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Abstract: In order to determine the junction temperature of semiconductor devices operating at
different power supply and cooling conditions, their thermal parameters are needed. This article
describes an original measurement set-up enabling the determination of thermal parameters of
power semiconductor devices. In contrast to other set-ups described in the literature, this set-up
makes it possible to measure thermal parameters which characterize the efficiency of the removal
generated due to a self-heating phenomenon, as well as the parameters characterizing mutual thermal
couplings. The presented set-up makes use of an indirect electrical method to determine the junction
temperature of diodes, bipolar and unipolar transistors and IGBTs. The methods used to measure the
self and transfer transient thermal impedances of these devices and the construction of the set-up
are described. The influence of selected factors on the accuracy of the measurements is analyzed.
Examples of the measurement results of thermal parameters (self and transfer transient thermal
impedances) of power semiconductor devices operating at different cooling conditions are presented.
The obtained research results are discussed.

Keywords: measurement set-up; thermal parameters; power semiconductor devices; self-heating;
mutual thermal couplings; measurement error

1. Introduction

An important problem for designers of electronic systems is to limit the value of the
junction temperature Tj of the components of these systems during their operation due to
the decisive influence of this temperature on the lifetime of these components [1–3]. This
temperature is higher than the ambient temperature Ta due to thermal phenomena, i.e., self-
heating and mutual thermal couplings with the other components [4–7]. The parameters
that characterize the mentioned thermal phenomena are self Zth(t) and transfer Zthm(t)
transient thermal impedances [8]. Both the mentioned parameters are used in compact
thermal models of electronic networks containing semiconductor devices situated on the
common base, e.g., a common PCB, case or heat-sink [6,8,9]. Such a model makes it possible
to calculate the junction temperature of each device at known waveforms of the power
dissipated in these devices. The waveform of Zth(t) should be measured for each device,
whereas Zthm(t) should be measured for each pair of such devices.

Zth(t) and Zthm(t) waveforms depend, among other factors, on the structure of the
case of the electronic device, the structure of the cooling system of this device and the
power dissipated in them [9]. Meanwhile, manufacturers of electronic components provide
information on Zth(t) curves only for selected cooling conditions—most often for the
ideal cooling of their case [8,10–12]. In order to determine Zth(t) and Zthm(t) waveforms
for the established operating conditions of electronic devices, it is necessary to measure
these parameters.

The literature presents numerous descriptions of methods for measuring thermal
parameters of semiconductor devices [13–19] and magnetic elements [20]. However, little
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work concerns practical solutions of the measurement systems enabling the measurement
of these parameters. Previous papers [17,21] have described a system for measuring
optical and thermal parameters of power LEDs. In [22], the properties of this system
were compared with the authors’ system for measuring the thermal parameters of power
LEDs. In turn, other papers [23,24] presented systems for measuring thermal parameters
of high-frequency transistors. Another paper [25] described a method for measuring self
and transfer transient thermal impedances in a system of MOSFETs mounted on a common
substrate. Another paper [26] contains a review of the measurement methods making
it possible to determine the junction temperature of semiconductor devices. However,
the cited papers did not provide any description of the technical solutions used in these
measurement systems, focusing only on the concept of their operation.

Some measurement set-ups enabling the practical implementation of indirect electrical
methods of thermal resistance of transient thermal impedance of selected semiconductor
devices are described in previous papers [9,14,17,21,22,24,25,27–30]. Other papers [9,25,28]
have focused on power MOSFETS. The papers [14,27] present the considerations devoted to
a BJT. The papers [17,21,22,29] present measurement set-ups dedicated to power LEDs. The
paper [24] presents a set-up used to measure thermal parameters of SiC Schottky diodes.
The paper [30] presents a set-up making it possible to measure self and transfer transient
thermal impedances occurring in the compact thermal model of an IGBT module.

Each of the mentioned papers described a set-up making it possible to measure the
thermal parameters of only one kind of semiconductor devices. Additionally, many of
these set-ups do not make it possible to measure transfer transient thermal impedances. In
the used indirect electrical measurement methods, nonlinearities of the used thermometric
characteristics are neglected.

This paper presents a measurement set-up for determining self and transfer transient
thermal impedances of selected power semiconductor devices operating both individually
and in systems mounted on a common substrate. This system implements the concept of
measuring thermal parameters using indirect electrical methods and takes into account the
nonlinearity of the used thermometric characteristics.

Section 2 describes the measurement methods implemented in this set-up. Section 3
presents the structure of this set-up along with a description of its functional blocks. The
software controlling the set-up′s operation is described in Section 4. The measurement un-
certainty is analyzed in Section 5. Section 6 contains the results of exemplary measurement
results of thermal parameters obtained using the presented set-up.

2. Measurement Methods

The thermal parameters considered in this paper occur in the compact thermal model
of electronic devices [14,21] and electronic systems [8]. According to the definitions given
in these papers, the considered transient thermal impedances are described by the follow-
ing formulas:

Zth(t) =
Tj(t)− Ta

P
(1)

Zthm(t) =
Tjk(t)− Ta

P
(2)

where Tj is the junction temperature of the tested device (hereafter called the heater), which
emits a step-shaped power with the value P; Tjk is the junction temperature of the k-th
device (hereafter called the sensor), which exceeds the ambient temperature Ta due to the
dissipation of power P in the heater. Both the considered parameters are measured when
the power is released in only one device—the heater.

The forms of the Equations (1) and (2) are similar. Only one difference can be
observed—in the definition of Zth(t), the junction temperature Tj of the heater is used,
whereas in the definition of Zthm(t), the junction temperature Tjk of the sensor is used.
The waveform Zth(t) characterizes a self-heating phenomenon, whereas the waveform
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Zthm(t) characterizes mutual thermal couplings between the heater and the sensor. For ideal
cooling conditions, both the parameters have a constant value equal to zero.

The power value P is determined based on the values of terminal voltages and currents
of the heater. The steady-state values of these quantities are measured using voltmeters
and ammeters. The value of the ambient temperature Ta is measured with a thermometer
and its value should be constant during the measurement.

The measurement of the junction temperature of these devices is of key importance
when measuring thermal parameters of semiconductor devices. An overview of such
measurement methods is presented, among others, in previous papers [13,26,27]. The
most frequently used is the indirect electrical method, in which the value of the junction
temperature of the device is determined based on the measured value of a parameter of this
device called the thermosensitive parameter (TSP) [28]. The selection of the appropriate
TSP strongly depends on the type of device used. In the case of diodes, the voltage at the
forward-biased p-n junction is typically used [13]; for a MOSFET, it may be the on-channel
resistance or the threshold voltage [27]. In the case of IGBTs, the threshold voltage is also
used as a TSP, but the use of VCEsat voltage is also popular [18].

According to the results presented, e.g., in [19,25,31], the resolution of the junction
temperature measurement of semiconductor devices strongly depends on the selection of a
TSP. This resolution is limited by the temperature sensitivity of the TSP. For p-n or m-s
junctions this sensitivity is typically approximately −2 mV/K, whereas for the threshold
voltage of power MOSFETs or IGBTs it is approximately −8 mV/K. For the on-channel
resistance of a power MOSFET it is up to 1%/K. In turn, the resolution of the junction
temperature measurements limits the accuracy of thermal parameters measurements.

Before performing the actual measurement, it is necessary to calibrate thermometric
characteristics, i.e., the dependence of a TSP on temperature T, performed for the case
when thermal phenomena are negligible. In practice, the calibration is performed at a low
current value of the tested device. It is desirable that the thermometric characteristic is
linear [13,14,17,24,27]. Unfortunately, the TSP(T) characteristics obtained in practice often
deviate from linearity, which was considered, among others, in a previous paper [31]. The
selection of the appropriate function approximating the measurement results ensures the de-
sired accuracy of temperature measurement. By using a quadratic function to approximate
the TSP(T) characteristic, it is possible to obtain high accuracy in measuring the junction
temperature of a semiconductor device using each of the above-mentioned TSPs [31]. In
the presented measurement set-up, the thermometric characteristic is approximated using
a formula of the form

Tj = a2 · (TSP)2 + a1 · TSP + a0 (3)

where a2, a1 and a0 are the coefficients of the approximating function.
To illustrate the problem of nonlinearity of the dependence TSP(T), the measured

(points) and approximated (lines) thermometric characteristics VGE(T) of an IGBT are
shown in Figure 1. The characteristic approximated using a quadratic function is denoted
with red solid lines, whereas the characteristic obtained using a linear function is denoted
with blue dashed lines.

As is visible in Figure 1, the quadratic function very well approximates the results of
measurements. In turn, using the linear function, a worse accuracy of the approximation
is obtained. The differences between the results of measurements and the approximation
even exceed 5 ◦C. Such an inaccuracy can cause an error in the measurement of the junction
temperature in excess of the ambient temperature, equal even to 8%.

In the next step of the measurement, power P of a known value is dissipated in the
heater for the time necessary to obtain a thermally steady state, in which the value of the
junction temperature of the tested device does not change for at least several minutes. After
recording the power P value, there is a sudden change in the power supply conditions of
the tested transistor, i.e., the power dissipated in it decreases to a value close to zero and
the power supply of the tested device is identical to during the calibration of thermometric
characteristics. The moment of switching corresponds to time t = 0. From that moment on,
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the time course of the value of the thermosensitive parameter TSP(t) is recorded until the
heater is fully cooled, i.e., until temperature Tj is practically equal to temperature Ta. If
the transfer transient thermal impedance is measured, the waveform of the value of the
thermal-sensitive parameter TSP1(t) for the sensor is simultaneously recorded.

Based on the measured TSP(t) and TSP1(t) waveforms and the previously measured
TSP(T) and TSP1(T) thermometric characteristics, the waveforms of temperatures Tj(t) and
Tjk(t) are calculated. By substituting these waveforms into the Equations (1) and (2), the
waveforms Zth(t) and Zthm(t) are determined.
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Figure 1. Measured and approximated thermometric characteristics of an IGBT (red
dots—measurement results, red line—quadratic approximation, blue line—linear approximation).

3. Construction of the Developed Measurement Set-Up

The measurement procedure described in the previous section was carried out using a
dedicated measurement set-up. Such systems are known from the literature,
e.g., [6,17,21–24,26,29,32]. For example, in [6,21,29,33,34]. a professional set-up for measur-
ing thermal parameters of power LEDs is described. However, its application was limited
only to this type of semiconductor devices. Another paper [23] described an original
measurement set-up dedicated to measuring optical and thermal parameters of power
LEDs. Many other papers have described measurement set-ups enabling the measurement
of thermal parameters of semiconductor devices of one type, e.g., BJTs [14], MOSFETs [9]
and IGBTs [30]. However, the authors of these papers focused on the measurement concept
and not on the construction of the measurement set-up.

The measurement set-ups described in the literature are complete devices, which
translates into limiting the permissible values of voltages and currents of the tested devices
and an inability to measure transfer transient thermal impedances. The measurement
set-up developed in this study is universal, i.e., it enables Zth(t) and Zthm(t) measurements
of diodes, BJTs, MOSFETs and IGBTs, as well as modules containing such devices. The open
architecture concept and the use of external power supplies makes it possible to update
voltages and currents selected from a wide range of the allowable values.

The presented measurement set-up has two independent measurement channels. This
makes it possible to simultaneously measure Zth(t) and Zthm(t) waveforms. The first channel
is dedicated to measuring self transient thermal impedances of the devices such as diodes,
BJTs, MOSFETs and IGBTs. The other channel is for measuring transfer transient thermal
impedances and measuring the self transient thermal impedance of a MOSFET or an IGBT
transistor, using voltage on the anti-parallel diode or the threshold voltage as a TSP. To
facilitate the analysis of the operation of these channels, their diagrams are presented in
separate figures (Figures 2 and 3). In these figures, the components of the measurement set-
up are located inside yellow rectangles. The components outside these rectangles constitute
the external power and the measurement devices.
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Figure 2 shows a block diagram of a separate set-up for measuring thermal parameters
of a diode and a BJT, while Figure 3 shows a block diagram of a separate set-up for
measuring thermal parameters of MOSFETs and IGBTs. In both the measuring set-ups, the
tested device is connected to the measuring terminals and marked with the symbol DUT
(Device Under Test). The voltage at the forward-biased p-n junction (in both systems) or
the voltage between the control or output terminals of the transistor (the set-up in Figure 3)
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can be used as a TSP. The operation of the measurement set-up is controlled by a PC with
the installed software, the block algorithm of which is presented and described in Section 4.

As can be observed, the developed measurement set-up consists of four main blocks.
The first one contains the power supply that generates three DC voltages of +5 V, +15 V and
−15 V, respectively. These voltages are used to power the remaining blocks of the set-up,
i.e., measurement amplifiers and drivers controlling MOSFETs (Metal Oxide Semiconductor
Field Effect Transistor) T1, T2 and T3 included in both the polarization blocks. The second
block is a set of measurement amplifiers, whose task is to adjust the level of the measured
thermal-sensitive voltage to the processing range of the analog inputs of the analog-to-
digital converter card. The measurement amplifiers were developed based on the TL081
integrated circuit powered using a symmetrical voltage of ±15 V. These amplifiers have the
ability to adjust a voltage gain through step-switched resistors with different resistances
included in the application circuit of these amplifiers.

The third block of the measurement set-up is a USB-1608GX-2A0 analog-to-digital
sigma-delta (Σ∆) converter card with a resolution of 16 bit and a maximum sampling
frequency of 500 kS/s manufactured by Measurement Computing (Pullman, WA, USA).
This measurement card has 16 analog inputs when operating in a single-ended mode or
8 analog inputs when operating in a differential mode. During the tests, the measurement
card was configured to operate in the differential mode, which allowed for measurements
to be made with a resolution of 0.561 mV for a measurement range of ±1 V.

The fourth block of the discussed measurement set-up comprises the power supply
blocks for the tested devices. They contain fully controlled switches in the form of MOSFETs
of the IXTH140P10T type [10]. These switches are controlled from the digital outputs of the
analog-to-digital converter card used through dedicated driver systems.

In the set-up in Figure 2, the IMD current source produces a small measurement
current that flows through the tested device during the calibration and while recording
the waveform of the TSP, which is the voltage between terminals A and K. The value of
the heating current ID is regulated by selecting the voltage on the voltage source UD and
the resistance of resistor RD. When heating, T3 transistor is turned off, and during the
calibration and while recording the TSP value this transistor is turned on. A voltmeter and
an ammeter are used to measure the current and voltage across the diode under test at the
end of the heating process. In the case where the measured device is a BJT, the collector
of this device is connected to terminal C, and the voltage source Ucc is used to establish
the voltage value between the collector and the emitter during the heating process of the
device under test.

In turn, in the set-up shown in Figure 3, the polarization block 2 is used to polarize the
tested voltage-controlled power transistor. The DUT is connected between the terminals
marked with the letters D, G and S. Capacitors C1 and C2, connected in parallel to the pairs
of the terminals of the tested transistor, are used to suppress voltage oscillations that appear
shortly after switching off the power supply. If the TSP is the transistor threshold voltage,
the measurement current is determined by the IM2 current source. When heating the tested
transistor, the value of the drain (or collector) current is determined by selecting the value
of the voltage source −USS and resistor RS, while the voltage at the drain (collector) is
determined by the voltage source UDD. When heating the DUT, transistor T2 is turned off,
and during the calibration and DUT cooling, transistor T2 is turned on. In turn, transistor
T1 is turned on in all the stages of the measurement.

If the voltage between the drain and the source (collector and emitter) is used as a
TSP, the measurement current is determined by the IM1 current source. When heating, the
tested transistor is powered in the same way as when using the second of the considered
TSPs. In turn, during the calibration and registration of the waveform of the TSP, transistor
T1 is turned off and transistor T2 is turned on.

Comparing the diagrams shown in Figures 2 and 3, some differences can be observed.
The set-up visible in Figure 2 makes it possible to measure thermal resistance using the
forward voltage of a p-n junction of the diode or the BJT as a TSP. It is also possible to
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measure the thermal parameters of the MOSFET and the IGBT using the threshold voltage
as a TSP. The set-up shown in Figure 3 is dedicated to measuring the thermal parameters
of MOSFETs and IGBTs using as a TSP the forward voltage of the antiparallel diode or the
input voltage (VGS or VGE) of the mentioned transistors.

Figure 4 shows a view of the front panel of the developed measurement set-up. Three
terminal blocks are visible. On the left side there are terminals of the internal power supply
with an LED indicating the overload condition. The middle block and the block located
on the right side of the device are dedicated to measurements of self (middle) and transfer
(right) transient thermal impedances. Both the blocks contain terminals for connecting test
devices, resistances in the circuit (RD, RC, RS) and the necessary power supplies (VDD, VCC
and VSS) and measuring devices (ID, IS, VD, VDG, VSG). Terminals IMD, IM1 and IM2 are
used to connect an external measuring current source.
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Figure 4. View of the front panel of the system for measuring thermal parameters.

Figure 5 shows a view of the inside of the housing of the developed measurement
set-up. This figure shows the location of the individual functional blocks of this system.
It is worth noting that all the power transistors are placed on a large heat-sink. The
semiconductor devices used enable the tested semiconductor devices to operate with a
current of up to 20 A and a voltage between the output terminals of the tested device of up
to 100 V.
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Figure 6 shows a view of the measurement station containing the described mea-
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current in the power circuits. The presented set-up is connected into a system for measuring



Electronics 2024, 13, 1636 8 of 16

transient thermal impedance of a power LED. This diode is placed inside the light-tight
chamber visible on the right side of the figure. During this measurement, the power of
optical radiation emitted by the tested device is simultaneously measured.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. View of the inside of the housing of the system for measuring thermal parameters. 

Figure 6 shows a view of the measurement station containing the described measure-
ment set-up with the necessary external polarizing sources and resistors limiting the cur-
rent in the power circuits. The presented set-up is connected into a system for measuring 
transient thermal impedance of a power LED. This diode is placed inside the light-tight 
chamber visible on the right side of the figure. During this measurement, the power of 
optical radiation emitted by the tested device is simultaneously measured. 

 
Figure 6. View of the measurement set-up with the connected external polarizing devices for the 
tested power device. 

4. Controlling Software 
The operation of the described measurement set-up is controlled by the original 

MEASURE software written in Python. This software uses the libraries of this language 
and implements the algorithm whose block diagram is shown in Figure 7. 
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4. Controlling Software

The operation of the described measurement set-up is controlled by the original
MEASURE software written in Python. This software uses the libraries of this language
and implements the algorithm whose block diagram is shown in Figure 7.

The calibration process is not supervised by the developed software. Only the values of
the coefficients a2, a1 and a0 of the function approximating the thermometric characteristics
are determined in the MEASURE software. It also controls the process of generating signals
that control transistors contained in the polarization blocks. When heating, the waveforms
of thermosensitive parameters are not recorded. After achieving a thermally steady state,
the transistors are switched off and the waveforms of the TSP are recorded until a thermally
steady state is obtained. It is detected if, during 2 min, the changes in the value of the TSP
do not exceed a double value of the resolution of the used measurement card module.

In order to limit the amount of saved data and reduce the size of the resulting file,
the presented algorithm was divided into two sections. The first section is responsible for
measuring the TSP in the initial phase of the cooling process, i.e., for time t below 1 s. The
other section of this algorithm measures it for times longer than 1 s until a thermally steady
state is reached. The value of the thermosensitive parameter is recorded with a variable
time step, i.e., x samples are measured with a fixed time-step value. Then the step value
is increased ten-fold and other x samples are recorded. This cycle is repeated until the
recording time t exceeds 1 s. For the times exceeding 1 s, the measurement step is set by the
user and the measurement is performed in the time interval from 1 s to 100 s with a step of
1 s, in the range from 100 s to 1000 s in steps of 10 s and in the time interval above 1000 s in
steps of 100 s. The measurements are carried out until a thermally steady state is reached,
when the values of the TSP recorded within 300 s do not differ from each other by more
than the set value threshold.
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For time t < 1 s, the measurement data are saved in a specially prepared hardware
buffer, after which the data are filed and sent to a temporary database. After setting the
measurement data ranges, the digital outputs of the measurement card used are set, and
the measurement currents IMD, IM1 or IM2 flow through the DUT, small enough not to cause
an increase in the junction temperature of the DUTs. After starting the measurements, the
states of the digital outputs change and the DUT is polarized with the heating current set
by the user.
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The results obtained in each time interval are saved in the temporary database, and
then at the end of recording all the data are saved to a text file with the *.csv extension. This
file contains columns of numbers containing the values of time t, TSP and TSP1.

Based on the recorded TSP waveforms, the previously determined values of the
function coefficients approximating the thermometric characteristics and the measured
values of heating currents and voltages immediately before the end of the cooling stage, the
waveforms of the junction temperature of the tested devices and the waveforms of Zth(t)
and possibly Zthm(t) are calculated.

Using the ESTYM program described in [8], it is possible to determine the parameters
describing the Zth(t) and Zthm(t) waveforms, the network representation of the compact
thermal model in the form of a Cauer or Foster network and the structure function. They
enable the practical use of the obtained measurement results in a thermal analysis of
electronic systems containing the measured devices.

5. Measurement Uncertainty Analysis

In order to estimate the usefulness of the measurement methods and the elaborated
measurement set-up, the measurement error was analyzed. The analyses were performed at
the steady-state, this means for a thermal resistance Rth equal to the value of transient ther-
mal impedance at the steady state. In compliance with the classical theory of measurement
error, two components of this error can be distinguished [35]. The first one results from
inaccuracies of the instruments used to measure the values of quantities occurring in For-
mulas (1) and (2). In turn, the other component of the error results from non-performances
of the foundations of the measuring method.

The measuring error of thermal resistance for all the considered measuring meth-
ods can be estimated using the method of the complete differential with reference to
Equation (1). As a result, one obtains the following formula describing the relative error of
the Rth measurement:

δRth =
∆Tj

Tj − Ta
+

∆Ta

Tj − Ta
+

∆P
P

(4)

where ∆Tj, ∆Ta and ∆P denote the absolute errors of the measurement of temperatures Tj
and Ta and the heating power P.

From the dependence (4), it is visible that at the fixed accuracy of the measurement
of the mentioned quantities, the measuring error of Rth is a decreasing function of both
the power and the difference in temperature between Tj and Ta. The value of the power
dissipated in the semiconductor device is determined using the measured values of terminal
voltages and currents of the device. The relative error of the measurement of the power ∆P/P
with the use of typical laboratory multimeters and the correct selection of the measuring
ranges does not exceed 0.1% [35]. In turn, the absolute error of the ambient temperature
∆Ta with the use of the thermometer typically does not exceed 0.5 ◦C.

The error of the measurement of the junction temperature ∆Tj depends on the applied
measuring method. For the indirect electric method, this error is given by the follow-
ing formula:

∆Tj = TSP · (TSP · ∆a2 + 2 · a2 · ∆TSP + ∆a1) + a1 · ∆TSP + ∆a0 (5)

where ∆TSP means the absolute error of delimitation of the value of the thermally sensitive
parameter, while ∆a2, ∆a1 and ∆a0 are the errors of the estimation of parameters describing
the thermometric characteristic. Equation (5) is obtained as a result of the use of a complete
differential method regarding formula (3). For the used measurement card ∆TSP ≤ 1 mV,
whereas at the correct selection of the value of the measuring current, to assure the proper
thermometric characteristic of a TSP(T) over a wide range of temperature, the relative
errors ∆a2/a2, ∆a1/a1 and ∆a0/a0 do not exceed 1%. At the fixed value of ∆TSP, the value
of ∆Tj can be limited by the use of a TSP characterized by high temperature sensitivity. For
example, for a power MOSFET it is more useful to use VGS voltage instead of the body
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diode forward voltage as a TSP. Typically, the temperature sensitivity for the mentioned
TSPs differs between each other even by five-fold [25].

The error ∆Tjt of the measurement of the value Tj connected with the time interval
t1 between the switch-off of the impulse of the power and a moment of measuring the
TSP depends on the cooling conditions of the tested device characterized by its thermal
resistance Rth, the shortest thermal time constant τth1 and the weight-coefficient ath1 [4,36].
This can be estimated using the following formula [35]:

∆Tjt = Rth · P · a1th1 · t1/τth1 (6)

For the used measurement card and typical power semiconductor devices operating
with the dissipated power sufficient to obtain the values of difference between Tj and Ta,
approximately 80 ◦C, the measurement error of Rth does not exceed 5%. Of course, such an
error is higher for lower values of the dissipated power and lower values of the difference
between Tj and Ta.

It is clear that the measurement error of the used ammeters and voltmeters also influ-
ences the value of the measurement error of the dissipated power and thermal resistance.
However, for properly selected instruments and their measurement range, typically the
relative error of voltage and current measurements is below 0.1%. This means that this com-
ponent of the measurement error of thermal resistance can be neglected, because it is much
lower than the error caused by a non-accurate measurement of the junction temperature.

6. Sample Measurement Results

The measurement set-up described in this paper was used to measure the thermal
parameters of many power semiconductor devices. The measurements of both discrete
devices and power modules containing at least two semiconductor chips in one case were
performed. Some of the obtained measurements are presented in this section.

Figure 8 shows the measured waveforms Zth(t) of the IRG4PC40UD type IGBT op-
erating without a heat-sink. The measurements were performed for selected ambient
temperature values with a power dissipation of 2 W.
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Figure 8. Measured transient thermal impedance waveforms of an IGBT operating without a heat-sink
for selected ambient temperature values.

As can be seen, the Zth(t) waveforms show significant differences for the times above
10 s. An increase in the ambient temperature causes a decrease in the thermal resistance
value. The change in the Rth value reaches as much as 15% when the ambient temperature
increases from 22 to 91 ◦C. Observing the measured waveforms of Zth(t), it can be seen
that the values of this parameter are significantly higher than zero for times t > 0.01 s, and
the thermally steady state is obtained for the times t > 1000 s. It is also worth noticing
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that a change in the value of the ambient temperature does not visibly change the value
of the time indispensable to obtain a steady state. When the transistor operates without
any heat-sink, the efficiency of heat convection on the surface of the transistor case has a
decisive influence on the value of thermal resistance.

Figure 9 illustrates the influence of the power dissipated in the transistor on the Zth(t)
waveform for the same transistor operating on a heat-sink connected to a liquid cooling
system (cold plate).
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Figure 9. Measured transient thermal impedance waveforms of an IGBT mounted on a cold plate.

As can be seen, the cooling system used ensures a highly effective heat removal from
the case of the tested transistor. The value of the power dissipated in the range from 32 to
91 W has practically no impact on the measurement result obtained at the steady state.
However, an increase in the transient thermal impedance value for the times below 1 s
with an increase in the power dissipation is visible, which was caused by a decrease in
the thermal conductivity of silicon (from which the transistor is made) with an increase
in temperatures [37,38]. Compared with the results presented in Figure 8, it can be seen
that the use of liquid cooling allowed the thermal resistance value to be reduced by as
much as 16 times. It is also visible that the thermally steady state already occurs after
100 s. Changes in the value of the dissipated power do not cause visible changes in
the value of the time indispensable to obtain a thermally steady state. According to the
datasheet [39], the value of the thermal resistance junction case is not higher than 0.77 K/W.
In the presented case, the thermal properties of the transistor case and the thermal interface
between the transistor case and the cold plate have a decisive influence on the measured
Zth(t) waveform, particularly its values at the steady state.

Figure 10 illustrates the influence of the power dissipated in the STC3060 SiC MOSFET
on the Zth(t) waveform. The measurements were made for the transistor placed on a
finned heat-sink 165 × 80 × 32 mm3 with an insulating pad. The ripples visible in the
measured waveforms at low values of time are a result of the limited resolution of the used
measurement card module.

The presented measurement results prove that an increase in the value of the power
dissipated in the transistor causes a decrease in the value of thermal resistance. Within the
considered range of power changes, the Rth value decreases by as much as 15%. It is also
visible that the thermally steady state occurs more than 10,000 s after the measurement
begins. This is related to the high value of the thermal time constant characterizing heat
convection on the heat-sink surface. It is worth paying attention to the fact that with an
effective cooling system, changes in the Zth(t) waveforms are visible already after a time of
a fraction of ms. This is characteristic for transistors made of silicon carbide [7,40].
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Figure 10. Transient thermal impedance waveforms of a SiC MOSFET placed on a heat-sink with an
insulating pad.

Figure 11 illustrates the influence of the power dissipated in a SiC MOSFET on the
Zth(t) waveform of this transistor mounted on a cold plate for liquid cooling. Additionally,
in order to illustrate an influence of the selection of a function approximating thermometric
characteristics on the obtained measurement results, in this figure solid lines denote the
results obtained with the use of a linear function approximating T(TSP) characteristics,
whereas dashed lines represent a quadratic function approximating these characteristics.
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Figure 11. Measured waveforms of transient thermal impedance of a SiC MOSFET operating with
liquid cooling and selected values of power dissipated in it.

As can be observed in the case under consideration, an increase in the power value
results in a deterioration of the cooling efficiency, i.e., an increase in the thermal resistance
Rth value. Within the considered range of power changes, the Rth value changes by as much
as 25%. Under these cooling conditions, a decrease in the thermal conductivity of materials
with increasing temperature is particularly significant. Compared with a classic heat-sink
(Figure 9), a cold plate allows the thermal resistance to be reduced by up to 2.5 times. At the
same time, for the liquid cooling system, even a 100-fold reduction in the time necessary to
achieve a thermally steady state is observed.

For a linear approximating function the dependence T(TSP) causes an underestimation
of the measured waveform of Zth(t) in the range of low values of the dissipated power,
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whereas for high values of the dissipated power such approximation causes an overestima-
tion of this waveform. The observed difference between the obtained values of Zth(t) at the
steady state are up to 6%.

Figure 12 illustrates the relationship between the transient thermal impedance Zth(t)
of the transistor placed in the FF50R12RT4 power module and the mutual transient thermal
impedance Zthm(t) between the transistor and the diode contained in this module. Dur-
ing the measurements, the tested module was placed on a heat-sink of the dimensions
165 × 80 × 32 mm3.
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Figure 12. Measured waveforms of self and transfer transient thermal impedance in the power
module placed on the heat-sink.

As you can see, the heat sink used ensures the effective dissipation of the heat dis-
sipated in the tested module. The Zth(t) waveform begins to increase already for time
t = 1 ms, while the Zthm(t) waveform begins to increase visibly for time t > 1 s. The values
of the Zth(t) and Zthm(t) at the steady state differ between each other by 20%. The delay
between the measured waveforms Zth(t) and Zthm(t) results from the distance between the
transistor and diode chips inside the module and the size of the module. The heat flows
between both the semiconductor chips and then goes to the surroundings.

7. Conclusions

This article presents a practical solution for a set-up for measuring the thermal param-
eters of power semiconductor devices. This set-up implements the concept of measuring
self and transfer transient thermal impedances using an indirect electrical method. It is
possible to use thermally sensitive parameters such as the voltage at the forward-biased
p-n or m-s junction, the threshold voltage of a MOSFET or IGBT and the output voltage
of a unipolar transistor. In contrast to other measurement set-ups described in the litera-
ture, the proposed solution makes it possible to measure not only self transient thermal
impedance of the tested devices, but also transfer transient thermal impedance between
such devices operating on a common base. This is important from the point of view of the
practical use of the obtained results in compact thermal models of electronic and power
electronic networks.

The structure of the designed measurement set-up and its operation method were
described. The software controlling the operation of this system was also described. A
unique feature of the presented measurement system is its universality, which enables the
determination of the waveforms of thermal parameters of various groups of semiconductor
devices. Thanks to the use of external power sources, it is possible to perform measurements
at different values of the power dissipated in the measured device and obtained at different
voltage and current values.



Electronics 2024, 13, 1636 15 of 16

Examples of the measurement results of thermal parameters of IGBTs, SiC MOSFETs
and power modules were presented. The obtained results were discussed, analyzing the
impact of the cooling system on the considered thermal parameters. It was shown that the
developed measurement system correctly measures Zth(t) and Zthm(t) waveforms in a wide
time range (from 0.1 ms to 20 ks). The developed measurement set-up can be used both
in scientific research and in enterprises to verify the effectiveness of the designed cooling
systems. It was also shown that the use of the quadratic approximation of thermometric
characteristics makes it possible to obtain much higher measurement accuracy than for the
classical linear approximation. The differences between the measurement results obtained
using both the mentioned approximation functions were up to 6%.

The measurement results are presented in the form of a text file. Using the proprietary
software, it is possible to determine the values of the devices of the equivalent thermal
model diagram in the form of a Cauer or Foster network based on the data from this file.
These models are commonly used in the analysis of electronic systems taking into account
their thermal properties.
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