translation. We have confirmed this acceleration in SPEC2006, Nbench, and
Stream benchmarks. They are equally effective for user-level translations such as PDF
and Oracle. Additionally, they are valuable in dynamic instrumentation analysis, software
migration, and program behavior analysis based on DBT.
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6. Related Work

Peephole optimization is widely used in binary translation optimization [21,26–29].
Bansal et al. [21] utilized peephole optimization in rule-based binary translation. They
employed a specific window size for peephole analysis and a superoptimization approach
to automatically discover optimal translation rules. This facilitated end-to-end mapping
between PowerPC and x86. However, this approach involves an almost brute-force rule
learning, which has a substantial initial cost. Tan et al. [26] utilized a specific data depen-
dency graph to combine live analysis and peephole optimization, effectively eliminating
redundant instructions in generated code of a static binary translator. Experimental results
on the benchmark programs from the SPEC2006 benchmark suite show that an aver-
age 1.17× performance speedup can be achieved. Similarly, Sun et al. [27] conducted
peephole optimization on a static binary translator to eliminate redundant instructions.
Rocha et al. [28] integrated peephole optimization to optimize redundant memory access
and fence instructions during the translation of concurrent programs. However, the above
approaches primarily face static binary translation, where the impact of peephole opti-
mization’s overhead is not a significant concern, whereas our paper is implemented in a
dynamic binary translation. As a matter of fact, our optimization incurs minimal translation
overhead, consistently measuring less than 3% in experiments.

Instruction fusion has been commonly applied in processor co-design, aiming to
enhance instruction field utilization and code density [30,31]. Celio et al. [32] employed
macro-op fusion to accelerate idioms created by legacy ISA decisions, altering the ISA shape
to match internal macro-ops and facilitating the addition of new ISAs. Singh et al. [33]
focused on instruction fusion, exploring opportunities for fusing additional instructions
in a high-performance general purpose pipeline. Lupon et al. [34] used DBT with slight
modifications to an FMA unit, and achieved the fusion of FP multiply and FP add to
produce an FP multiply–add instruction. However, these co-design methods primarily
require synchronous modifications. In an attempt to improve the quality of host-side code,
Jiang et al. [35] proposed a parameterized translation rule learning method for instruction
generation. While this method demonstrates high translation efficiency, its flexibility
is relatively constrained. In contrast, this paper uses the existing framework of binary
translation, which creates its own patterns during instruction translation and subsequently
maps these patterns to generate efficient instructions that adhere to the target architecture.

The current binary translation for condition bit simulation mostly involves the lazy
computation approach to reduce the condition bit computation. However, this method
increases the memory-access consumption during execution. To tackle this problem,
Wang et al. [36] proposed a pattern-based translation method for status flags. They se-
lected instruction combinations with equivalent semantics on the target, thereby reducing
the translation workload for the assigned flag bits. However, the complexity of semantic
relationship learning and pattern generation limits its reusability and extension to other
translators. Salgado et al. [37] utilized the debugging module in hardware to monitor mem-
ory access to the program status word register and triggered a watchpoint debug event to
reduce the computation and storage of flag bits as much as possible. However, this method
relies on the assumption of a hardware debugging module, which may be overly optimistic
for architecture combinations with significant differences in hardware debugging modules.
Li et al. [16] proposed a software–hardware collaboration optimization for the translation
of the condition bit instructions from ARM to RISC-V. They extended the corresponding
RISC-V arithmetic instruction function with the setting or referencing of the condition
bits and designed IR according to the guest ISA to match and keep the information of the
source program instruction sequence. A key breakthrough of our approach is to effectively
address the issue of redundant status flag storage. Furthermore, there is no need to modify
the hardware features.

DBT optimizations have been studied widely in the literature [8,27,38–41]. Cota et al. [8]
enhanced FP emulation performance by surrounding the use of the host FP unit with a
minimal amount of non-FP code and deferring corner cases to the slower soft-float code.
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Wu et al. [38] focused on reducing the majority of writes introduced by DBT, introduced a
flag to indicate where the latest value of an emulated guest register is placed, and mapped
the guest register to host general-purpose registers directly. Wu et al. [42] bridged the
utilization gap and unleashed the full potential of host SIMD resources and emulated the guest
general-purpose registers with host SIMD registers to reduce the memory access. Fu et al. [41]
recompiled the hotness code to improve translation code quality. In contrast, this paper
primarily focuses on optimizing and fusing instructions generated during the translation
process, specifically targeting intermediate redundant code. Jiang et al. [43] proposed a
DBT method based on learning rules for translation in the system mode and proposed three
optimization methods to solve the problems of high synchronization costs, frequent memory
synchronization, and unreasonable instruction define-use scheduling in binary translation.
Distinctively, reference [43] focused on offsetting the significant memory synchronization
overhead in system-level translation. While the memory synchronization issue addressed
by [43] is similar to this paper, the differences are quite evident. Reference [43] primarily
targeted system-level translation, whereas our paper concentrates on user-level translation.
Additionally, our paper is predominantly based on IR translation, whereas [43] relied on
learning-based translation.

7. Conclusions

The efficiency of translation performance is a crucial consideration in the design of
DBT systems. The pursuit of efficient and universally applicable optimizations has been
a prominent research area. In this paper, we introduced peephole optimization into DBT,
aiming to bridge the gap between ISA-specific optimizations and the significant memory-
access overhead observed in DBT. We focus on optimizing redundant memory-access
instructions by employing live analysis and simplifying suboptimal instructions through
pattern-matching based instruction fusion. We have implemented these optimizations
in a QEMU prototype and conducted tests on both ARM64 and SW64 platforms. Our
fully optimized approach can achieve an average speedup of 1.13× on SPEC CINT2006
and 1.16× on Nbench in x86-to-SW64 translation. Meanwhile, we achieve an average
speedup of 1.07× on SPEC CINT2006 and 1.08× on Nbench in x86-to-ARM64 translation.
The results show that our approach significantly improves translation performance and
reduces code size. While our implementation has focused on typical cases, it is important to
emphasize the immense potential of our approach for extensively enhancing DBT code in
practical applications.
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