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Abstract: Concrete crack measurement is important for concrete buildings. Deep learning-based
segmentation methods have achieved state-of-art results. However, the model size of these models
is extremely large which is impossible to use in portable crack measuring devices. To address this
problem, a light-weight concrete crack segmentation model based on the Feature Sparse Choosing
VIT (LTNet) is proposed by us. In our proposed model, a Feature Sparse Choosing VIT (FSVIT) is
used to reduce computational complexity in VIT as well as reducing the number of channels for crack
features. In addition, a Feature Channel Selecting Module (FCSM) is proposed by us to reduce channel
features as well as suppressing the influence of interfering features. Finally, Depthwise Separable
Convolutions are used to substitute traditional convolutions for further reducing computational
complexity. As a result, the model size of our LTNet is extremely small. Experimental results show
that our LTNet could achieve an accuracy of 0.887, 0.817 and 0.693, and achieve a recall of 0.882, 0.805
and 0.681 on three datasets, respectively, which is 3–8% higher than current mainstream algorithms.
However, the model size of our LTNet is only 2 M.

Keywords: artificial intelligence; machine learning; deep neural network; image segmentation
application; crack segmentation

1. Introduction

Concrete cracks are a common problem in building structures. There are many factors
in the real environment that can cause cracks. For example, the load of heavy vehicles
and high-speed driving accelerates the aging of the road surface. Changing humidity
and temperature causes the softening, expansion and contraction of the concrete material
of buildings. If not discovered and repaired in time, these cracks might further expand,
causing building damage or safety hazards. Therefore, it is necessary to measure cracks in
time so that they can be repaired immediately. However, traditional manual measurements
of cracks are inefficient and costly, which is not suitable for large-scale measurements.
Manual measurement of cracks usually uses a thin line or silk thread to divide the crack
into several small segments, and uses a ruler or measuring instrument to measure the
length of each segment of the thin line. These lengths are then added up to obtain the total
length of the crack. With the development of computer vision technology, scholars have
proposed using image segmentation methods to measure cracks.

Traditional computer image processing technologies for crack measurements usually
include the following parts: (1) using self-designed digital filters such as Gaussian filter,
Canny filter [1] and Gabor filter [2] to perform edge detection and extract cracks; (2) us-
ing wavelet transform for image de-noising and crack feature extraction [3,4]; (3) using
minimum path selection (MPS) to capture complex curves containing closed loops and
multiple branches to complete crack measurements [5]. However, due to the existence of
sharp edges and complex crack feature structures, traditional computer image processing
technology is easy to incorrectly split cracks in images. In addition, due to differences in
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materials and construction techniques, the texture characteristics of different concrete are
different, which makes these traditional technologies that rely on manual experience lack
generalization and robustness and perform poorly in different scenarios.

With the rapid development of machine learning, some machine learning algorithms
are also widely used in crack measurement fields [6–9]. For example, Oliveira [10] proposed
a crack measurement algorithm based on entropy and image dynamic threshold, applying
dynamic threshold to identify dark pixels of the image and segmenting the image into
non-overlapping blocks for entropy calculation. Pan et al. [11] used the support vector
machine (SVM) algorithm to identify pavement cracks on multispectral images. In addition,
Shi et al. [12] applied integral channel features to define the markers that constitute cracks,
introducing random structural forests and generating a high-performance crack detector
capable of measuring cracks. Sheng et al. [13] used a gradient-boosted decision tree to
build the crack segmentation model to measure cracks. However, although these methods
could achieve good results, they require a large amount of prior knowledge and are highly
dependent on specific crack features.

With the introduction of convolutional neural networks (CNN), deep learning-based
models have made amazing achievements in object detection, image segmentation and
image generation fields. These deep neural networks could automatically extract high-level
abstract features from images; thus, researchers are gradually using deep learning models
to deal with crack detection or segmentation tasks. For example, Qu et al. [14] modified the
output of the FC2 layer of the LeNet-5 model, and horizontally scaled the network model to
classify images, and then used the optimized VGG16 model for crack detection. Chaiyasarn
et al. [15] combined a convolutional neural network (CNN) and a fully convolutional
network (FCN) to segment cracks at the pixel level. Wang et al. [16] combined a fully
convolutional network (FCN)) and wavelet transform structured forest (SFW) to segment
cracks. In addition, researchers have noticed the excellent performance of UNet in the
field of image segmentation. Therefore, scholars have improved models based on UNet
to segment cracks for crack measurements. He et al. [17] proposed a CrackHAM model
based on U-Net architecture, he designed a HASPP module and introduced a dual attention
mechanism in his model to achieve accurate and robust crack segmentation results. Khan
et al. [18] established several short connections between the encoder and decoder blocks of
the UNet model to enable the architecture to obtain better pixel information flow, named
Dense-UNet. Gao et al. [19] proposed an MRA-UNet, which uses a multi-scale residual
module to capture fracture information at different scales on the down-sampling path, and
adopted a plug-and-play dual attention module to recover features on the up-sampling
path for crack segmentation.

Recently, with the increasing demand for crack measurements, portable crack mea-
surement devices have gradually been developed. These devices typically have a compact
and light-weight design. Thus, users can use these devices for crack measurements anytime
and anywhere, without relying on large equipment. Portable crack measurement devices
can monitor the changes of cracks in real time. They can perform continuous measurements
and record crack data in order to timely grasp the development of cracks and carry out the
corresponding maintenance. In addition, portable crack measurement devices usually have
automated or semi-automated software, which could quickly complete crack measurement
tasks, reducing manual operations and labor costs. Thus, portable crack measurement
devices could improve work efficiency, saving time and energy.

However, the existing crack segmentation models in these devices have a very large
size and must rely on cloud-based network computing. Therefore, in response to the issue,
a light-weight and high-precision crack image segmentation model is proposed by us. The
main contributions of this article are as follows:
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(1) A crack image segmentation model based on a light-weight VIT module is designed
by us. Due to the strong continuity of cracks, there is a certain correlation between
cracks in different positions in the crack images. In our model, VIT is used to capture
the relationship between different crack positions in crack images, and thereby better
processing global information. More importantly, the computational complexity of
the VIT module is reduced by the FSVIT. On the one hand, the fully connected layers
in VIT are replaced by Depthwise Separable Convolution, and on the other hand, the
Feature Space Choosing layer is used to select channels for features and reduce the
number of channels for crack features.

(2) A Feature Channel Selecting Module (FCSM) is used to select channel features in the
decoder. The key operation of our proposed FCSM is the Channel Sparse Choosing
operation. In the Channel Sparse Choosing operation, each channel’s feature corre-
sponds to a scaling factor α and the channels with scaling factors approaching zero
are pruned. Therefore, the number of channels of the original features significantly
decrease after being processed by FCSM. In addition, the FCSM could suppress the
influence of interfering features.

(3) The current public concrete crack segmentation datasets have too few samples, and the
crack samples are very similar. Thus, these datasets may not fully reflect the crack sce-
narios in the real world. Therefore, this study creates a new dataset named QUCrack
which contains a large number of irregular cracks in a variety of environments.

2. Materials and Methods
2.1. The Structure of the LTNet

In this article, a light-weight concrete crack segmentation model based on the Feature
Sparse Choosing VIT (LTNet) is proposed by us. In Figure 1, it can be seen that the
LTNet has a symmetrical structure, with the encoder on the left side and the decoder
on the right side. In the encoder, the input crack image is firstly input into the stacked
convolution layers for high-level feature extraction. Then these high-level features are
input into the stacked Feature Sparse Choosing-based VITs (FSVITs) proposed by us. It is
worth noting that the FSVIT is a light-weight VIT module. Like VIT, the FSVIT utilizes the
Transformer’s self-attention mechanism, which could capture global dependencies when
processing features. This enables FSVIT to better learn the feature relationships between
different regions in crack images. Different from VIT, the computational complexity of the
FSVIT is much smaller. In the decoder, stacked convolution layers and up-sampling layers
are used for non-linear feature transformation and feature size recovery. Up-sampling is
commonly used to increase low-resolution images to high resolution in order to obtain
more detailed information. The commonly used up-sampling methods include nearest
neighbor interpolation, bilinear interpolation, and bicubic interpolation. They estimate
the value of new pixels based on the values of surrounding pixels, thereby increasing the
resolution of the image.

In addition, for the purpose of reducing the redundant features of the model, a Feature
Channel Selected Module (FCSM) is used to reduce the number of channel features. It is
noticed that Depthwise Separable Convolutions (DWConv) are used to substitute tradi-
tional convolutions for further reducing computational complexity. Detailed descriptions
of these modules designed by us will be illustrated in the following sections.
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2.2. The Feature Sparse Choosing VIT Module

VIT (Vision in Transformer) is a visual model based on the Transformer architecture.
VIT treats images as a sequence and converts them into input for the Transformer model.
VIT uses a self-attention mechanism to capture the relationship between different crack
positions in crack images, thereby better processing global information. VIT has a strong
generalization ability and transfer learning ability, which can achieve good performance in
crack segmentation tasks. However, due to the complexity of the VIT model, it requires a
large number of parameters and computational resources for inference. In order to reduce
the computational complexity of VIT, a Feature Sparse Choosing VIT (FSVIT) is proposed
by us. In our proposed FSVIT, Embedded Patches are firstly input into the Multi-Head
Attention Block. The Multi-Head Attention Block maps input sequences into multiple
different representations using multiple independent attention blocks, and concatenates
these outputs to obtain the final attention representation of features. It is worth noting that
after the Multi-Head Attention Block, a Depthwise Separable Convolution (DWConv) layer
is used to replace all fully connected layers in traditional VIT to significantly reduce the
computational complexity of VIT. The DWConv decomposes convolution operations into
two independent steps: Depthwise Convolution and Pointwise Convolution. The DWConv
only uses a large convolution kernel for each feature channel, which greatly reduces the
number of parameters and computational complexity compared to fully connected layers.
Then, the output features of DWConv are input into our Feature Space Choosing layer.
Feature Space Choosing is another key operation for us to reduce the computational
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complexity of VIT. In our Feature Space Selection layer, the global values of each feature
channel are calculated through Global Average Pooling (GAP). Then, our Feature Selection
layer sorts these global values in descending order, and only outputs the feature maps of
the feature channels corresponding to the top 50% of the global values. In this way, by
selecting feature channels, the number of output feature channels of our FSVIT would
gradually decrease as the number of FSVITs increase, thus it could reduce the computational
complexity of VIT when stacked FSVITs are used. The FSVIT is shown in Figure 2.
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The calculation of the whole process of the FSVIT is shown as follows:

F2 = MultiHeadAttention(F1)
F3 = DWConv(F2)
F4 = GAP(F3)
F5 = FeatureSelecting(F4)

(1)

where GAP(x) represents the Global Average Pooling operation and the DWConv(x) repre-
sents the Depthwise Separable Convolution.

To illustrate the effectiveness of our FSVIT, the computational complexity of the FSVIT
is compared with traditional VIT. M represents the input feature channel of the FSVIT, N
represents the output feature channel of the FSVIT, where M is much smaller than N. WQ,
WK, and WV represent self-attention weights in Multi-Head Attention.

The parameters in the FSVIT could be calculated as follows:

(3 ∗ 3 ∗ M + 1 ∗ N) + WQ + WK + WV = 9M + N + WQ + WK + WV (2)

In traditional VIT, there usually exists two fully connected layers, with 128 neurons in
each layer. However, a single Depthwise Separable Convolution is used by us to substitute
the two fully connected layers. The parameters in traditional VIT could be calculated
as follows:

(M ∗ 128 + N ∗ 128 + 128 ∗ 128) + WQ + WK + WV
= 128M + 128N + 16, 384 + WQ + WK + WV

(3)

It can be seen that the computational complexity of (2) is much smaller than (3).
Therefore, it can be seen that compared with the traditional VIT, the FSVIT proposed by us
could reduce a large number of parameters.
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2.3. The Structure of the Feature Channel Selecting Module

Feature channel selection refers to selecting which channels (or feature maps) to use in
convolutional neural networks for subsequent processing and analysis. Feature channel
selection has the following advantages:

(1) Reducing computational complexity: In some cases, the number of channels for in-
putting feature maps may be very large, resulting in higher computational complexity.
By selecting specific channels, the number of channels that need to be processed can
be reduced, thereby reducing computational complexity. This helps to improve the
efficiency and speed of the model.

(2) Improving the generalization ability of the model: In some cases, certain channels
may not have significant discriminative ability for specific tasks. By selecting channels
with higher discrimination, the model’s generalization ability can be improved to
better adapt to new data beyond the training data.

(3) Reducing the risk of over-fitting: Excessive feature channels may increase the com-
plexity of the model, which can easily lead to over-fitting problems. By selecting the
most representative feature channels, the complexity of the model can be reduced, the
risk of over-fitting can be reduced, and the generalization ability of the model can
be improved.

Based on the principle of feature channel selection, a Feature Channel Selecting Module
(FCSM) is proposed by us. The key operation of our proposed FCSM is the Channel Sparse
Choosing operation. In the Channel Sparse Choosing operation, each channel’s feature
corresponds to a scaling factor α, which α is multiplied with the channel feature matrix.
Next, the modified loss function Lsum is used to jointly train the network weights and these
scaling factors α. Finally, the channels with scaling factors approaching zero are pruned,
while fine-tuning the pruned network. Finally, features output from the Channel Sparse
Choosing operation are shuffled and concatenated together. The Lsum is shown as follows:

Lsum = ∑
(x,y)

MSE( f (x, W), y) + λ∑
α

|α| (4)

where (x, y) is the training input (crack images) and training label. W is the trainable weight
of the network. MSE is the mean square error loss. f (x,y) is the calculation of the model,
x is the input image, and W is the weight parameter. α is the channel scaling factor. λ is
the balance factor. It could be seen from (4) that L1 regularization is used by us to sparsify
the feature channels. L1 regularization can drive certain weights to accurately become
zero, thus enabling feature weight selection. This means that the L1 regularization can
automatically identify and remove features unrelated to crack targets, making the model
more concise and interpretable. Through the L1 regularization, the model becomes sparser.
This helps to reduce the model complexity, reducing the risk of over-fitting, and improving
the model’s generalization ability. The process of the FCSM is shown in Figure 3.

The calculation of the whole process of the FCSM is shown as follows:

B2 = ChannelSplit(B1)
B3 = ChannelSparseChoosing(B2)
B4 = Concatenate(shu f f le(B3))

(5)

where ChannelSplit(x) represents splitting feature x into separate channels, the ChannelSpar-
seChoosing(x) represents the Channel Sparse Choosing operation and the Concatenate(x)
represents feature concatenation. Feature concatenation is the fusion of features according
to channels. The Shuffle(x) represents shuffling feature x randomly. Shuffling features
would sort features by channel randomly.

Usually, the Channel Sparse Choosing operation only retains 30% of the features.
Therefore, it could be seen that the number of channels of the original features has sig-
nificantly decreased after being processed by FCSM. Therefore, the FCSM could reduce
computational complexity while reducing the risk of over-fitting.
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2.4. Our Collected Dataset

The current public concrete crack detection dataset has too few samples, and the
crack samples are very similar. These datasets may not fully reflect the crack segmentation
scenarios in the real world. For example, they may not be able to capture subtle changes,
noise, lighting conditions, and other factors in the real world. In addition, the existing
public crack segmentation datasets lack diversity, meaning they may not be able to cover
various types, shapes, and sizes of cracks. This may lead to poor performance of the
model when facing unseen crack samples, as it does not have enough diverse data for
learning and generalization. In response to the above situation, our own concrete crack
dataset is connected and named as the QUCrack dataset. Our dataset includes concrete
cracks in various environments, such as concrete house walls, concrete molds, and concrete
roads. Also, our data cover multiple environmental interference scenarios such as rainy
days, snowy days, shadows, strong light and nights, in order to getting closer to real
crack scenarios.

Some examples of our collected crack dataset are shown in Figure 4.
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3. Datasets and Experimental Setup
3.1. Datasets

Table 1 shows the splitting of the three datasets. The detailed descriptions are as follows:

Table 1. Splitting of the datasets.

Dataset Image Size Train Test

The Crack500 dataset 1440 × 2560 or 2560 × 1440 1896 1124
The OAD_CRACK dataset 1920 × 1080 3500 1500

The QUCrack dataset 1920 × 1080 8000 2000

The Crack500 dataset [20]: This dataset includes 3020 images collected by Temple
University, mainly capturing in campus by students. It has two kinds of size: 1440 × 2560
and 2560 × 1440.

The OAD_CRACK dataset [21]: This dataset is collected in Shenzhen, including a
5000 crack image, which is divided into four classes: linear crack, circular crack, void
and background.

The QUCrack dataset: This dataset is collected by us in multiple scenarios, including
concrete cracks in various environments, such as concrete house walls, concrete molds and
concrete roads. Our dataset covers multiple environmental interference scenarios such as
rainy days, snowy days, shadows, strong light and nights, in order to get closer to real
crack scenarios.
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3.2. Experimental Setup

In the experiments designed by us, all images are normalized and augmented before
input into our model. In DWConv, the number of convolution filters is set to 64, 128, 256,
512, 1024, 1024, 2048, 2048 in the encoder. And in the decoder, the number of convolution
filters is set to 2048, 2048, 2048, 2048, 1024, 1024, 1024, 1024, 512, 512, 512, 512, 256, 256,
256, 256, 128, 128, 128, 64, 64. Also, Stochastic Gradient Descent [21] (SGD) is used as the
training policy to train our model and E-Focal Loss is used as the loss function. In addition,
accuracy, recall and F1 measure are used as the evaluation criterion.

4. Results
4.1. Comparison with the State-of-the-Art Methods

To evaluate the performance of our LTNet model, a series of comparative experiments
are designed by us. Accuracy, recall and F1 values are used as our basic testing standards.
In addition, some mainstream crack segmentation models are adopted as our comparative
algorithms. The specific introduction of these models are as follows:

ConvNet: a deep convolution-based segmentation neural network, this is the basic
convolution based segmentation model.

DWTA-U-Net: a U-Net based network with discrete wavelet transformed image
features for concrete crack segmentation.

CrackW-Net: a ResU-Net-based CNN for pavement crack segmentation proposed
by Han.

Split-Attention Network: a channel-wise attention-based network.
DMA-Net: DeepLab With Multi-Scale attention for pavement crack segmentation

proposed by Sun.
ACAU-Net: an atrous convolution and attention U-Net model for pavement crack

segmentation proposed by Feng.
Cascaded Attention DenseU-Net: an attention-based network with global attention

and core attention for road crack detection.
ECA-Net: a light-weight channel attention-based convolution neural network.
FU-Net: a generative adversarial network-based U-Net for road crack segmentation

proposed by Gao.
Two-stage CNN: a two-stage CNN for road crack detection and segmentation proposed

by Nhung.
PSNet: a Parallel Convolution-Based U-Net for Crack Detection with Self-Gated

Attention Block proposed by Zhang.
PHCNet: a Pyramid Hierarchical Convolution-Based U-Net for Crack Detection with

Mixed Global Attention Module and Edge Feature Extractor proposed by Zhang.
LCSNet: a light-weight Convolution Based Segmentation Method with a Separa-

ble Multi Directional Convolution Module for Concrete Crack Segmentation proposed
by Zhang.

From Table 2, it could be seen that our LTNet has achieved the best performance in
accuracy, recall and F1 measure, which is about 3–8% higher than the current mainstream
algorithms. However, our model size is only 2 M and could be used in portable devices.
These experiments fully demonstrate the effectiveness of our algorithm.

Compared with our previously proposed LCSNet, our algorithm has a 3% higher
accuracy, recall and F1 measure, but the model size is the same. The reason is that the
stacked VIT modules are used in our LTNet. The VIT module has the following advantages:
(1) Traditional convolutional neural networks capture local features of images through
local convolution operations, while the VIT module can achieve global perception through
the self-attention mechanism, modeling the entire image and better capturing of global
features of the image. (2) Due to the strong continuity of cracks, there is a certain correlation
between cracks in different positions in crack images. The VIT module uses Transformer’s
self-attention mechanism to process image patches. In the self-attention mechanism, each
embedded patch interacts with others, capturing the positional relationships of cracks by
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calculating attention weights. In this way, the LTNet could learn correlations between
cracks in different positions.

Table 2. (a): Accuracy comparison with the state-of-the art methods. (b) Recall comparison with the
state-of-the art methods. (c) F1 measure comparison with the state-of-the art methods.

(a)

Methods Crack500 OAD_CRACK QUCrack Model Size

ConvNet [22] 0.591 0.572 0.416 -
U-Net by Jenkins [23] 0.681 0.681 0.475 -
U-Net by Nguyen [24] 0.695 0.683 0.473 -

U-Net proposed by Di [25] 0.732 0.729 0.522 -
DWTA-U-Net [26] 0.77 0.754 0.567 -
CrackW-Net [27] 0.789 0.769 0.572 -

Split-Attention Network [28] 0.73 0.696 0.519 -
DMA-Net [29] 0.746 0.715 0.534 -

ACAU-Net [30] 0.792 0.774 0.575 -
Cascaded Attention DenseU-Net [31] 0.74 0.695 0.532 137 M

ECA-Net [32] 0.753 0.711 0.546 87 M
FU-Net [33] 0.795 0.769 0.582 90 M

Two-stage CNN [34] 0.79 0.765 0.585 230 M
PSNet [21] 0.812 0.762 0.612 185 M

PHCNet [35] 0.823 0.773 0.643 167 M
LCSNet [36] 0.836 0.785 0.661 2 M

LTNet 0.887 0.817 0.693 2 M

(b)

Methods Crack500 OAD_CRACK QUCrack

Split-Attention Network [28] 0.725 0.682 0.502
DMA-Net [29] 0.775 0.762 0.56

ACAU-Net [30] 0.776 0.753 0.551
Cascaded Attention DenseU-Net [31] 0.732 0.681 0.524

ECA-Net [32] 0.767 0.723 0.552
FU-Net [33] 0.761 0.736 0.557

Two-stage CNN [34] 0.773 0.742 0.563
PSNet [21] 0.829 0.771 0.599

PHCNet [35] 0.817 0.765 0.631
LCSNet [36] 0.828 0.773 0.652

LTNet 0.882 0.805 0.681

(c)

Methods Crack500 OAD_CRACK QUCrack

Split-Attention Network [28] 0.73 0.69 0.51
DMA-Net [29] 0.76 0.74 0.55

ACAU-Net [30] 0.78 0.76 0.56
Cascaded Attention DenseU-Net [31] 0.74 0.69 0.53

ECA-Net [32] 0.76 0.72 0.55
FU-Net [33] 0.78 0.75 0.57

Two-stage CNN [34] 0.78 0.75 0.57
PSNet [21] 0.82 0.77 0.61

PHCNet [35] 0.82 0.77 0.64
LCSNet [36] 0.83 0.78 0.66

LTNet 0.88 0.81 0.69

Compared with traditional attention mechanism-based models, PSNet and PHCNet
could achieve better performance because crack images have strong irregularity and rich
spatial features. The Pyramid Hierarchical Convolutional Module (PHCM) in PHCNet
extracts multi-scale feature information from the perspective of convolutional filters, while
the Parallel Convolutional Module (PCM) in PSNet extracts multi-scale feature information
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from the perspective of convolutional layers. Both of these multi-scale feature information
networks have a good effect on the spatial feature learning of cracks. In addition, PHCNet
designed an edge feature extractor to extract the edge feature of cracks in the model to
learn the edge features of cracks. Therefore, compared to ordinary attention mechanism
models, PSNet and PHCNet have better performance. However, in our LTNet model, the
spatial features of cracks are learned through a unified VIT architecture, thus our model
does not require specially designed multi-scale feature extractors.

Compared with traditional UNet models and ConvNet models, models with attention
mechanisms such as two-stage-CNN, FU-Net, ECA-Net, ACAU-Net, DMA-Net, Split-
Attention Network could achieve excellent performance. The reason is that the attention
mechanism can dynamically allocate attention weights based on the input contextual
information, allowing the model to focus on important information and ignore irrelevant
information more accurately. This operation could improve the effective utilization of
features, thereby enhancing its performance.

The prediction results of our LTNet model are shown in Figure 5, and crack images
are selected from Crack500 as the display images. The red boxes in the picture represent
the differences in prediction results of different algorithms.
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Figure 5. An example of the comparison of our proposed LTNet with the state-of-the-arts results, the
example crack image is captured from the Crack500 datasets.

4.2. Effects of Using Different Numbers of FSVIT

For the purpose of evaluating the effect of using different numbers of FSVIT, an
experiment is conducted.

From Figure 6, it can be seen that different numbers of FSVITs have a significant impact
on the final accuracy of the model. As the number of FSVITs increases, the accuracy of
the model improves rapidly. The reasons are as follows: Due to the shape of cracks or
the continuity of edges, there may be a certain dependency relationship between cracks
in different positions in the image. The Transformers in FSVIT use the self-attention
mechanism to capture the dependency relationships between different positions in the input
sequence; thus, this mechanism is particularly effective for processing crack image data.
Therefore, as the number of FSVITs increases, the accuracy of the model improves rapidly.
But when there are too many FSVITs, the accuracy of the model begins to slowly decline.
The reason is that excessive use of the FSVIT would lead to a redundant parameter. For
example, redundant FSVITs can only serve as non-linear transformations and cannot serve
as feature extraction, so the parameters of these FSVITs are redundant. These redundant
parameters may lead to over-fitting of the model; thus, it performs well on training data
but has poor generalization ability on testing data. As a result, the model is overly sensitive
to noise and subtle differences in the training data, and cannot accurately generalize to new
data. Therefore, 12 FSVITs are selected for the final model.
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4.3. Effects of Using Different Numbers of FCSM

For the purpose of evaluating the effect of using different numbers of FCSM, an
experiment is conducted by us.

From Figure 7, it could be seen that using different numbers of FCSMs have a signif-
icant impact on the final accuracy of the model. As the number of FCSMs increases, the
accuracy of the model improves rapidly.
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The reason is that by selecting appropriate feature channels, useful feature information
for the task can be extracted, thereby improving the performance and generalization ability
of the model. Different channels may have strong responses to different features, and
selecting the appropriate channel can help the model better capture key image features. By
selecting channels with strong responses to cracks, the model can more accurately locate
and identify cracks, thereby improving accuracy. Additionally, selecting appropriate feature
channels can reduce the interference of noise on the model. The sensitivity of different
channels to noise may vary. Choosing channels that are not sensitive to noise can improve
the accuracy of crack detection models.

However, excessive FCSM would lead to a decrease in the accuracy of the model.
The reason is that pruning too many feature channels may lead to the loss of key crack
features, such as pruning some channels that respond to non-crack areas, which may result
in the model being unable to accurately distinguish between cracks and non-cracks, thereby
reducing the accuracy of the crack segmentation model.

Thus, the numbers of FCSM is set to 4.
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4.4. Comparison of Different Light-Weight Segmentation Models

For the purpose of evaluating the effect of our light-weight models, some other light-
weight segmentation models are compared with our proposed LTNet.

From Table 3, it could be seen that our LTNet achieves the highest accuracy due to
the use of a large number of light-weight VIT modules. The VIT module extracts the
associated features of cracks at different positions in the crack image, which can better learn
the detailed feature information of cracks. However, other light-weight models only use
ordinary spatial channel attention mechanisms, which only suppress interference features
in crack images and therefore have limited representation of crack features.

Table 3. Accuracy comparison with the state-of-the art light-weight models.

Methods Crack500 OAD_CRACK QUCrack

LiteSeg [37] 0.814 0.764 0.657
MobileNet + UNet [38] 0.786 0.724 0.591

BiSeNet v3 [39] 0.792 0.733 0.618
EGE-UNet [40] 0.803 0.747 0.621
LRNNet [41] 0.812 0.762 0.649
LCSNet [36] 0.836 0.785 0.661

LTNet 0.887 0.817 0.693

5. Conclusions

Presently, portable crack measurement devices are being rapidly developed. These
devices are usually small in size, are light-weight, easy to operate and could be used for
measurement in complex environments. Portable crack measurement devices could display
measurement results in real time, helping users to quickly understand the situation of
cracks, and take necessary measures in a timely manner. In addition, these devices are
usually equipped with high-precision cameras, which can accurately measure the size,
depth and shape of cracks, providing reliable measurement results. However, current
portable crack measurement devices must rely on cloud computing due to the large size of
crack image segmentation models. But using cloud computing requires a stable network
connection between devices and cloud servers. If the network is unstable or interrupted,
it may cause data transmission interruptions or delays. Moreover, cloud computing con-
sumes a significant amount of server resources, resulting in high costs for portable crack
measurement devices.

To address the above issue, we designed a light-weight crack image segmentation
model, named LTNet, which could be used for portable crack measurement devices. In
our model, in order to capturing the feature relationships of different crack positions in
crack images, a stacked VIT module was adopted in our design of LTNet. In addition, in
order to reducing the computational complexity of the VIT module, Depthwise Separable
Convolution was used by us to substitute the fully connected layers. On the other hand,
the Feature Space Choosing layer was adopted to select channels for crack features and
reduce the number of channels of these features. Additionally, a Feature Channel Selection
Module (FCSM) was designed to select channel features in the decoder of the LTNet. The
FCSM could not only reduce the size of features, but also suppress the interfering features.

In addition, in order to solve the shortcomings of the existing crack image segmentation
dataset, a new dataset, named QUCrack, was created by us which contains a large number
of irregular cracks in a variety of environments.

A series of experiments were deigned to validate our proposed LTNet. The experimen-
tal results show that our proposed LTNet could achieve the accuracy of 0.887, 0.817 and
0.693, and achieve the recall of 0.882, 0.805 and 0.681 on three datasets, respectively, which
is 3–8% higher than current mainstream algorithms. However, the model size of our LTNet
is only 2 M; thus, our work perfectly achieves our goal. Although our LTNet could solve
the problem of crack measuring, evaluating and repairing these cracks is an emerging field
that is still in the research and development stage. For example, by using machine learning
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and deep learning algorithms, data on cracks can be analyzed and predicted. By learning
from a large amount of crack data, artificial intelligence can help predict the propagation
and failure rate of cracks, and provide more accurate repair suggestions. Moreover, by
combining artificial intelligence and robotics technology, an autonomous robot system can
be developed that can automatically detect and repair cracks. These robots can detect cracks
through vision and sensors, and repair them using laser, spray, or other repair methods.
In addition, artificial intelligence can help design and develop intelligent materials and
coatings, which can automatically perceive and repair cracks. These materials and coatings
can automatically release repair agents or fillers based on the location and size of cracks,
achieving self-healing functions.
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