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Abstract: The application of Artificial Intelligence (AI) and Machine Learning (ML) models is increas-
ingly leveraged to automate and optimize Data Centre (DC) operations. However, the interpretability
and transparency of these complex models pose critical challenges. Hence, this paper explores the
Shapley Additive exPlanations (SHAP) values model explainability method for addressing and
enhancing the critical interpretability and transparency challenges of predictive maintenance models.
This method computes and assigns Shapley values for each feature, then quantifies and assesses their
impact on the model’s output. By quantifying the contribution of each feature, SHAP values can assist
DC operators in understanding the underlying reasoning behind the model’s output in order to make
proactive decisions. As DC operations are dynamically changing, we additionally investigate how
SHAP can capture the temporal behaviors of feature importance in the dynamic DC environment
over time. We validate our approach with selected predictive models using an actual dataset from
a High-Performance Computing (HPC) DC sourced from the Enea CRESCO6 cluster in Italy. The
experimental analyses are formalized using summary, waterfall, force, and dependency explanations.
We delve into temporal feature importance analysis to capture the features’ impact on model output
over time. The results demonstrate that model explainability can improve model transparency and
facilitate collaboration between DC operators and AI systems, which can enhance the operational
efficiency and reliability of DCs by providing a quantitative assessment of each feature’s impact on
the model’s output.

Keywords: AI; data center; HPC; ML; SHAP; game theory; XAI

1. Introduction

Recently, the use of AI and ML applications within data centers (DCs) as a way
to automate and optimize operations has increased. As DCs evolve and scale to meet
increasing demands, AI and ML models are replacing traditional heuristics and engineering
solutions, and now play a critical role in modeling plant performance and improving DC
efficiency. Theof These powerful technologies engage in a wide range of operational
optimisation and management aspects, including energy efficiency, cooling efficiency,
resource allocation, fault detection, etc., and harnessing their capabilities across multiple
layers (mainly IT and cooling systems) can offer remarkable prediction accuracy [1–3].
However, unlike traditional heuristics and statistical models, AI and ML models often lack
trustworthiness and transparency due to their “black-box” nature. This increases concern
regarding the need for explainable AI (XAI), which is essential for ensuring the practical
utility, understanding, reliability, and explainability of these models’ output [4–6].
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The SHapley Additive exPlanations (SHAP) Values framework has evolved as a way
to address concerns around model explainability as a critical feature attribution method
for quantifying the effect of a specific feature on each prediction output. It can improve
model transparency, facilitate collaboration between humans and AI systems, and promote
operational reliability by quantitatively assessing each feature’s impact on the model’s
output. Hence, utilizing this XAI in the DC context is essential for understanding model
decisions, pinpointing influential features that affect service reliability, performing root
cause analysis, enhancing performance, performing proactive maintenance, mitigating
risks, fostering continuous improvement, and ensuring adherence to regulatory compliance.
However, although many XAI efforts have been made in diverse domains, to the best of our
knowledge no effort has yet been made in the DC context. Hence, this paper investigates
SHAP values, a model-agnostic method for interpreting AI and ML models in DC contexts,
by quantifying a specific operating feature’s effect on the model output. This enables DC
operators to understand the model’s decisions by identifying critical features that affect
its output and making predictive maintenance decisions. However, the static analysis
of feature effects using SHAP may not accurately capture the dynamic nature of the DC
environment, where the operating behavior changes over time and where the relevance
of features can change as well. Hence, it is essential to maintain the stability of feature
effects or importance in order to ensure the credibility of SHAP-based interpretations
under such situations. Moreover, the intricate interplay of characteristics in predictive
models, particularly in the DC setting, necessitates an in-depth understanding of how
several different aspects influence prediction outcomes.

In this paper, harnessing the capabilities of the SHAP values method, we explore model
interpretation and explanation in the DC context as a way to promote transparency and
trust-building in the use of AI and ML models. To capture the temporal feature relevance over
time in the dynamic environment, we perform Temporal SHAP Values (TSHAPV) analysis by
taking 15 min of data and capturing the importance of the temporal features’ impact on the
predictive model. This is based on the previous temporal foundation put forward by [7–9].
Our study begins with background applications of AI and ML models in DCs, the theoretical
foundations of XAI, and their applicability, which are discussed in Section 2 below. This
is followed by a discussion of data collection and preprocessing, selected model building,
and finally the theoretical foundations of SHAP and its applicability in the DC context in
Section 3.3. Next, Section 4 presents expected limitations when SHAP is applied in the DC
context. The results of our experimental analysis are presented in Section 5. Finally, we present
our conclusions and prospects for future work. Our approach is demonstrated through
selected RF, XGB, and LSTM-based DC ambient temperature predictions. This comprehensive
approach provides an informed understanding of SHAP’s pivotal role in enhancing the
interpretability and trustworthiness of predictive models, particularly in the DC environment.
We validated our proposed approach using a historical dataset from an HPC DC sourced
from Enea CRESCO6 cluster operations data, which are monitored every 15 min and contain
54 features.

Our contributions in this paper are as follows: (1) we apply the SHAP values XAI
method to interpret AI and ML predictive models in the DC context as a way to improve
transparency and trustworthiness. SHAP quantifies the effect of each feature on the model
output, enabling DC operators to understand the operation’s impacting features and make
informed predictive maintenance decisions. This method can help to facilitate collaboration
between DC operators and AI systems, enhancing DC operational efficiency and reliability
by quantitatively assessing each feature’s impact on the model’s output. (2) We explore
feature interactions and their impact on the predictive model output, which we demonstrate
using the dependency explanation tool. DC operators can gain insights into how different
features influence each other and impact the model’s predictions. This understanding can
help operators to interpret the model’s behavior, identify essential features, and improve
the model’s performance. (3) We explore the relevance of temporal features in the dynamic
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environment over time using Temporal SHAP (TSHAP), which allows a typical feature’s
impact on model output over time to be assessed.

2. Related Work

In this section, we briefly discuss the applications of AI and ML models to optimize
DC operations and the applicability of XAI to interpret these models. DCs are the backbone
of ever-increasing economic activities, enabling system operations, data storage, and net-
working capabilities in a reliable and scalable fashion [10]. DCs are evolving and scaling
to meet increasing demands. Due to increasing physical complexity, the sheer number of
possible configurations, plant performance, nonlinear system interactions, and the need
to monitor enormous amounts of operations management data from various aspects of
operations, optimizing a typical DC operation presents challenges that cannot be addressed
using traditional rule-based and engineering solutions. Recently, DCs have been able to
realize significantly increased performance, efficiency, and reliability by harnessing the
power of AI and ML models. For instance, utilizing a simple Neural Network (NN) ML
approach, Google was able to reduce cooling costs by 40% by predicting power usage
effectiveness and adjusting controllable parameters [1]. Research by Bianchini, R. et al. has
implemented an XGB tree-based model for efficient resource and workload management
towards ml-centric cloud platforms [2]. Other efforts include research by Haghshenas et
al. [3] that utilized a multi-agent machine learning (ML) strategy for energy-efficient virtual
server consolidation and a study by Z. Yang et al. [11] that implemented a light gradient
boosting machine, a recurrent neural network, and random forests to optimize the energy
efficiency of the total input energy per year of a DC by 0.24%. Another study [12,13] uti-
lized machine learning thermal modeling to enhance DC energy efficiency, and many more
efforts have been implemented to automate and optimize DC operations.

As discussed above and indicated elsewhere in the literature, AI and ML techniques are
ideal solutions for automating and optimizing DC operations with high accuracy. However,
unlike traditional heuristics and statistical models, interpreting these black-box AI and
ML models is challenging and represents a significant concern. Hence, incorporating XAI
approaches has become paramount as a way to ensure that advances in ML models remain
explainable and transparent [14–16]. XAI strives to encompass particular motivations,
such as accountability, fairness, privacy, reliability, transparency, and trust-building [17], in
order to ensure the overarching goal of applying AI and ML technologies [18]. Although
efforts have been made in diverse domains, including complex systems analysis, to the best
of our knowledge no such efforts have been made in the DC context. The most popular
XAI methods are LIME [19], DeepLIFT [20], Layer-Wise Relevance Propagation (LRP) [21],
classical Shapley values [22], and SHAP [23], which includes different versions such as
TreeSHAP [24] and DeepSHAP [23]. More details about these approaches can be found
in [25]. In the context of time series problems, which is similar to the DC context, there
are efforts such as [26,27], which utilized SHAP and LIME, respectively, for time series
classification, focusing on global feature attribution-based explanations. Efforts have been
applied to time series forecasting; for instance, the research by [28] utilized LIME and
SHAP for time series forecasting, and [29] utilized time series SHAP (TsSHAP) to provide
explanations of univariate time series forecasting models. In [30], the authors provided
detailed evaluations of the popular LIM, LRP, and SHAP explainers. In addition to SHAP’s
good missingness, consistency, and accuracy properties, the authors ranked SHAP as the
most reliable, while the other approaches were biased towards specific model architectures.
Furthermore, SHAP values have gained considerable interest compared to other XAI
approaches because of their distinctive combination of accuracy and interpretability [31].
SHAP can offer a reliable and essential way to determine the significance of features, which
is extremely helpful in quantifying a specific feature in a complex environment such as DC.
According to the literature, SHAP has emerged to bridge the gap between model accuracy
and transparency, making it more trustworthy. With all of these justifications, the present
paper adopts SHAP to interpret AI and ML models in the DC context.
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While SHAP’s contributions to explaining predictive modeling are substantial, several
gaps remain. Most notably, existing works have often overlooked temporal changes in
feature importance and the complex interactions between them [32–34]. Further, although
methodologies such as time series and survival analysis have provided invaluable in-
sights [35–37], capturing temporal issues has not been considered essential. In this paper,
we adopt model explainability using SHAP and explore its application in the DC context.
We additionally address temporal capture challenges using sensitivity analysis and observ-
ing the model’s behavior over time, aiming to achieve a deeper understanding of feature
collaborations over time. As SHAP values have already gained prominence for their robust
mathematical grounding and versatility across models [38–40], the distinguishing aspect
of this research is its focus on model interpretability in the DC context. With the growing
implementation of AI and ML models, understanding their decision-making process and
ensuring their transparency is critical to improving trustworthiness in industry. The pro-
posed methodology maintains a high level of prediction accuracy and provides valuable
insights into the features that most impact the predictive process.

3. Methodology

As illustrated in Figure 1, this section details AI and ML model explainability and
interpretation implementation using SHAP on commonly used RF, XGB, and NN prediction
models to demonstrate the explainability of XAI in the DC context. As indicated in Figure 1,
the method consists of the following four steps: (i) data collection and preprocessing,
including data preprocessing, feature engineering, and relevant input feature selection,
splitting dataset into 80% for training and 20% for testing; (ii) model building and hyper-
parameter configuration, and trained the specified model using 80% of the training data;
(iii) describing the theoretical foundations of SHAP explainer and applied to any of the
trained models; and (iv) then presented the model interpretation and explanation results
(applying SHAP on the training and testing data not changed the feature importance).

Figure 1. A schematic representation of the SHAP value framework applied to any trained model.
This framework consists of input features to train the model, model building and configuration,
and training the specified model using the input features. Then, the SHAP explainer interprets the
black-box model by quantifying and assessing the input features’ impact on the model.

3.1. Dataset and Preprocessing

This paper uses data from the ENEA CRESCO6 cluster, consisting of 434 computing
nodes with 20,832 cores and operating parameters monitored by onboard sensors. The
cooling system’s operating parameters, including supply air, return air, relative humid-
ity, airflow, fan speed, etc., are monitored using the cooling machine’s onboard sensors.
Environmental conditions are monitored using smart sensors installed around the cluster.
These data streams are accessed through an intelligent platform management interface
(IPMI), and stored in three MySQL database tables. The datasets were recorded in three
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tables for the energy and workload, cooling system, and environmental conditions-related
parameters. Table 1 illustrates the collected raw data, which were monitored over a range
of seconds and minutes.

Table 1. Raw datasets of the cluster monitored in 2020.

Dataset Samples Features

Energy and
workload_related_data 12,541,104 26

Cooling system related_data 310,245 9
Environmental related_data 35,579 22

Hence, following data collection, we performed data preprocessing tasks with expert
consultation to ensure high-quality data for AI and ML models. Irrelevant features were
removed from each table. For example, in each table, there were two time stamps, one of
which was machine-readable and the other actual human-understandable; we removed
one and used the other as an index for each table. The datasets were then reshaped into
(34,553.24), (34,553.6), and (34,553.20), into 15 minute equal time resolutions, and aggregated
into a single compact dataset at the DC level reshaped as (34,553.50). This DC operational
dataset was treated as a multivariate time-series problem. In such problems, temporal
or covariate feature considerations are essential to understanding the temporal behavior
of the data. For instance, DC ambient temperature behavior changes at different time
scales, such as hours, days, etc. Hence, we used feature engineering to extract time-based
covariate features, which have significant predictive power for the target variable. Based
on that, we identified four features extracted as temporal features, i.e., hours, days, months,
and quarters. Finally, the dataset used in this paper was reshaped as (34,553.54), that is,
34,553 instances and 54 features. The list of input features and descriptions is provided in
Appendix A.

However, as some of the data may not be relevant to effectively model the target
variable (in this case, DC ambient temperature), we used the SHAP-assisted feature selection
method from our previous paper [41] to identify relevant features. Next, we performed data
normalisation, also known as feature scaling, which is recommended due to the wide range
of raw feature values. The values of a feature vector z were mapped to the range [−1, 1] by:

znorm = z − mean(z)/max(z)− min(z). (1)

We validated the performance of the selected prediction models using the Mean Squared
Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) metrics.

3.2. Prediction Models

Data-driven models based on AI and ML emphasize learning patterns and relation-
ships directly from the dataset without relying on explicit knowledge. These empirical
algorithms rely on observed data to capture flexible patterns and relationships, which can be
adapted to model and optimize DC operations without extensive domain knowledge. This
section presents the description, architecture, and hyperparameter configurations of the
selected RF, XGB, and LSTM DC ambient temperature prediction models to be explained.

3.2.1. Random Forest Forecasting

A random forest (RF)-based DC ambient temperature prediction model was estab-
lished to forecast every 15 min. RF was initially proposed by Ho (1995) [42] and further
updated by L.Breiman [43], and is now a widely used method in regression and classifica-
tion problems. RF regression is an average prediction across the decision trees in time-series
forecasting. Before fitting the model, we transformed the data into a supervised learning
approach using the shift function Python module. For instance, for a target variable y, its
lag_time is provided as yt−1, yt and yt+1. In this case, yt−1 and yt are the lagged time of
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yt and yt+1, respectively. Note that the lag_time is used to create features that capture the
relationship between a time series’ past values and its current ones. Then, we fitted the
model and validated it using a walk-forward validation approach. The training dataset
was utilized to identify the optimal parameters for the random forest model, while the
testing dataset was exclusively used to validate the model’s prediction quality. The optimal
hyperparameters used in this paper were tuned as shown in Table 2.

Table 2. Hyperparameter settings used for the random forest model. These parameters are used
when calling the RandomForestRegressor() function in sklearn.

Hyperparameters Values

n_estimators 200
max_depth 5

min_samples_split 2
min_samples_leaf 1

3.2.2. XGBoost

A more robust machine learning model than RF, XGBoost (XGB) was also used to
forecast the DC ambient temperature. XGB is an optimized gradient boosting decision
tree (GBDT) algorithm widely used in classification and regression problems [44]. In
XGBoost regression, the average prediction across the decision trees is used to forecast the
DC ambient temperature. As in RF, we transformed the data into a supervised learning
approach using the shift function before fitting the model. The model was validated using a
walk-forward validation approach. The training dataset was utilized to identify the optimal
parameters for the XGB, while the testing dataset was exclusively used to validate the
model’s prediction quality. The model was implemented using the sklearn package. The
optimal hyperparameters used in this paper were tuned as shown in Table 3.

Table 3. Hyperparameter settings used for XGBoost. These parameters are used when calling the
XGBRegressor () function in sklearn.

Hyperparameters Values

n_estimators 2000
max_depth 6

learning_rate 0.001
min_samples_split 2
min_samples_leaf 1

3.2.3. Long Short-Term Memory (LSTM) Deep Learning

In addition, we developed an LSTM-based DC ambient temperature prediction model.
LSTM is a popular Recurrent Neural Network (RNN) introduced by Schmidhuber et al.
in 1997 [45] for sequential data analysis. LSTM overcomes the vanishing and exploding
gradient limitations of RNNs by introducing four modules with internal memory control.
The LSTM modules consist of internal memory, a forget gate, an input gate, and an output
gate. As illustrated in Figure 2, the memory component tracks input sequence dependencies,
while the gates control the LSTM’s ability to remove or add information. The forget
gate determines the time a value remaining in the cell. The LSTM memory unit follows
Equations (2)–(7).

ft = σ
(

w f ∗ [ht−1, xt] + b f

)
(2)

it = σ(wi ∗ [ht−1, xt] + bi) (3)

c̃t = tanh(wc ∗ [ht−1, xt]bc) (4)

ct = ( ft ∗ ct−1 + it ∗ c̃t) (5)
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ot = σ(wo ∗ [ht−1, xt] + bo) (6)

ht = ot ∗ tan h(Ct) (7)

Figure 2. A typical LSTM memory unit architecture.

As Equation (1) indicates, ft is the forget gate range of (0, 1), w f is the weight, and b f
is the bias value applied to the forget gate, while xt is the input feature of the current time
t and ht−1 is the output value of the last moment. In Equations (2) and (3), it is the input
gate with a value range of (0, 1), wi is the weight, bi is the bias of the input gate, wc is the
weight of the candidate input gate (c̃t), and bc is the bias of the candidate input gate. In
Equation (5), ct is within the range of (0, 1). In Equation (6), ot is within the range of (0, 1),
wo is the weight of the output gate, and bo is the bias of the output gate. In Equation (7), ht
determines the information that should be passed to the next sequence. We implemented a
four-layer LSTM model consisting of an input layer, two hidden layers, and one output
layer. Table 4 provides the implemented LSTM architecture hyperparameter settings. The
input included 54 features, 64 neurons, and 10 time steps or window_size.

Table 4. Hyperparameter settings of the LSTM with 54 input features.

Hyperparameters Values

Input tensor 64 ∗ 10 ∗ 54
LSTM layer 64 ∗ 2

Activation function Relu
Output layer 64 ∗ 1

Optimiser Adam
Loss function MSE

epochs 100
batch_sizes 32

3.3. Theoretical Foundations of the Shapley Additive Explanations (SHAP) Method

As illustrated in Figure 1, this paper uses the SHAP values method to interpret the
output of AI and ML models. SHAP provides a feature-based explanation ϕ ∈ Rd, where d
is a dimension vector representing each feature’s contribution score for the corresponding
feature. In addition to its missingness, consistency, and accuracy, SHAP is a human
institution method [23] with advanced performance, outperforming other explainers in the
literature. It quantifies the impact of a specific feature on a prediction model for specific
instances [23]. It bridges the gap between a trained model’s accuracy and interpretability.
The critical principle involves calculating each feature’s contribution to the prediction
by considering all possible feature combinations. This entails assessing the difference in
prediction when including and excluding a feature (as calculated in Equation (8)) while
considering all possible combinations of other features. This comprehensive approach
guarantees a fair assessment of each feature’s contribution within the context of all other
features. The SHAP values methodology is detailed in Molnar (2020) [25], and a more



Electronics 2024, 13, 1628 8 of 20

intuitive introduction is provided by Mazzanti (2020) [46,47]. The Shapley values for each
feature are calculated by Equation (8):

SHAP(ϕi) = ∑
S⊆N\{i}

|S|!(N − |S| − 1)!
N!

[v(S ∪ {i})− v(S)] (8)

where ϕi the contribution of feature i, N is the set of all features, S is a subset of features
|S| that denotes the size of the set, v(S ∪ {i}) is the prediction with both the features in
set and feature, and v(S) is the prediction with just the features in set S. As illustrated in
Equation (8), the contribution of feature i is computed by iterating over all possible subsets
S of the remaining features in N and comparing the difference in the prediction when
feature i is included versus when it is excluded.

In contrast to more straightforward techniques such as LIM, SHAP profoundly deter-
mines the direction and size of each feature’s impact, which is crucial for comprehending
complex models. Thanks to its theoretical basis in cooperative game theory, interpretations
are guaranteed to be consistent and dependable. The approach performs exceptionally well
at capturing complex interactions and nonlinear correlations between features, which is
an essential component of advanced ML models. As SHAP is model-agnostic, it can be
used with a wide range of models, including deep neural networks and simple regressions.
It is crucial for in-depth instance-level comprehension and more comprehensive model
behavior analysis, as it provides both local and global insights. This viewpoint improves a
model’s transparency and reliability, which is particularly important in delicate domains
such as the DC environment. Moreover, SHAP assists in the process of feature engineering
and model refining, enabling the development of models that are both more efficient and
easier to interpret, which functions as a conduit providing lucidity and responsibility to
complex machine learning forecasts, rendering it an essential instrument in the realm of
AI and machine learning technologies. This paper uses the TreeSHAP explainer for the
tree-based models (RF and XGB) and DeepSHAP for the deep learning model (LSTM).

4. Limitations

Although the SHAP explainer can provide insightful information about the black-box
machine learning models in the DC context, there are several issues to consider when
implementing SHAP explanations which may limit their use in the context of data centers:

1. Data Quality and Variability: Inconsistency, noise, and missing values in data can all im-
pact the reliability of SHAP explanations in the DC context. The stability and consistency
of SHAP values can be impacted by variations in data center environments over time,
such as shifts in workload patterns, hardware configurations, or environmental factors.

2. Real-time Interpretability: Many data center applications require real-time decision-
making in response to events or situations that change over time. The processing
expense of computing SHAP values may make generating SHAP explanations for
predictions in real-time impractical, particularly for complicated models such as deep
learning or for enormous data sets.

3. Domain Expertise Requirement: Understanding the significance of features, interpreting
the direction and size of feature contributions, and making defensible decisions based
on the information provided by SHAP values when interpreting SHAP explanations
may require domain expertise. In data center operations, it can be challenging to bridge
the knowledge gap between domain-specific experience and data science competence.

5. Experimental Results

This section illustrates the experimental performance analysis of the predictive models
presented in Section 5.1, Table 5 and the experimental analysis for black-box model ML
explanations formalised starting from Section 5.2.
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5.1. Model Performance and Time Complexity Index

The model performance results illustrated in Table 5 are based on the optimally
selected features in our previous feature selection work [41]. However, this paper’s main
intention is to assess these models’ explainability. Hence, the analysis of the results focuses
on model interpretation, as detailed in the following subsections.

Table 5. Models performance and time complexity index.

Models Selected
Features MAE MSE RMSE Run_Time

RF 27 0.308 0.0501 0.0707 850
XGB 29 0.201 0.0433 0.0658 620

LSTM 54 0.0352 0.00341 0.0584 340

5.2. SHAP-Based Feature Importance and Comparison Analysis

This subsection illustrates ML black-box model explanations using the SHAP method.
TreeSHAP is used to interpret the tree-based ML models, while DeepSHAP is used for the
deep learning model. The results were formalized using the summary, waterfall, force, and
dependency explanation tools. Further, the importance of temporal features was explored
in order to evaluate the method’s reliability within the dynamically changing DC environ-
ment over time. Feature importance is a cornerstone for quantifying and understanding the
relative impact of features in complex machine learning models. For instance, as illustrated
in Figures 3 and 4, the summary plots merge the importance of features with their effects,
highlighting the features’ global importance [48]. Each point on the summary plot represents
a Shapley value for various DC ambient temperature prediction features. Figures 3 and 4
illustrate that the features displayed on the y and x axes determine the Shapley value. The
color denotes each feature’s value, which ranges from low (blue) to high (red). The x axis
indicates a positive value, while red color denotes a high value. The features are vertically
ordered by their shape values and average importance to the predictions [19]. The distribution
of the Shapley values for each feature can be ascertained by examining the overlapping points
that exhibit jittering along the y axis direction. It can be seen in Figures 3 and 4 that exh_temp
and supply_air have the most significant impacts on the ambient temperature. The analyses
shown in Figures 3 and 4 reveal that certain features, specifically supply_air and exh_temp,
consistently emerge as highly important across the DC ambient temperature predictions.
However, the SHAP value for any given feature is not constant, and varies from phase to
another in this dynamic environment over time. This variability highlights the importance of
the measurement feature over time or across different operational phases in a dynamically
changing environment. As SHAP values are the result of unique features that are particular to
each prediction, we further explore waterfall, force, and dependency plots, which are essen-
tial to understanding the models in every DC ambient temperature prediction. Figures 5–7
depict a waterfall plot for DC ambient temperature prediction at a specific instance, which is
designed to explain individual predictions. The waterfall displays target values on the x-axis,
with x representing the selected target, f (x) representing the model’s predicted value, and
E[ f (x)] representing the expected value.
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Figure 3. This result illustrates an XGB-based SHAP summary plot global model interpretation.

Figure 4. RF-based summary plot explanation.
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Figure 5. Explanations for individual RF-based DC ambient temperature prediction using a water-
fall plot.

Figure 6. Explanations for individual XGB-based DC ambient temperature prediction using a
waterfall plot.
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Figure 7. Explanations for individual LSTM-based DC ambient temperature prediction using a water-
fall plot.

As illustrated in the waterfall Figures 5–7, the negative values correlate negatively
with the DC ambient temperature target variable, whereas the positive values reflect a direct
relationship to the model’s output. The waterfall explanation provides a comprehensive
breakdown of individual features’ contributions to a specific prediction, illustrating their
cumulative impact and providing a detailed understanding of individual feature contribu-
tions. The waterfall explanation indicates the contribution of each feature to prediction,
with positive (+) indicating increased output and negative (−) indicating decreased output
from the baseline. As illustrated in Figures 5–7, supply_air, exh_temp, and supply_air were
the top infrared features for a specific DC ambient temperature prediction when using RF,
XGB, and LSTM, respectively. As illustrated in Figure 5, supply_air, cold113_temp, and
cold115_temp push down the model output, with −0.12, −0.09, and −0.07, respectively.
Similarly, the waterfall plots for XGB and LSTM are illustrated in Figures 6 and 7, respec-
tively. From a technical point of view, this explanation demonstrates to DC operators which
features positively or negatively affect the DC ambient temperature, enabling them to take
appropriate maintenance actions.

Figures 8–10 illustrate local model interpretation for RF, XGB, and LSTM, respectively.
The local explanation is based on a single instance of the data-point. Unlike the tree-based
models, LSTM takes three dimensions (sequences, time steps, and input features) as input,
making it challenging to apply SHAP directly to the model output. To resolve this issue,
the LSTM model output flattened into two dimensions and reduced the dimensionality to
the original feature size, then applied the DeepSHAP explainer to interpret this complex
model. Due to increased monitoring of operations data, predictive maintenance in the DC
operating environment has evolved to leverage advanced deep learning models, providing
advanced operating insights into the operational efficiency and reliability of DCs.

Figure 8. Local interpretation of RF using a SHAP force plot.
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Figure 9. Local interpretation of XGB using a SHAP force plot.

Figure 10. Localinterpretation of the model forecast made by LSTM using a SHAP force plot. Blue
feature attributions cause the outcome to be pushed down, while red feature attributions cause the
results to be pushed above the “base value”.

Interpreting models using SHAP dependency plots is pivotal, as they demonstrate
the relationship between model features and their impact on predictive outputs, which is
essential to the predictive maintenance evolution of the DC operating temperature. Below,
we explore the implications of the analytical insights derived from the SHAP dependency
plots for supply_air vs. exh_temp, supply_air vs. sys_power, and exh_temp vs. sys_power,
illustrated in Figures 11–13, respectively, along with their translation into practical strategies
for DC operating temperature maintenance.

According to the illustration in Figure 11, the SHAP plot for supply_air vs. exh_temp
illustrates a positive correlation between the DC exhaust temperature (exh_temp) and
the model’s ambient temperature prediction, suggesting that higher exh_temp values
can signal increasing DC ambient temperature. Correcting supply_air under various
operational conditions can vary the impact of exh_temp on the DC operating temperature.
A practical implication is that such insights can inform maintenance strategies, promoting
early inspections and interventions to maintain the DC ambient temperature when the
exh_temp is higher. For instance, DC operators can maintain the ambient temperature
by adjusting cooling system settings, enabling them to enhance the DC’s efficiency and
service reliability.

Figure 11. Dependency/interaction plot of supply_air vs. exh_temp.
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Figure 12. Dependency/interaction plot of supply_air vs. sys_power.

Figure 13. Dependency/interaction plot of exh_temp vs. sys_power.

The dependency analysis of supply_air vs. sys_power in Figure 12 shows that lower
SHAP values are associated with higher air supply (supply_air), suggesting that the DC oper-
ations may be under stress related to the air supply. This allows for more targeted air supply
fan maintenance based on the cooling systems of the DC, which enables maintenance of the
DC operating temperature to enhance DC efficiency. In this case, the air supply negatively
impacts the ambient temperature. Furthermore, as illustrated in the plot of exh_temp vs.
sys_power in Figure 13, an increase in exh_temp at the DC corresponds with higher SHAP
values, underscoring its importance in DC efficiency. The color gradient with sys_power
indicates an interplay between exh_temp and sys_power that affects DC ambient temperature
predictions. A practical implication is that regularly maintaining the DC’s ambient tempera-
ture is essential to maintaining and improving DC efficiency. Hence, the SHAP dependency
plot is an excellent analytical exploration tool for interpreting black-box models.
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5.3. SHAP-Based Temporal Feature Importance Analysis

Unlike the traditional SHAP method, which views feature importance as a static
property, mean absolute temporal SHAP (TSHAP) values are a novel evaluation metric
that allows the temporal behavior of features to be captured in dynamic industrial contexts.
This metric provides a reliable way to understand how features contribute to predictive
models over time, particularly within the context of DCs. To demonstrate how the temporal
changes of features behave over time, we used the last 15 min of data by taking the topmost
essential features of each model and examining how the temporal changes are affected over
time. The results of this analysis for each model concerning the topmost important features
are shown in Figures 14–16. We examined the SHAP values over each feature’s continuous
operational time over 15 min. Figures 14–16 show the SHAP values of specific features
and how they behave over 15 min for the RF, XGB, and LSTM model-based DC ambient
temperature predictions. This approach provides a dynamic interpretation of feature
significance that enhances the more general patterns seen over time. For example, as
illustrated in Figure 14, there is noticeable temporal variation in SHAP values for essential
features such as cold113_temp and supply_air, which suggests that these features had
different effects on the RF model’s predictions over 15 min. Similarly, as illustrated in
Figure 15, there is noticeable temporal variation in the SHAP values for essential features
such as exh_temp and supply_air, which suggests that these features had different effects on
the XGB model’s predictions over 15 min. Finally, Figure 16 illustrates noticeable temporal
variation in the SHAP values for essential features such as supply_air and energy, which
suggests that these features had different effects on the LSTM model’s predictions over
15 min.

These results show that SHAP is resilient in capturing the temporal effects of any
machine learning model output. It consistently captures the prediction output’s features
and temporal effects, enabling DC operators to understand the output and take informed
predictive maintenance actions.

Figure 14. SHAP values for exh_temp and supply_air in the RF-based DC ambient temperature
predictions over 15 min.

Figure 15. SHAP values for exh_temp and supply_air in the XGB-based DC ambient temperature
predictions over 15 min.
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Figure 16. SHAP values for exh_temp and supply_air in the XGB-based DC ambient temperature
predictions over 15 min.

6. Conclusions and Future Works

This paper makes significant and decisive steps towards enhancing the interpretability
and explainability of complex AI and ML models, particularly within the DC context,
using the SHAP (Shapley Additive exPlanations) method. The experimental SHAP-based
explanation analysis formalizes the explanation output at the global and local levels.
Delving into the interpretations of SHAP explainer tools can enhance DC efficiency and
service reliability and serve as the foundation for predictive operational maintenance
methods. By harnessing these analytical insights, DC operators can understand the factors
that are most impactful on the models in order perform appropriate proactive maintenance
actions. Our formal experimental analysis uses summary plots for global feature impact
analysis, waterfall and force plots for local and global prediction, and dependency plots
to capture feature interactions, providing insights into the cooperative interplay among
features and how they collectively influence DC ambient temperature prediction. Our
experimental analysis results for the SHAP-based model explanations are illustrated in
Figures 3–13. In addition, this paper delves into temporal SHAP (TSHAP), used as a
foundation to reveal the temporal changes of feature importance over time. This approach
offers thorough data and comprehension of features’ contributions to model predictions
over time. As illustrated in Figures 14–16, observing the fluctuations in the SHAP values of
a specific feature over time can indicate how that particular feature behaves in the given
time cycle with different prediction models. By capturing the temporal behaviors of feature
importance, the approach described in this paper can inform predictive maintenance for
DC operating temperatures while improving DC efficiency and reliability. By leveraging
the SHAP model explanation method, operators can move towards more transparent,
interpretable, and predictive maintenance while improving efficiency and operational
optimizations. The interpretation of SHAP values presents a challenge in complex and
dynamic environments with nonlinear configurations.

Hence, this paper constitutes a comprehensive exploration of AI and ML model
interpretation based on SHAP values in the DC context, exploring feature interactions
and the temporally changing impacts of features on different prediction models over time.
This study can provide the DC industry with more accurate, dependable, and interpretive
models by utilizing SHAP values and closely analyzing their subtleties. In addition to
making a substantial contribution to the academic debate, these findings have practical
implications for improving predictive maintenance strategies in the data center industry.
However, even though our study has made initial initiatives towards interpreting AI and
ML models in complex DC environments, it is important to acknowledge that there may be
challenges around data quality and variability, real-time interpretability, and the need for
intensive domain expertise. Continuous monitoring and auditing of AI and ML models
in data centers involves additional challenges such as tracking performance, recalibrating
explanations, and ensuring alignment with operational objectives over time.

Future studies may concentrate on resolving the discrepancies that have been found
in this study and developing novel model explainability approaches for greater precision
and broader application in the DC setting. To ensure that the feature importance and
interactions captured by the models closely correlate with industry-specific knowledge
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and real-world experiences, close collaboration with DC domain experts is necessary in
order to design more effective SHAP-based techniques. Another significant focus of our
future work involves the robustness of SHAP values, specifically, how they behave when
there are outliers and operational disruptions. We acknowledge that the current scope has
its limitations, even though our findings have shown a degree of stability in these values
across the analysed scenarios. Extensive validation over a larger range of operational
data and quality situations and model designs is required for comprehensive robustness
analysis, which is beyond the scope of present work. In light of this, we emphasize the
significance of carrying out further research on the resilience of interpretability approaches
such as SHAP in order to guarantee that the insights they offer continue to be trustworthy,
instructive, and in line with real-time interpretation in varying circumstances.
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DC Data Center
DCIM Data Center Infrastructure Management
CNN Convolutional Neural Network
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RNN Recurrent Neural Network
SHAP SHapley Additive exPlanations
ML Machine Learning
NN Neural Network
MTS Multivariate Time Series
HPC High-Performance Computing
XGB XGBoost
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Appendix A

This section provides supplementary information related to the input features.

1. Timestamp_measure: the datetime for reading data streams from sensors (minutes)
2. sys_power: the total instantaneous power of each node (Watts)
3. cpu_power: the instantaneous CPU power of each node (Watts)
4. mem_power: each node’s RAM memory instantaneous power (Watts)
5. fan1a: the node’s fan speed, expressed in RPM (revolutions per minute)
6. fan1b: speed of the fan (Fan1b) installed in the node, expressed in RPM
7. fan2a: speed of the fan (Fan2a) installed in the node, expressed in RPM
8. fan2b: speed of the fan (Fan2b) installed in the node, expressed in RPM
9. fan3a: speed of the fan (Fan3a) installed in the node, expressed in RPM
10. fan3b: speed of the fan (Fan3b) installed in the node, expressed in RPM
11. fan4a: speed of the fan (Fan4a) installed in the node, expressed in RPM
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12. fan4b: speed of the fan (Fan4b) installed in the node, expressed in RPM
13. fan5a: speed the fan (Fan5a) installed in the node, expressed in RPM
14. fan5b: speed of the fan (Fan5b) installed in the node, expressed in RPM
15. sys_util: the system usage (%)
16. cpu_util: the CPU usage (%)
17. mem_util: the RAM usage (%)
18. io_util: the node’s I/O traffic
19. cpu1_Temp: the CPU (CPU1) temperature (°C)
20. cpu2_Temp: the CPU (CPU2) temperature (°C)
21. sysairflow: the airflow of the node in CFM (cubic feet to minute)
22. exh_temp: the exhaust temperature (air exit of the node), expressed in °C
23. amb_temp: ambient temperature/room temperature, expressed in °C (target variable)
24. dcenergy: the DC energy demand, expressed in Kwh (target variable)
25. supply_air: the cold air or inlet temperature (°C)
26. return_air: the heat or warm air ejected to the outside (°C)
27. relative_umidity: the working humidity of the CRAC (°C)
28. fan_speed: the speed of the CRAC cooling system (RPM)
29. cooling: the working intensity of the CRAC (%)
30. free_cooling: not applicable, as all values are 0
31. hot103_temp: the hot temperature (°C) monitored by sensor hot103
32. hot103_hum: hot_humidity monitored by sensor hot103
33. hot101_temp: hot temperature (°C) monitored by sensor hot101
34. hot101_hum: hot_humidity (%) monitored by sensor hot101
35. hot111_temp: hot temperature (°C) monitored by sensor hot111
36. hot111_hum: hot_humidity (%) monitored by sensor hot111
37. hot117_temp: hot temperature (°C) monitored by sensor hot117
38. hot117_hum: hot_humidity (%) monitored by sensor hot117
39. hot109_temp: temperature (°C) monitored by sensor hot109
40. hot109_hum: hot_humidity (%) monitored by sensor hot109
41. hot119_temp: hot_temperature (°C) monitored by sensor hot119
42. hot119_hum: hot_humidity (%) monitored by sensor hot119
43. cold107_temp: cold_temperature (°C) monitored by sensor cold107
44. cold107_hum: cold_humidity (%) monitored by sensor cold107
45. cold105_temp: cold_temperature (°C) monitored by sensor cold105
46. cold105_hum: cold_humidity (%) monitored by sensor cold105r
47. cold115_temp: cold_temperature (°C) monitored by sensor cold115
48. cold115_hum: cold_humidity (%) monitored by sensor cold115
49. cold113_temp: cold_temperature (°C) monitored by sensor cold113
50. cold113_hum: cold_humidity (%) monitored by sensor cold113
51. hour: hours of the day
52. day: days of the week
53. month: months of the year
54. quarter: quarter of the year
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