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Abstract: Fault diagnosis (FD) is a critical challenge for the smart grid and the power communication
network, especially when both heterogeneous networks are exponentially becoming enormous and
complicated. Consequently, some conventional FD schemes based on labor seem inefficient, even
disabled, because they usually cannot efficiently utilize multi-dimensional and heterogeneous big
data from both networks. To deal with this challenging technical problem, a novel FD scheme based
on tensor computing and meta-learning is proposed for the smart grid and the power communication
network. In the proposed scheme, tensor computing is used to process tensor big data from both
networks, and a new data fusion scheme is designed to complete and analyze the incomplete and
sparse big data. Based on the fused data, a meta-learning approach is used to construct the FD
scheme, especially when the target fault samples are inadequate and sparse. In meta-learning,
the convolutional neural network is employed as a base learner to generate an FD training model,
and the model-agnostic meta-learning algorithm is utilized to fine-tune and further train the pre-
trained model. Simulation results and theoretical analysis indicate that the proposed DF scheme
based on tensor computing can efficiently process sparse and heterogeneous big data from both
networks. Furthermore, the meta-learning-based FD scheme provides an efficient way to diagnose
faults with inadequate target samples. The proposed FD scheme based on tensor computing and
meta-learning provides a novel solution to detect and analyze the potential faults for smart grid and
power communication networks.

Keywords: fault diagnosis; smart grid; power communication network; data fusion; tensor
computing; meta-learning; tensor big data; situational awareness

1. Introduction

The smart grid is an innovative power grid that integrates information technology,
communication technology, computer technology, and existing transmission and distribu-
tion power infrastructure. It offers various advantages, such as enhanced energy efficiency,
reduced environmental impact, improved power supply safety and reliability, and mini-
mized transmission power losses [1]. Intelligence operations within the context of a smart
grid are primarily manifested through observability, controllability, real-time analysis,
adaptability, and self-healing capabilities [2].

The power communication network is a specialized communication network that
provides communication service to the smart grid [3]. It supports essential operations such
as protection, automatic control, precision control, automation, scheduling data transfer,
dispatching telephone services, and so on [4]. As a vital infrastructure for data transmission
in power scheduling and production, the power communication network constitutes a
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critical component of the secondary system within the smart grid. The reliable operation
of secondary systems, including protection and automatic control, is crucial for the stable
functioning of the smart grid [5]. Such reliability is heavily dependent on the robust support
provided by the power communication network, leading to strong interconnections and
interdependent relationships between two networks.

As information and communication technologies rapidly evolve, there exists a pro-
found interconnection between the power system and the power communication network.
The monitoring and scheduling operations between two networks exhibit a high degree of
interdependence, necessitating a natural fusion of these domains. Due to the high integra-
tion of smart grid and power communication network, faults occurring during operation
may trigger a cascade effect, expanding the scope and severity of accidents leading to major
system failures such as grid collapse and widespread power outages. Therefore, timely FD
and ensuring prompt resolution are of utmost importance [6–8].

The smart grid has established data collection systems and fault information systems,
which can provide event information and waveform data during faults, laying the data
foundation for the application of artificial intelligence algorithms [9]. In addition, when
faults occur in the power communication network, dispatch centers issue alarms, which
serve as the basis for fault localization and diagnosis [10]. In various operating conditions
of the actual system, there are often limited fault samples, leading to poor diagnostic
performance with traditional deep learning methods. For both networks, it is a critical issue
to quickly locate and diagnose system faults with stable and safe methods. However, some
conventional system FD schemes usually depend on manpower, leading to low efficient
operations. Moreover, the system fault information is not enough, that is, only a small
amount of practical data can be used to diagnose system faults. Therefore, a new and
efficient FD scheme should be studied with inadequate fault information.

This paper introduces a data fusion model with the primary objective of enhancing
system reliability and robustness, expanding the spatiotemporal scope of observations, and
augmenting the system’s resolution capabilities. Furthermore, the inherent complexity of
the system can introduce potential risks, posing threats to the normal operations of both the
smart grid and power communication network. Motivated by the practical issues in smart
grid and power communication networks, this paper designs a newfangled FD scheme
with tensor computing and meta-learning, in order to provide an efficient diagnosis scheme
with a small amount of system information.

The contributions of this paper can be summarized as follows:

1. An innovative fault diagnosis (FD) scheme with tensor computing and meta-learning
is proposed for smart grid and power communication networks. The tensor data
model is used to compact multi-dimensional and heterogeneous data from both
networks. The meta-learning method is used to detect and locate system faults for
both networks.

2. Tensor computing is used to deal with the data fusion (DF) problem for smart grid
and power communication networks. Employing a tensor completion approach
aids in filling in missing data to augment sparse tensor big data sets, while tensor
decomposition facilitates the data fusion process.

3. The meta-learning scheme is used to diagnose system faults with a small quantity of
fused data. The fused data from both networks can be analyzed by the meta-learning
scheme in order to conquer the limitations of inadequate fault information.

4. The suggested FD scheme can attain superior detection accuracy using a modest
dataset, offering an effective diagnostic approach for future smart grid maintenance
and ensuring stable power provision.

The paper continues with the following sections. Section 3 presents the whole system
model and discusses the DF and FD issues. Section 4 introduces tensor computing and
proposes an efficient DF scheme utilizing tensors. Section 5 outlines the FD scheme with
meta-learning and introduces the model-agnostic meta-learning algorithm for designing
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an optimal FD policy. Simulation outcomes are furnished to showcase the efficacy of the
FD scheme in Section 6. In Section 7, the paper is concluded.

Notations: Constants, vectors, matrices and tensors are denoted by lowercase letters,
bold lowercase letters, bold uppercase letters and Euler script letters, respectively. The
superscript (·)T denotes the transpose. [X]i,j, [X]i, and [X]i:j denote the element (i, j) of X,
the i th row of X, and the submatrix of X from the ith to the jth rows. X ∈ RI1×I2×···×IN

denotes the tensor of order N with dimension In for each order, and ×n denotes the
n-mode product.

2. Related Work
2.1. Data Fusion

DF is recognized as information fusion or multi-source data fusion. [11]. Under this
concept, the DF is regarded as maximizing the utilization of the data obtained by the
sensors in different times and spaces, conducting a comprehensive analysis of the observed
object, and finally obtaining a unified description of that. In recent years, many DF schemes
have been proposed, especially based on machine learning [12,13]. However, different from
the above typical DF schemes, the DF presented in this paper utilizes the mapping idea
to obtain mixed data from heterogeneous data of multi-sensors while retaining their data
characteristics. Tensor computing is used in the DF, especially tensor decomposition and
completion. Firstly, through the inverse process of tensor decomposition, the heterogeneous
data of different domains from multi-sensors are mapped to the tensor structure of the
same domain. Secondly, tensor completion is carried out on the generated tensor data to
make up for the data missing caused by sensor failure and transmission loss. Finally, tensor
decomposition is performed on the completed data to realize the data compression and
generate the fusion data, which retain the features of the original data [14].

2.2. Deep Learning and Meta-Learning

Deep learning has recently attained excellent performance in many fields with large
amounts of data [15–18], but it tends to struggle when the scenario changes or training data
are scarce. To solve this problem, meta-learning [19] aims to build efficient algorithms that
can quickly learn new tasks with an insufficient volume of training data.

Meta-learning is an emerging research framework within the realm of machine learn-
ing [20]. The primary objective of meta-learning is to endow models with the capability to
acquire learning abilities, which allow them to automatically assimilate meta-knowledge,
encompasses information that can be learned outside the standard model training process,
such as model hyperparameters, the initial parameters of the neural network, network
architectures, and optimization strategies, among other elements [21]. In the context of
few-shot learning, meta-learning is particularly centered on acquiring meta-knowledge
from a diverse set of prior tasks [22,23]. This acquired meta-knowledge is then leveraged
to facilitate faster learning on new tasks. Within the meta-learning framework, datasets
are typically divided into meta-training and meta-testing sets, both of which contain the
requisite training and testing data for the base model.

3. System Model and Fault Diagnosis

This section introduces the system model for smart grid and power communication
networks. In this setup, DF is utilized for managing multidimensional big data, and meta-
learning techniques are applied to tackle FD issues. Additionally, faults occurring in both
networks are analyzed.

3.1. System Model

As the smart grid evolves, the interconnection between the smart grid and the power
communication network has become increasingly intricate. The smart grid supplies electri-
cal energy to network components like routers within the power communication network.
Conversely, the management, operation, and intelligent decision-making of the smart grid
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are reliant on the capabilities of the power communication network. Serving as a prototypi-
cal cyber-physical fusion system, the smart grid yields heightened operational efficiency to
the power system while concurrently introducing augmented operational security vulnera-
bilities [24]. The smart grid-communication network emerges as a high-speed, real-time,
bidirectional, and integrated heterogeneous network, branching from the foundational
smart grid concept, as illustrated in Figure 1. Electricity generated at power plants and
the generation methods of the smart grid are diverse, encompassing wind power [25],
solar power [26], and hydropower [27]. The transformer substations are dispatched upon
receiving commands, converging, and relaying through hub transformer substations within
the transmission network for regional coordination. Ultimately, the distribution network
allocates electricity to diverse sectors, such as railway traction and industrial facilities.
Consequently, hub nodes accommodate disparate data types, necessitating a DF strategy to
ensure optimal network efficiency.

Power transmission
Power plant

Transformer
substation

Power distribution

Wind energy Solar energy

Factory

Family

Railway

Emergency
communication

Power line

Communication line

Satellite 
communication

Hydro energy

Building

Figure 1. Smart grid with power communication network.

Based on the descriptions of the relationships between the aforementioned networks, a
comprehensive fault diagnosis model incorporating tensor computation and meta-learning
is introduced for addressing the fault diagnosis problem, as depicted in Figure 2. This
comprehensive model mainly consists of a data fusion module based on tensor computation
and a fault diagnosis module based on meta-learning. Firstly, a tensor model is established
for the big data in the two networks, and tensor completion and tensor decomposition are
performed, followed by data fusion. Secondly, the fused data are used as the input sample
set for the meta-learning network, where feature extraction is conducted, and then training
is performed using a meta-classifier. The model’s performance is evaluated by the accuracy
of the training results.

Figure 2. Framework of the system model.
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3.2. Data Fusion and Fault Diagnosis
3.2.1. Data Fusion

In the smart grid and power communication network, sensors of diverse functionalities
generate a range of big data types, which can be organized into matrix structures [28]. As
shown in Figure 1, the entire system relies on the smart grid and the power communication
network needs to process the big data. Establishing a data center and devising an effective
DF scheme is imperative. The target that DF needs to achieve can be briefly outlined as

D = f (S, C) (1)

where D, S, and C are the fused data, the smart grid data, and the power communication
network data, respectively. The smart grid data are denoted by a matrix S ∈ RIs×Js ,
which is mapped from the big data of the smart grid. Following the same way, the
power communication network data are denoted by a matrix C ∈ RIc×Jc . The fused
data D ∈ RId×Jd can be viewed as a data repository with a predefined structure, where
Id = max(Is, Ic), Jd = max(Js, Jc), and max(:, :) is the maximum function. The fusion
function, represented as f (:, :), serves to amalgamate and integrate two types of big data.

3.2.2. Fault Diagnosis

Fault refers to the situation where at least one important variable or characteristic
of a system deviates from its normal range [29]. FD technology monitors the operation
of the system to determine whether a fault has occurred, while also identifying the time,
location, magnitude, and type of the fault. In recent times, the ongoing development of
computers and artificial intelligence has furnished fresh theoretical foundations for FD
technology, leading to significant achievements in various industrial fields [30–32]. This
section introduces the types of faults in smart grid and power communication networks,
and proposes the use of meta-learning for FD.

The challenges associated with the FD in power communication networks predomi-
nantly arise from two core factors. Firstly, the network topology is progressively growing
in complexity, accompanied by an escalating count and diversification of network elements.
Secondly, an inherent disparity exists between positive and negative fault samples, with
a deficiency in the variety of labeled fault instances. Faults in power communication net-
works are infrequent, leading to a paucity of available fault samples. Given that machine
learning methodologies necessitate a substantial volume of fault sample data for effective
training, this context aligns with the characteristics of a small sample problem. In response,
the application of meta-learning emerges as a viable strategy for addressing fault challenges
within the transmission network.

Fault sources within power communication networks can be divided into two cate-
gories: uncontrollable factors and controllable factors. Communication failures triggered
by natural phenomena such as hurricanes, storms, and snow-related disasters fall into the
domain of uncontrollable scenarios [33]. Conversely, maintenance activities performed on
communication equipment represent an instance of controllable factors. Both classifica-
tions of fault sources can potentially contribute to power communication network failures,
thereby introducing errors in the transmission of power-related operational data.

In the event of a fault occurrence within the power communication network, the
network’s dispatch center initiates an alarm. Alarms serve as direct indicators of anoma-
lous situations and are communicated to higher-level network management systems by
subordinate network management systems. Alarms constitute a specialized category of
notifications. Due to the interconnectedness between physical and logical attributes of
network elements, a solitary fault often generates a multitude of alarm notifications across
associated network components [34]. This phenomenon renders the tasks of fault identifi-
cation and localization intricate. Thus, a need arises to extract pertinent information from
the amassed alarm notifications. In the phase of alarm data processing, the convergence
of network topology relationships and alarm specifics results in the creation of a fault
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state matrix. This matrix is then subjected to feature extraction through the utilization of a
Convolutional Neural Network (CNN). The outcome is a classification model capable of
discerning distinctive features for different fault categories. This model facilitates both the
localization and diagnosis of faults within the power communication network.

Faults occurring in the smart grid can be categorized into two main types: balanced
and unbalanced. Unbalanced faults, in turn, can be subdivided into single-phase ground
faults, two-phase short-circuit faults, and three-phase ground faults. These unbalanced
faults carry a higher level of risk; thus, our diagnostic efforts are concentrated on addressing
and resolving these three specific fault types. During instances of various fault occurrences
in transmission lines, the features present within the voltage and current at both ends of
the line exhibit distinctions. This distinction is grounded in the amplitude of electrical
quantities, serving as the basis for discerning the specific type of line fault. Furthermore, in
scenarios where a short-circuit fault arises within the network, the current and voltage of
the line generate high-frequency components. The identification of these high-frequency
components permits the classification and localization of the fault.

4. Data Fusion Based on Tensor Computing

Tensor computing is a feasible way to realize the DF, which is based on tensor to
solve the problem shown in (1). The big data of the smart grid and power communication
network is mapped into matrices, S and C. For generating the fused data, a tensor is
used as a transition state to associate two big data matrices, tensor completion realizes the
completion of missing data in the original data, and tensor decomposition compresses the
data from the perspective of feature extraction to combine the tensor, which contains two
data matrices, into a fusion matrix D.

4.1. Preliminary

The notion of tensor is defined as a higher-order multi-dimensional array, which is
regarded as a term in mathematics. The tensor is the general case of the vector or the matrix,
where the first-order tensor is the vector and the second-order tensor is the matrix. Arrays
of order three or more are higher-order tensors, called Nth-order or N-way tensors. The
definitions of tensor-related concepts in this paper are based on [14].

4.1.1. Rank-1 Tensor

An Nth-order tensor X ∈ RI1×I2×···×IN is rank-1 when it can be expressed by the outer
product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) (2)

where “◦” denotes the operation of the outer product, and a(n) denotes a vector, of which
length is In. In other words, each element of X is the product of corresponding vector
elements

[X ]i1,i2,...,iN = [a(1)]i1 [a
(2)]i2 ...[a(N)]iN , 1 < in < In. (3)

4.1.2. Cubical Tensor

An Nth-order tensor X ∈ RI1×I2×···×IN is cubical when I1 = I2 = · · · = IN , that is,
the dimensions of the tensor are equal. The notion X ∈ R[m,n] is used to represent that the
tensor X is an mth-order n-dimension tensor, where I1 = I2 = · · · = Im = n.

4.1.3. Diagonal Tensor

An Nth-order tensor X ∈ RI1×I2×···×IN is diagonal, if [X ]i1,i2,...,iN ̸= 0 only when
i1 = i2 = ... = iN . If a tensor satisfies the conditions of both a cubical tensor and a diagonal
tensor, the tensor is super-diagonal. On this basis, the tensor X is an identity tensor if and
only if X is super-diagonal and [X ]i,i,...,i = 1 for all i ∈ [1, n]. The 3rd-order identity tensor
is shown in Figure 3.
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Figure 3. The 3rd-order identity tensor with size I × I × I.

4.1.4. n-Mode Product

The n-mode product of X ∈ RI1×I2×···×IN with a matrix A ∈ RJ×In is denoted by
X ×n A, and the size of the result is I1 × · · · × In−1 × J × In+1 × · · · × IN . Elementswise,
we have

[X ×n A]i1,··· ,in−1,j,in+1,··· ,iN =
In

∑
in=1

[X ]i1,i2,··· ,iN [A]j,in . (4)

4.2. Tensor Decomposition

Tensor decomposition can realize dimensionality reduction to solve the problem of
dimensionality disaster in various tensor calculations and to dig the implicit relations in
tensors. Two typical decomposition schemes in tensor decomposition are the CP Decompo-
sition (CPD) and the Tucker decomposition.

4.2.1. CP Decomposition

The CPD is to transform tensors into sums of rank-1 tensors. Set a third-order tensor
X ∈ RI1×I2×I3 , and the CPD of X can be written as

X =
R

∑
r=1

ar ◦ br ◦ cr (5)

where R is the tensor CP-rank, ar ∈ RI1 , br ∈ RI2 , cr ∈ RI3 . The process of CPD is illustrated
in Figure 4.

= +...+

Figure 4. CPD for the 3rd-order tensor X .

The matrix composed of vectors that form rank-1 tensors is referred to as the factor
matrix of CPD, such as A = [a1, a2, a3 . . . aR], and the factor matrices B and C are defined
the same. Based on the factor matrix, CPD can be more simply expressed as follows

X ≈ [[A, B, C]] ≡
R

∑
r=1

ar ◦ br ◦ cr. (6)

4.2.2. Tucker Decomposition

Tucker decomposition can be expressed as

X ≈ G ×1 A×2 B×3 C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

[G]p,q,pap ◦ bq ◦ cr = [[G; A, B, C]] (7)
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where G ∈ RP×Q×R denotes the core tensor, and A ∈ RI×P, B ∈ RJ×Q, C ∈ RK×R are
three-factor matrices from three dimensions, as shown in Figure 5.

=

Figure 5. Tucker decomposition for the third-order tensor X .

The scalar form is expressed as

[X ]i,j,k ≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1
Gp,q,r[A]i,p[B]j,q[C]k,r, i = 1, 2, . . . , I; j = 1, 2, . . . , J; k = 1, 2, . . . , K. (8)

When the core tensor G is a super-diagonal tensor, Tucker decomposition degenerates
into CPD.

4.3. Tensor Completion

Considering the actual emergencies such as sensor failure, there is often some data
loss in the data matrix, named missing values. Completion is to fulfill these missing values
completely, and completion in the tensor is called tensor completion. The central issue
in completion revolves around uncovering the association between missing values and
observed values.

In order to introduce tensor completion, we take a classic tensor completion algorithm
for the third-order tensors as an example, which is called high-accuracy low-rank tensor
completion (HaLrTC), where the algorithm associates missing values with observed values
through low rank based on the data sparsity hypothesis [35] . Given a sparse tensor X of
size n1 × n2 × n3, the index set of the observed values is set to {Ω : (i, j, k) ∈ Ω}. Let the
index tensor S with the same size of X satisfy

[S ]i,j,k =
{

1, (i, j, k) ∈ Ω
0, (i, j, k) /∈ Ω

. (9)

The objective function of tensor completion is formulated as follows

min
X̂ ,A1,A2,A3

∥∥∥A1(1)

∥∥∥
∗
+

∥∥∥A2(2)

∥∥∥
∗
+

∥∥∥A3(3)

∥∥∥
∗

(10)

where X̂ denotes the estimation of the original tensor X , the size of tensors A1, A2, A3 are
n1 × n2 × n3, the matrix A1(1) with the size of n1 × (n2n3) represents the mode-1 unfolding
of tensor A1 under mode-1 unfolding, and the meaning of matrix A2(2) and the matrix
A3(3) is uniform as the former. In the objective function, the symbol ∥·∥∗ is the norm for
trace, which is the sum of the matrix singular values.

The optimization model is subject to two constraints, as illustrated in Equation (11).
The initial constraint ensures equality between the elements of estimated tensor X̂ and
original tensor X within Ω. The secondary constraint sets the intermediate variables A1,
A2, andA3 equal to the estimated tensors, serving as an optimization termination condition.
The constraints are formulated as follows{

S ∗ X̂ = S ∗ X
X̂ = Aq, q = 1, 2, 3

(11)

where the notation ∗ represents the dot product, which means that the same index elements
are directly multiplied.
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The HaLrTC algorithm [35] is indicated in the Algorithm 1, in which foldq{} is the
inverse process of tensor unfolding, that is, folding the matrix into the tensor in the order
of unfolding.

Algorithm 1 HaLrTC algorithm

1: Input index tensor S , adaptively changing ρ, residual threshold γ and maximum

iteration number K.

2: Initialize estimated tensor X̂ that [X̂ ]i,j,k =

{
[X ]i,j,k, (i, j, k) ∈ Ω

0, (i, j, k) /∈ Ω
and the iteration

number k = 0.

3: set zero transitional tensor T1, T2, T3 ∈ Rn1×n2×n3 .

4: Update Aq: Aq = foldq

{
D αq

ρ

(
X̂(q) +

1
ρTq(q)

)}
, q = 1, 2, 3, where D αq

ρ
(X) = UΣ αq

ρ
VT .

5: Update X̂ : X̂ = (1− S) ∗
{

1
3 ∑3

q=1

(
Aq − 1

ρTq

)}
+ S ∗ X .

6: Update Tq: Tq = Tq + ρ
(
X̂ − Aq

)
, q = 1, 2, 3.

7: If ∥∑3
q=1

(
Aq − X̂

)
∥ ≤ γ, stop and output estimated tensor X̂ .

8: If k < K, k = k + 1, return to step 4. If not, stop and output estimated tensor X̂ .

9: End.

4.4. Algorithm for Data Fusion

Data fusion, as a means of data processing, aims to transform two multi-dimensional
heterogeneous mapping data matrices into a unified fusion matrix by tensor computing.
Compared with the traditional data fusion scheme of direct splicing, the new data fusion
scheme completely retains the original data information without matrix clipping. In the
following meta-learning algorithm, the data information of the smart grid and power
communication network can be obtained simultaneously by using the fusion data matrix.

The data of the smart grid and power communication network in Figure 1 can be
mapped into the smart grid data matrix S ∈ RIS×JS and the power communication network
data matrix C ∈ RIC×JC . Here, we assume that IS > JS and IC > JC. Then, the work to be
completed is to combine these two data matrices into a fusion matrix while preserving the
validity and structural relationship of the two data, that is, the fusion matrix can lossless
restore two original data matrices after DF is complete. To complete the above work and
achieve f (:, :) in (1), the algorithm is designed as follows

After completing DF, the size of the fused data matrix D is ID × ID. In order to obtain
a larger compression ratio, the columns of the matrix are completed to max(JS, JC) during
the second step of the algorithm. However, this change will cause the fused matrix to lack a
block of size (ID −max(JS, JC))× 2ID/3. Without changing the fusion matrix arrangement,
there is no difference between the two schemes in actual storage.

The third step reverses the Tucker decomposition. The identity matrix is used in
the third-order direction to ensure the sparsity of the fusion tensor D without changing
the value so as to facilitate the subsequent tensor completion operation, which is based
on the sparsity of tensors. As mentioned in the Tucker decomposition above, Tucker
decomposition degenerates to CP decomposition when the core tensor is hyper-diagonal.
The core tensor Dini in the algorithm is an identity tensor that satisfies the condition,
and the resulting fusion tensor D can be reduced to the original matrices S and C by CP
decomposition. Due to the uniqueness of CP decomposition, it is provable that the whole
fusion algorithm is reversible. The specific algorithm is shown in Algorithm 2.
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Algorithm 2 Data fusion algorithm based on tensor computing

1: Input the smart grid data matrix S ∈ RIS×JS and the communication network data ma-

trix C ∈ RIS×JS , adaptively changing ρ, fit index γ and maximum iteration number K.

2: Initialize identity tensor Dini ∈ R[3,ID ], where ID = max(IS, IC), set the number of

iterations k = 0, and fulfill S and C with zero row vectors and zero column vectors to

get Ŝ ∈ RID×ID and Ĉ ∈ RID×ID .

3: Compute D = Dini ×1 (Ŝ)T ×2 (Ĉ)T ×3 I, where I ∈ RID×ID is a identity matrix.

4: Use Algorithm 1 to generate D̂.

5: Set CP-rank R = ID/3, A1 ∈ RID×R, A2 ∈ RID×R, and A3 ∈ RID×R.

6: Compute three sets of equations in sequence

V1 = (A2)
TA2 ∗ (A3)

TA3, A1 = D̂(1)(A3 ⊙A2)V1
†;

V2 = (A1)
TA1 ∗ (A3)

TA3, A2 = D̂(2)(A3 ⊙A1)V2
†;

V3 = (A1)
TA1 ∗ (A2)

TA2, A3 = D̂(3)(A2 ⊙A1)V3
†.

7: Compute D̂ = [[A1, A2, A3]] and f it = 1− ∥(D̂ − D̂∥/∥(D̂∥.
8: If f it > γ, stop and output fused data matrix D = [A1A2A3].

9: If k < K, k = k + 1, return to step 6. If not, stop and output fused data matrix

D = [A1A2A3].

10: End.

5. Fault Diagnosis Based on Meta Learning
5.1. Meta Learning

Meta-learning introduces a range of concepts, including support set, query set, and
N-way K-shot problems. The dataset of meta-learning can be divided into meta-training
sets and meta-testing sets which, respectively, contain support sets and query sets used to
support the training and testing of tasks.

When assessing the effectiveness of meta-learning models, the results of N-way K-shot
problems are commonly used. Here, N signifies the number of classes, while K denotes
the number of samples per class. Assuming there are Ntrain classes in the meta-training set,
with each class containing Ktrain samples, and Ntest classes in the meta-testing set, with each
class containing Ktest samples. N typically refers to the number of categories taken from
the support set in the meta-testing set, while K represents the number of samples per class,
where N < Ntest and K < Ktest. To maintain consistency between the meta-training and
meta-testing stages, the model is trained on the meta-training set with the same number of
categories and samples.

The Model-Agnostic Meta-Learning (MAML) algorithm is an outstanding algorithm in
the field of meta-learning [36], continually optimizing the model’s generalization ability on
new tasks by guiding the initialization parameters of the base learners. MAML is versatile,
working well with various neural networks and different types of loss functions. It is
similar to a learn skill that trains the initialization parameters of the model to achieve rapid
convergence with limited sample data.

We assume that the MAML algorithm is applied to an image classification task. It
is usually handled by the CNN model, so we use this model as the base-learner Mbase to
process image classification problems. Then MAML learns the parameters in the model
training process as meta-knowledge and adjusts the initialization parameters on the new
image classification task. Finally, we obtain the model M f ine−tune that is adapted to the
new task.

The base-learner Mbase can be represented as a function fθ with parameter θ. When
the learner fits the new task Ti, the parameters become θ′. Based on the training samples in
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task Ti, the base-learner Mbase performs one or several gradient update iterations to update
parameter θ. Assuming that one gradient update is required [36]

θ′i = θ − α∇θLTi ( fθ) (12)

where α is the hyperparameter learning rate and LTi ( fθ) is the loss function. The model
parameter θ is updated by training the test samples from Ti to optimize the performance of
fθ′i

. Its objective function is

min
θ

∑
Ti∼p(T )

LTi

(
fθ′i

)
= ∑
Ti∼p(T )

LTi

(
fθ−α∇θLTi ( fθ)

)
(13)

The MAML aims to update the model parameters to produce the most efficient behav-
ior. The model parameters θ are updated as

θ ← θ − β∇θ ∑
Ti∼p(T )

LTi

(
fθ′i

)
(14)

where β represents the meta-update step size.
In practical applications, MAML demonstrates strong scalability across different

datasets, but it also has some limitations. There needs to be a certain degree of simi-
larity between the training and testing datasets; otherwise, it may lead to a decrease in
generalization performance. Additionally, the multiple gradient updates performed in
each iteration can result in longer training times and substantial computational resource
consumption. Despite these limitations, MAML remains a highly effective meta-learning
approach, particularly in terms of sample efficiency and generalization capabilities.

5.2. Fault Diagnosis in Power Communication Network and Smart Grid
5.2.1. Power Communication Network

When malfunctions occur within the power communication network, a substantial
number of alarms are generated. These alarm notifications provide detailed information,
including alarm device, alarm type, alarm level, alarm cause, and more. The alarm data
primarily comprise three distinct categories: communication alarms, device-related alarms,
and security alarms. Moreover, the alarm source and alarm name designate the unique
identifier for the originating alarm and the nomenclature of the associated network element.
These attributes constitute pivotal criteria for activities such as fault localization and
fault classification.

To prepare the alarm information for subsequent utilization in feature vector extrac-
tion and training neural networks, a preprocessing stage is imperative. Initially, from
the original alarm information database, relevant alarm information fields that exhibit
substantial relevance to FD are meticulously selected. Furthermore, any redundant fields
present within the original alarm database are systematically eliminated. Following this,
standardization procedures are applied to ensure uniformity and consistency. Subsequently,
the processed alarm dataset is subjected to a temporal and spatial synchronization pro-
cedure, employing a time window mechanism. Distinct alarms exert varying influence
upon the ultimate determination of faults, signifying that these alarms possess disparate
weights. These weights are utilized to establish a hierarchical order of priority, with higher
weights signifying augmented precedence. Each distinct type of alarm is then subjected to
a Boolean encoding process.

To depict the intricate topological interconnections existing between various sites
within the power communication network, a graph theoretical approach involving an
adjacency matrix is employed. Let G represent a graph encompassing m vertices (corre-
sponding to sites), N(G) = n1, n2, ..., nm represents the set of vertices within G, and E(G)
signifies the set of edges. The adjacency matrix for G is denoted as A(G) = (aij)m×m
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aij =

{
1 vivj ∈ E(G)
0 vivj /∈ E(G)

i, j = 1, 2, . . . , m . (15)

When a malfunction occurs, the alarm transaction encodings of each site form a matrix
T(G) = diag(t11, t22, ..., tmm), where tii represents the alarm transaction encoding of the site
ni. The mathematical expression for the fault state encoding matrix F(G) is

F(G) = A(G)T(G). (16)

After encoding the fault state matrix F(G), the matrix is transformed into grayscale
images and annotated with corresponding root cause fault labels. Finally, the fault state
images from all instances of faults are compiled to form the training dataset. In the
context of FD for the power communication network, the objective involves achieving
fault localization and fault classification. As a result, for each fault state matrix, the
corresponding root cause fault label is two-dimensional. This necessitates defining and
encoding fault type labels and fault site labels.

Taking the power communication network of some cities in Shandong Province of
China as an example, which is shown in Figure 6, there are a total of 30 network element
sites. We select 12 sites among them and define fault site labels. The set of defined fault
site labels is S1, S2, ..., S12. As shown in Table 1, the simulated fault types in this study
encompass five categories, and the set of defined fault type labels is F1, F2, F3, F4, F5. Train
separately on the fault site label set and fault type label set to ultimately achieve the goal of
fault localization and fault classification.

Table 1. Fault types and labels.

Fault Label Fault Type

F1 No fault
F2 Ethernet interface not connected
F3 Application board not installed
F4 Board type mismatch
F5 Device abnormal power loss
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Figure 6. Power communication network topology in Shandong Province.
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5.2.2. Smart Grid

We build a small current grounding fault simulation model within the Matlab Simulink
module, utilizing the fault module to define various types of circuit faults, including single
line-to-ground faults, double line faults, double line-to-ground faults and three-phase
faults, comprising a total of 10 fault types. In which, single line-to-ground faults include
Line A to Ground (AG), Line B to Ground (BG) and Line C to Ground (CG). Double line
faults include Lines A and B (AB), Line B and C (BC) and Line A and C (AC). Double
line-to-ground faults include Line A, B and Ground (ABG), Lines B, C and Ground(BCG),
and Line A, C and Ground(ACG). Three phase faults include Lines A, B, C (ABC).

When the faults occur, fluctuations are observed in the voltage and current at both
ends of the line. Thus, different fault types can be distinguished by observing changes in
the magnitude and nature of these electrical parameters. We collect three-phase currents
and voltages at both ends of the faulty line, denoted as Va, Vb, Vc, Ia, Ib, Ic, and configure
various system parameters to generate a dataset through batch simulations. The parameters
for the fault samples are defined in Table 2.

Table 2. Parameters of fault simulation model.

Parameter Parameter Parameter
Type Value Quantity

Fault type AG, BG, CG, AB, BC, AC, 10ABG, BCG, ACG, ABC

Transient resistance/Ω 1, 100, 200, 300, 400, 500, 10600, 700, 800, 900

System frequency/Hz 49, 50, 51 3

System voltage/kV 400, 450, 500 3

The sampler is configured with a frequency of 1 kHz, a sampling time of 0.3 s, a fault
initiation time of 0.1 s, and a fault clearing time of 0.15 s. Within a single sampling
period, each sample contains 1800 data points. We extract 50 data points each from the
six electrical parameters before and after the fault occurrence. The acquired data are then
subjected to grayscale transformation according to Equation (18), resulting in the formation
of grayscale images

x′ =
x(i)−min(x(i))

max(x(i))−min(x(i))
× 255 (17)

where x(i) represents the sequentially acquired electrical parameters, and x′ denotes the
data after grayscale transformation. By altering parameters such as frequency and voltage,
we obtain distinct fault grayscale images corresponding to different fault occurrences.
These images collectively constitute the training dataset. The fault labels (AG, AB, etc.) are
encoded, and the classification can be achieved using a meta-learning model.

6. Simulation Results and Theoretical Analysis
6.1. Evaluation Metrics and Model Parameters

The experimental setup includes a PC with Windows 10 operating system, an Intel(R)
Xeon(R) Platinum 8255C CPU @ 2.50 GHz, two RTX 3080 (10 GB) GPUs, a development
environment with Python 3.9.16, and a learning framework with PyTorch 1.11.0. For a
5-way 1-shot task, it requires GPU resources of at least 3 GB.

The experiment evaluates the performance of the model using accuracy (Acc), which
is calculated as the ratio of correctly predicted samples to the total number of samples, as
depicted in the following formula,

Acc =
TP + TN

TP + TN + FP + FN
(18)
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where TP signifies true positive samples predicted by the model, TN signifies true negative
samples predicted by the model, FP signifies false positive samples predicted as positive
by the model, and FN signifies false negative samples predicted by the model.

Before conducting the experiment, it is essential to fine-tune the parameters of the
model. While keeping other parameters constant, optimization is performed on the number
of epochs, learning rate, and the minimum batch size. An epoch represents the process
of training all training samples once. The model tends to stabilize after 30 epochs, so
the number of epochs is set to 35. Fine-tuning the accuracy from 0.001 to 0.1 reveals
that its impact on accuracy is minimal; thus, a learning rate of 0.001, which yields the
optimal model performance, is selected. Additionally, adjusting the minimum batch size
produces the results shown in Figure 7. The trends of both curves show an initial increase
followed by a decrease, with both reaching their peak when the minimum batch size is set
to 64. At this point, the model performs optimally, and thus, this parameter is chosen for
subsequent experiments.

Figure 7. Diagnosis accuracy for different batch sizes.

6.2. Performance of MAML Algorithm

In this section, the performance of meta-learning is evaluated by comparing it with
CNN. The results of model training are depicted in Figure 8. As shown in Figure 8, the
blue line represents the power communication network, and the yellow line represents
smart grid.

Figure 8. Diagnosis accuracy of smart grid and power communication network based on MAML.

As the number of epochs increases, the model quickly converges, with the diagnosis
accuracy reaching its peak as early as the fourth iteration. Due to differences in the number
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of fault types in the smart grid and the power communication network, the difficulty of
fault diagnosis varies. As a result, the diagnosis accuracy for the power communication
network is higher, fluctuating around 84%. In contrast, the diagnosis accuracy for the smart
grid converges to 73%.

The performance of the MAML algorithm was assessed through a comparative analysis
with a CNN model that was not equipped with MAML. The training results are depicted in
Figure 9. It is clear that both smart grid and power communication networks experienced
varying degrees of reduced diagnosis accuracy. The diagnosis accuracy of the smart grid
decreased from the original 73% to 68%, and that of the power communication network
dropped from the initial 84% to 66%.

In the simulation experiments for the smart grid, we sampled electrical quantities at
different fault occurrences, processed them into grayscale samples, and modified system
parameters such as frequencies and voltages to simulate the source and target domains.
The dataset for the power communication network includes fault state matrices containing
topological relationships and fault information. The disparities in topological relationships
between the source and target domains necessitate the model to possess superior transfer-
ability. As a result, in the comparison between CNN and MAML, the diagnosis accuracy
improvement for the power communication network was more pronounced than that of
the smart grid.

Figure 9. Metatraining comparison results.

6.3. Contribution of Data Fusion

The data processed by the DF model is a form of multi-modal heterogeneous data,
comprising 10 fault types for the smart grid and five fault types for the power communi-
cation network. If converted into one-dimensional labels, the number of fault categories
would increase to 50, which could adversely affect the model’s classification performance.
Therefore, we chose to independently train networks for these two label categories. This
approach allows for a more comprehensive utilization of the dataset and yields superior
classification results. However, it is worth noting that training the same dataset twice
requires more time.

After processing the feature-layer data with the DF model, we trained the fused data,
which is based on Algorithm 2, and obtained model accuracy results based on various
DF strategies. As shown in Figures 10 and 11, both fusion approaches have improved
diagnosis accuracy, but the extent of improvement varies. For the smart grid, using the
CP decomposition scheme resulted in an increase of approximately 3% in accuracy, while
the DF tensor scheme led to an improvement of around 6%. In the case of the power
communication network, the CP decomposition approach raised accuracy by about 3%,
while the DF tensor approach boosted it by approximately 8%. This demonstrates that,
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whether for the smart grid or the power communication network, the DF tensor scheme is
superior.

Fused multi-modal data provide the model with additional information for decision-
making, consequently enhancing diagnosis accuracy. CP decomposition addresses redun-
dancy issues in the input space by reducing dimensions but can result in information loss.
In contrast, the DF tensor retains all the original data’s information and exhibits superior
diagnosis accuracy.

Figure 10. Comparison of different DF approaches for smart grid.

Figure 11. Comparison of different DF approaches for power communication network.

7. Conclusions

This paper explores DF and FD in smart grid and power communication networks
based on tensor computing and meta-learning. For heterogeneous and multi-dimensional
big data from two networks, after using matrix mapping, a tensor has been made use of
operating the big data matrices and the tensor computing including tensor decomposition
and tensor completion has been utilized to fuse those big data and generate the fused
matrix. For the fused matrix, the meta-learning method has been used to train the two-
network fused data fault detection scheme to sense the network fault state, under the case
of insufficient training samples. Furthermore, the MAML algorithm has been proposed to
address the FD problems, thereby tackling the challenge of limited and hard-to-obtain fault
samples. The fault diagnosis accuracy of the MAML algorithm reaches 73% and 84% on the
smart grid and power communication network, respectively, surpassing the accuracy of the
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CNN model. Additionally, among the two tensor fusion schemes, the DF tensor scheme
exhibits superior optimization of the meta-learning model performance compared to the
CP decomposition strategy. This paper offers practical guidance for managing big data in
smart grids and power communication networks through DF and FD techniques.

Author Contributions: Conceptualization, M.S. and B.Q.; methodology, Q.Y. and M.S.; software, Q.Y.
and L.L.; validation, T.G., Y.J. and Y.Z.; formal analysis, L.L.; investigation, T.G. and B.Q.; resources,
A.T and Y.Z.; data curation, A.T.; writing—original draft preparation, Q.Y., M.S. and B.Q.; writing—
review and editing, Y.J. and W.Z.; supervision, W.Z.; project administration, W.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology project of State Grid Corporation
of China (Research on Dispatching Fusion Communication Oriented to Power Communication
Network and Its Cooperative Control with Power Network Operation, 52060022001B).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Qiusheng Yu, Anqi Tian, Yingjie Jiang, Yan Zhang, and Li Li are
employed by the company Information & Telecommunications Company, State Grid Shandong
Electric Power Company. Author Ti Guan is employed by State Grid Shandong Electric Power
Company. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Li, Y.; Duan, N.; Liu, Z.; Hu, J.; He, Z. Impedance-Matching-Based Maximum Power Tracking for Magnetic Field Energy

Harvesters Using Active Rectifiers. IEEE Trans. Ind. Electron. 2023, 70, 10730–10739. [CrossRef]
2. Butt, O.M.; Zulqarnain, M.; Butt, T.M. Recent advancement in smart grid technology: Future prospects in the electrical power

network. Ain Shams Eng. J. 2021, 12, 687–695. [CrossRef]
3. Zhou, M.; Rui, L.; Qiu, X.; Xia, Z.; Li, B. Evaluation of the Node Importance in Power Grid Communication Network and Analysis

of Node Risk. In Proceedings of the 2018 IEEE/IFIP Network Operations and Management Symposium (NOMS 2018), Taipei,
Taiwan, 23–27 April 2018; pp. 1–5.

4. Wu, G.; Li, B.; Niu, J.; Gao, D.; Zhang, R. Study on Service Demand Model of Backbone Communication Network in New Power
System. In Proceedings of the 2023 International Conference on Smart Electrical Grid and Renewable Energy (SEGRE), Changsha,
China, 16–19 June 2023; pp. 153–159.

5. Zhu, J.; Lu, W. Research on Converged Communication of Power Line and Wireless in Electric Power Communication System.
In Proceedings of the 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Xi’an, China, 15–17 October 2021; pp. 627–631.

6. Wang, M.; Qu, Z.; He, X.; Li, T.; Jin, X.; Gao, Z.; Zhou, Z.; Jiang, F.; Li, J. Real Time Fault Monitoring and Diagnosis Method for
Power Grid Monitoring and Its Application. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System
Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–6.

7. Khalid, H.M.; Qasaymeh, M.M.; Muyeen, S.M.; El Moursi, M.S.; Foley, A.M.; Tha’er, O.S.; Sanjeevikumar, P. WAMS Operations in
Power Grids: A Track Fusion-Based Mixture Density Estimation-Driven Grid Resilient Approach Toward Cyberattacks. IEEE
Syst. J. 2023, 17, 3950–3961. [CrossRef]

8. Khalid, H.M.; Flitti, F.; Mahmoud, M.S.; Hamdan, M.M.; Muyeen, S.M.; Dong, Z.Y. Wide area monitoring system operations in
modern power grids: A median regression function-based state estimation approach towards cyber attacks. Sustain. Energy Grids
Netw. 2023, 34, 101009. [CrossRef]

9. Mao, X.; Shen, J.; He, J.; Fan, C.; Lou, J.; You, Q. Research on Fault Diagnosis Model Based on the Fusion of Communication
Network and Grid Data. In Proceedings of the 2022 4th International Conference on Frontiers Technology of Information and
Computer (ICFTIC), Qingdao, China, 2–4 December 2022; pp. 498–501.

10. Liang, R.; Liu, F.; Qu, J.; Zhang, Z. A Bayesian-based Self-Diagnosis Approach for Alarm Prognosis in Communication Networks.
In Proceedings of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China, 9–10 October
2019; pp. 1–3.

11. Hall, D.L.; Llinas, J. An Introduction to Multisensor Data Fusion. Proc. IEEE 1997, 85, 6–23. [CrossRef]
12. Meng, T.; Jing, X.; Yan, Z.; Pedrycz, W. A Survey on Machine Learning for Data Fusion. Inf. Fusion 2020, 57, 115–129. [CrossRef]
13. Liu, H.; Chen, Y.; Cui, N.; Xu, D.; Li, J. An Effective Data Fusion Model for Detecting the Risk of Transmission Line in Smart Grid.

IEEE Internet Things J. 2022, 9, 22256–22266. [CrossRef]
14. Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]

http://doi.org/10.1109/TIE.2022.3219064
http://dx.doi.org/10.1016/j.asej.2020.05.004
http://dx.doi.org/10.1109/JSYST.2023.3285492
http://dx.doi.org/10.1016/j.segan.2023.101009
http://dx.doi.org/10.1109/5.554205
http://dx.doi.org/10.1016/j.inffus.2019.12.001
http://dx.doi.org/10.1109/JIOT.2021.3100522
http://dx.doi.org/10.1137/07070111X


Electronics 2024, 13, 1655 18 of 18

15. Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep
Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging
2020, 39, 2676–2687. [CrossRef]

16. Zhu, K.; Zhang, T. Deep Reinforcement Learning Based Mobile Robot Navigation: A review. Tsinghua Sci. Technol. 2021, 26,
674–691. [CrossRef]

17. Mahmud, M.; Kaiser, M.S.; Hussain, A.; Vassanelli, S. Applications of Deep Learning and Reinforcement Learning to Biological
Data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2063–2079. [CrossRef] [PubMed]

18. Inayat, U.; Zia, M.F.; Mahmood, S.; Khalid, H.M.; Benbouzid, M. Learning-Based Methods for Cyber Attacks Detection in IoT
Systems: A Survey on Methods, Analysis, and Future Prospects. Electronics 2022, 11, 1502. [CrossRef]

19. Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-Learning in Neural Networks: A Survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2022, 44, 5149–5169. [CrossRef] [PubMed]

20. So, C. Exploring Meta Learning: Parameterizing the Learning-to-Learn Process for Image Classification. In Proceedings of the
2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of
Korea, 13–16 April 2021; pp. 199–202.

21. Metz, L.; Maheswaranathan, N.; Cheung, B.; Sohl-Dickstein, J. Meta-Learning Update Rules for Unsupervised Representation
Learning. In Proceedings of the International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9
May 2019; pp. 1–27.

22. Ravi, S.; Larochelle, H. Optimization as A Model for Few-Shot Learning. In Proceedings of the International Conference on
Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017; pp. 1–11.

23. Lai, N.; Kan, M.; Han, C.; Song, X.; Shan, S. Learning to Learn Adaptive Classifier-Predictor for Few-Shot Learning. IEEE Trans.
Neural Netw. Learn. Syst. 2020, 32, 3458–3470. [CrossRef] [PubMed]

24. He, H.; Yan, J. Cyber-physical Attacks and Defences in the Smart Grid: A Survey. IET Cyber-Phys. Syst. Theory Appl. 2016, 1, 13–27.
[CrossRef]

25. Du, C.; Du, X.; Tong, C.; Li, Y.; Zhou, P. Stability Analysis for DFIG-Based Wind Farm Grid-Connected System under All Wind
Speed Conditions. IEEE Trans. Ind. Appl. 2023, 59, 2430–2445. [CrossRef]

26. Bessa, R.J.; Trindade, A.; Miranda, V. Spatial-Temporal Solar Power Forecasting for Smart Grids. IEEE Trans. Ind. Inform. 2015, 11,
232–241. [CrossRef]

27. Qu, J.; Shi, W.; Luo, K.; Feng, C.; Mou, J. Day-Ahead Generation Scheduling Method for New Energy and Hydro Power System.
In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8
November 2018; pp. 1899–1902.

28. Fan, D.; Yi, Y.; Chen, S.; Song, L.; Li, J. Transmission Line Fault Type Identification based on Transfer Learning and Deep Learning.
In Proceedings of the 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 17–20
September 2021; pp. 202–207.

29. Isermann, R.; Ballé, P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng.
Pract. 1996, 5, 709–719. [CrossRef]

30. Vittori, A.D.; Cipollone, R.; Lizia, P.D.; Massari, M. Real-time space object tracklet extraction from telescope survey images with
machine learning. Astrodynamics 2022, 6, 205–218. [CrossRef]

31. Chen, H.; Jiang, B. A Review of Fault Detection and Diagnosis for the Traction System in High-Speed Trains. IEEE Trans. Intell.
Transp. Syst. 2020, 21, 450–465. [CrossRef]

32. Ran, G.; Chen, H.; Li, C.; Ma, G.; Jiang, B. A Hybrid Design of Fault Detection for Nonlinear Systems Based on Dynamic
Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 5244–5254. [CrossRef] [PubMed]

33. Guo, Q.; Xin, S.; Wang, J.; Sun, H. Comprehensive Security Assessment for A Cyber Physical Energy System: A Lesson from
Ukraine’s Blackout. Autom. Electr. Power Syst. 2016, 40, 145–147.

34. Sun, X.; Zhan, W.H.; Li, Y. Fault Alarm Communication Scheduling Architecture and Method for Power System. In Proceedings
of the 2022 IEEE 5th International Conference on Computer and Communication Engineering Technology, Beijing, China, 19–21
August 2022; pp. 271–274.

35. Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor Completion for Estimating Missing Values in Visual Data. IEEE Trans. Pattern Anal.
Mach. Intell. 2013, 35, 208–220. [CrossRef] [PubMed]

36. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the
International Conference on Machine Learning (ICLR 2017), Toulon, France, 24–26 April 2017; pp. 1126–1135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMI.2020.2994459
http://dx.doi.org/10.26599/TST.2021.9010012
http://dx.doi.org/10.1109/TNNLS.2018.2790388
http://www.ncbi.nlm.nih.gov/pubmed/29771663
http://dx.doi.org/10.3390/electronics11091502
http://dx.doi.org/10.1109/TPAMI.2021.3079209
http://www.ncbi.nlm.nih.gov/pubmed/33974543
http://dx.doi.org/10.1109/TNNLS.2020.3011526
http://www.ncbi.nlm.nih.gov/pubmed/32755872
http://dx.doi.org/10.1049/iet-cps.2016.0019
http://dx.doi.org/10.1109/TIA.2022.3218022
http://dx.doi.org/10.1109/TII.2014.2365703
http://dx.doi.org/10.1016/S0967-0661(97)00053-1
http://dx.doi.org/10.1007/s42064-022-0134-4
http://dx.doi.org/10.1109/TITS.2019.2897583
http://dx.doi.org/10.1109/TNNLS.2022.3174822
http://www.ncbi.nlm.nih.gov/pubmed/35594236
http://dx.doi.org/10.1109/TPAMI.2012.39
http://www.ncbi.nlm.nih.gov/pubmed/22271823

	Introduction
	Related Work
	Data Fusion
	Deep Learning and Meta-Learning

	System Model and Fault Diagnosis
	System Model
	Data Fusion and Fault Diagnosis
	Data Fusion
	Fault Diagnosis


	Data Fusion Based on Tensor Computing
	Preliminary
	Rank-1 Tensor
	Cubical Tensor
	Diagonal Tensor
	n-Mode Product

	Tensor Decomposition
	CP Decomposition
	Tucker Decomposition

	Tensor Completion
	Algorithm for Data Fusion

	Fault Diagnosis Based on Meta Learning
	Meta Learning
	Fault Diagnosis in Power Communication Network and Smart Grid
	Power Communication Network
	Smart Grid


	Simulation Results and Theoretical Analysis
	Evaluation Metrics and Model Parameters
	Performance of MAML Algorithm
	Contribution of Data Fusion

	Conclusions
	References

