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Abstract: Neural networks (NNs) have shown outstanding performance in solar photovoltaic (PV)
power forecasting due to their ability to effectively learn unstable environmental variables and their
complex interactions. However, NNs are limited in their practical industrial application in the energy
sector because the optimization of the model structure or hyperparameters is a complex and time-
consuming task. This paper proposes a two-stage NN optimization method for robust solar PV power
forecasting. First, the solar PV power dataset is divided into training and test sets. In the training
set, several NN models with different numbers of hidden layers are constructed, and Optuna is
applied to select the optimal hyperparameter values for each model. Next, the optimized NN models
for each layer are used to generate estimation and prediction values with fivefold cross-validation
on the training and test sets, respectively. Finally, a random forest is used to learn the estimation
values, and the prediction values from the test set are used as input to predict the final solar PV
power. As a result of experiments in the Incheon area, the proposed method is not only easy to model
but also outperforms several forecasting models. As a case in point, with the New-Incheon Sonae
dataset—one of three from various Incheon locations—the proposed method achieved an average
mean absolute error (MAE) of 149.53 kW and root mean squared error (RMSE) of 202.00 kW. These
figures significantly outperform the benchmarks of attention mechanism-based deep learning models,
with average scores of 169.87 kW for MAE and 232.55 kW for RMSE, signaling an advance that is
expected to make a significant contribution to South Korea’s energy industry.

Keywords: renewable energy analysis; solar photovoltaic forecasting; neural network optimization;
Optuna; online learning; multistep-ahead prediction; random forest

1. Introduction

Global climate change and sustainable development are two of the most pressing
issues related to energy production and are receiving a great deal of attention around the
world [1]. While energy consumption continues to grow, most energy production still relies
on fossil fuels, including natural gas, coal, and oil [2]. The excessive use of these fuels is
increasing greenhouse gas (GHG) emissions and causing climate anomalies around the
world [3]. If our reliance on fossil fuels continues, GHG emissions are expected to increase
by 30% over the next 20 years, increasing the potential for energy crises and environmental
risks [4]. In response to these challenges, researchers and governments are intensifying
their exploration of renewable energy resources [5]. Given the high rate of GHG emissions,
renewable energy is considered a viable alternative for future energy management [4,5].
The use of renewable energy sources such as solar, wind, and biomass is considered a
sustainable solution from an environmental perspective [1,2].

Due to its non-polluting and sustainable/renewable characteristics, photovoltaic (PV)
energy has received considerable attention as a solution to climate change, efficiently
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producing energy through the harmonious operation of its main components, as shown
in Table 1 [6]. In this context, solar PV power generation is an innovative technology that
directly converts the energy of sunlight into electricity [7]. It is based on the principle of
converting the flow of electrons generated by solar panels through the photoelectric effect
into electric current, and this direct current needs to be converted into alternating current
that can be used in our daily lives [6,7]. In addition, solar PV power generation has the
advantage of being easy to install, having infinite resources, being environmentally friendly,
and being able to generate electricity without noise or pollutant emissions compared to
other renewable energy sources [8]. Because of these characteristics, the proportion of solar
PV generation and use is expected to continue to increase in the future [7,8].

Table 1. Key components and functions of the solar photovoltaic (PV) system.

Component Function

Solar cell panel The core component that converts sunlight into electrical energy

Inverter Converts direct current (DC) into alternating current (AC) that can
be used

Battery Stores electricity
Charge controller Controls the flow of electricity to prevent battery overcharging

Wiring Connects the components of the system

Predicting solar PV power generation is very important for the operation of a sus-
tainable energy system, including maintaining a balance between energy production and
consumption and optimal utilization of energy resources [9]. However, compared to tra-
ditional energy sources, the dependence of solar PV power generation on environmental
factors (e.g., sensitivity to changes in weather conditions) introduces significant variabil-
ity. This variability, coupled with the dynamic nature of these environmental influences
over time, makes the task of accurately predicting solar PV power generation extremely
challenging [8,9]. For a complete understanding of the terms and acronyms used in this
context, please refer to Appendix A, which provides definitions for key acronyms and
variables discussed herein. From the perspective of technological progress, solar PV power
generation forecasting has evolved significantly over time [10,11].

Initially, traditional forecasting methods such as simple statistical and physical models
were widely used. While effective at capturing linear relationships, these methods were
often inadequate for modeling the complex, nonlinear patterns that characterize solar
energy production [11]. Subsequently, with the gradual introduction of machine learning
(ML) techniques, the ability to learn and predict complex data patterns has improved. For
example, advances in ML and the subsequent integration of deep learning (DL) algorithms
have significantly surpassed the capabilities of traditional forecasting methods, enabling
more accurate and reliable predictions. These advances have played a key role in improving
the accuracy of solar PV power generation forecasting, thereby contributing to more
effective energy management and stable operation of the power grid [12–19].

Qazi et al. [12] developed an artificial neural network (ANN)-based solar irradiance
prediction method based on weather data analysis. Wang et al. [13] proposed a forecasting
scheme using nonlinear time series analysis to predict solar power in smart grids. Van
der Meer et al. [14] used two computational methods, autoregressive integrated moving
average (ARIMA) models and mixed integer linear programming, for PV power forecasting
and optimal electric vehicle (EV) charging management, respectively. Voyant et al. [15]
developed and compared several ML algorithms, such as nearest neighbor and bootstrap
aggregation, to accurately predict solar irradiation. Almonacid et al. [16] used ANNs to
demonstrate prediction performance metrics of concentrator PV technology. Wang et al. [17]
proposed two ML methods based on support vector machine (SVM) and adaptive learning
to predict solar irradiance with high accuracy. Zhang et al. [18] developed a Bayesian
network-based prediction scheme to perform spatio-temporal analysis for advanced short-
term prediction of PV power generation. Al-Dahidi et al. [19] proposed a day-ahead
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solar PV power generation prediction method based on an ensemble of diversified ANNs
optimized with bagging and bootstrapping techniques.

In particular, DL models have received much attention due to their structure and
learning method, which are excellent for processing data with complex patterns [20–25].
Abdel-Nasser and Mahmoud [20] developed a PV power prediction model using deep
long short-term memory (LSTM) networks, which captures temporal dynamics with high
accuracy. Patel [21] proposed a solar irradiance prediction based on the exploration of
LSTM and convolutional neural networks (CNNs) to overcome the challenges of model
convergence and accuracy. Wen et al. [22] developed a novel multistep-ahead prediction
scheme for PV power rate control using deep CNNs and stacked sky images, bypassing the
need for additional time series models and exogenous variables for industrial suitability.
Jiao et al. [23] proposed a novel DL architecture for solar irradiance prediction that integrates
convolutional graph neural networks with LSTM to improve accuracy and reliability for
distributed PV systems. Zameer et al. [24] proposed two DL models based on bidirectional
LSTM (Bi-LSTM) and gated recurrent unit (GRU) to achieve superiority in short-term
solar PV prediction over traditional methods such as lasso, ridge, elastic net, and SVM,
highlighting the robustness and precision of DL. Rocha et al. [25] conducted an in-depth
analysis using LSTM, Bi-LSTM, and temporal convolutional network (TCN) for predicting
solar PV generation on a 1320 watt-peak (Wp) amorphous plant, demonstrating the superior
performance of TCN in terms of accuracy for both short-term (15-minute) and long-term
(24-h) predictions.

However, the reliability of current solar PV power generation forecasting is often
compromised by several factors, leading to inaccuracies. The application of advanced
DL techniques as baseline models is often hampered by the need for high-performance
computing resources, such as graphics processing units (GPUs) [26]. In addition, the
practicality of implementing such advanced models is further limited in environments
where energy managers may find the complexity of ML and DL daunting, and where
energy companies or government agencies do not always have the budget or infrastructure
to support high-end computing resources. DL techniques require the management of
multiple hyperparameters, which adds complexity to the optimization process and can
hinder model learning [27]. This complexity may limit practical applications in the energy
sector, where DL expertise is not widely available. Identifying the optimal configuration of
neural networks (NNs), such as the appropriate number of hidden layers, is a significant
challenge and research gap that affects prediction accuracy [27,28]. Simply increasing the
number of hidden layers does not guarantee improved model performance [28], and what
works in one scenario may not be effective in another [29]. Consequently, researchers have
attempted to improve prediction performance by integrating multiple deep neural network
(DNN) models with different numbers of hidden layers, a strategy that merits further
exploration [29]. In the face of these challenges, stacking ensemble learning emerges as a
powerful solution that is particularly adept at overcoming the twin challenges of technical
complexity and resource constraints [29–32].

Bâra and Oprea [30] incorporated weather forecast errors into the forecasting method
for various PV systems, including grid-tied, hybrid, and off-grid setups. This study
demonstrated that stacking ensemble learning could adjust PV forecasts based on these
errors, leading to significant improvements in forecast accuracy across different PV system
sizes and connectivity. Another investigation [31] proposed a stacking ensemble learning
method that combines ML algorithms such as random forest (RF) and extreme gradient
boosting with DL techniques such as DNNs and GRUs. This approach used weather data
and system performance to predict PV generation for both on-grid and off-grid systems
and showed that incorporating battery load and state of charge significantly improved the
model’s ability to accurately estimate potential power output. Further exploration [32]
developed a stacking ensemble learning method that integrates deterministic and stochastic
models to address the complexity of PV system forecasting. This method proved to be
particularly effective in reducing error rates and improving forecast reliability for various
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PV system types, demonstrating the ability of stacking ensemble learning to mitigate the
limitations of individual forecasting models.

In addition, the effectiveness of traditional time-series forecasting models tends to
decrease with the time since the last training, indicating the need for innovative approaches
such as online learning [33]. To overcome these problems, we propose a novel online
learning-based solar PV power generation forecasting model using two-stage NN opti-
mization. This model aims to facilitate accurate and fast multistep-ahead forecasting in
computing environments without GPU support, with a focus on Incheon’s smart city de-
velopment [34]. This study raises important research questions regarding the effectiveness
of stacking ensemble models in improving prediction accuracy and their performance in
environments with limited computing resources. The proposed method addresses key
issues and makes a significant contribution to the field with an online learning-based
prediction model that improves both accuracy and computational efficiency, as detailed in
the main contributions of this paper:

• We use Optuna for hyperparameter optimization within scikit-learn’s MLPRegressor
and implement fivefold cross-validation to ensure DNN model development with
sufficient training data, even on low-performance systems.

• We develop an online learning approach for the meta-regression model using a Ranger-
based RF model, which ensures accurate predictions over time despite the increasing
gap between training and evaluation periods.

• By interpreting variable importance from the RF, we highlight the contributions of
specific DNN models, enhancing the practical understanding for energy managers
and the applicability of the proposed method.

• We demonstrate the superiority of the proposed method through 11-point multistep-
ahead forecasting, minimizing uncertainty and outperforming various statistical and
DL models in mean absolute error (MAE) and root mean square error (RMSE).

The remainder of this paper is organized as follows. Section 2 introduces the dataset
composition and preprocessing, as well as the methodology and experimental setup.
Section 3 presents the results of the experiments, which demonstrate the effectiveness
of the proposed method. Section 4 discusses the limitations of the study and future direc-
tions. Finally, Section 5 summarizes the main results and contributions of the work.

2. Materials and Methods
2.1. Dataset Description
2.1.1. Dataset Collection

Incheon [35], also known as Incheon Metropolitan City, is a major international
metropolis in South Korea that has established itself as a pioneer in global exchange
and creative urban planning ideas. Since opening as an international port in 1883, Incheon
has grown into a world-class city with a population of more than three million people.
Connected to various parts of the world through places such as Incheon International
Airport and Incheon Port, Incheon serves as a transportation hub in Northeast Asia. In-
cheon also hosted the 2014 Asian Games and is known as a smart city. The city, along with
Seoul and Busan, received a high rating in the 2022 Smart City Index released [36]. This
rating shows how much Incheon cares about smart city management and infrastructure
services. In particular, Incheon is making efforts to actively utilize new and renewable
energy, especially solar power generation [37].

Therefore, we used solar PV power generation data from the Incheon area located on
the west coast of South Korea in this study. We also decided to use the solar PV power
generation dataset from Incheon for the following reasons: First, Incheon’s location on the
west coast of South Korea makes it the perfect place for high solar irradiance and relatively
stable sunshine, especially in the summer. Second, Incheon has a temperate climate, with
cold, dry winters and hot, humid summers, so a wide range of seasonal variations can be
taken into account when analyzing and optimizing the performance of solar PV systems. In
addition, Incheon’s strong commitment to renewable energy and smart city implementation
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ensures excellent reliability in terms of data quality and coverage. This is essential for this
study into the benefits of solar energy and its function in smart cities.

In this paper, we used solar PV power generation data collected from three solar
power plants in Incheon: New-Incheon Sonae, New-Incheon Observatory, and Incheon
Fishery Water Purification Plant. These data are publicly available data collected through
the Korea Public Data Portal [38] and were collected at 11 data points per day from 8:00 a.m.
to 6:00 p.m. at hourly intervals from 1 January 2018, to 31 December 2019. We divided the
data in a 5:5 ratio from 1 January 2018, to 31 December 2018, as the training set and from
1 January 2019, to 31 December 2019, as the test set. Table 2 shows the statistical analysis of
the data collected from each location.

Table 2. Statistical insights and parameters of Incheon’s solar PV installations (unit: kW).

Statistics

New-Incheon
Sonae

New-Incheon
Observatory

Incheon Fishery Water
Purification Plant

Training
Set Test Set Training

Set Test Set Training
Set Test Set

Mean 317.26 286.56 309.96 295.22 330.91 323.40
Standard error 3.72 3.89 3.70 3.49 4.01 3.82

Median 286.25 232.50 285.88 264.52 296.75 288.00
Mode 0 0 0 0 0 0

Standard deviation 235.67 246.43 234.24 221.27 254.25 242.36
Variance 55,538.34 60,727.81 54,867.24 48,958.34 64,645.42 58,737.13
Kurtosis −1.10 −1.01 −1.21 −1.11 −1.10 −1.08

Skewness 0.31 0.52 0.28 0.35 0.34 0.36
Range 927.93 889.00 849.37 797.01 970.87 904.79

Minimum 0 0 0 0 0 0
Maximum 927.93 889.00 849.37 797.01 970.87 904.79

Sum 1,273,793.95 1,150,536.24 1,244,471.64 1,185,312.06 1,328,589.98 1,298,457.14
Number of

observations 4015 4015 4015 4015 4015 4015

Location Namdong-gu, Incheon Seo-gu, Incheon Seo-gu, Incheon
Capacity (MW) 0.998 0.200 1.742

Year of
completion Nov. ‘11 Sep. ‘12 Dec. ‘17

Remarks RPA RPS RPS
MW, megawatt; RPA, Renewable Portfolio Standard Act (assumed context based on the content); RPS, Renewable
Portfolio Standard.

The Incheon Fishery Water Purification Plant appears to have the most efficient PV
system of the three, based on data showing that it has the highest average solar energy
output throughout the training and test sets. The New-Incheon Sonae, on the other hand,
shows reduced energy output, with a significant drop in the test set, suggesting possible
unpredictability or seasonal effects on performance. Nevertheless, the energy production
statistics appear to be fairly evenly distributed with minimal fluctuations, as indicated by the
observed kurtosis and skewness across all installations, indicating stable operating conditions.

2.1.2. Dataset Preprocessing

In order to construct a forecasting model using collected data, it is essential to consider
various external variables that have a significant impact on solar PV power generation.
In this paper, we considered time stamps and weather information as input variables to
develop a robust solar PV power generation forecasting model. These factors are very
important because they directly affect the efficiency and performance of solar PV systems,
and they are variables that can be realistically considered in real industrial applications in
South Korea [39].

Time data consists of month, day, and hour data. Time data are a one-dimensional
form of data, that can be challenging to use because it is difficult to accurately reflect its
periodicity. For example, 30 November and 1 December are actually adjacent dates and
times, but in the one-dimensional form of day data, there is a numerical difference of 29.
In this paper, we applied Equations (1)–(4) to augment the one-dimensional month and
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day data with continuous data in two-dimensional space to reflect the periodicity of the
data [39,40].

MonthX = sin(360◦/12 × Month), (1)

MonthY = cos(360◦/12 × Month), (2)

DayX = sin(360◦/LDMMonth × Day), (3)

DayY = cos(360◦/LDMMonth × Day), (4)

where LDMMonth refers to the last day of the month to which a given day belongs. For
example, if it is June, the LDMMonth is 30. If it is July, the LDMMonth is 31. This information
is useful for determining what month a given day belongs to and how many days are in
that month.

However, for the time period from sunset to sunrise, 0 is recorded regardless of any
weather value. Therefore, this study considered the time period from 8:00 a.m. to 6:00 p.m.
It is difficult to reflect the periodicity when reduced to 11 variables (8–18) and converted
into two dimensions; therefore, 11 variables were generated by one-hot encoding.

The weather data essential for this study, especially for the prediction of solar PV
power generation at three locations in Incheon, were obtained from the Incheon Mete-
orological Station, located at 37.47772 latitude and 126.6249 longitude, operated by the
Korea Meteorological Administration (KMA). These data, which are critical to the input
variables in DNN models, were obtained from the Weather Data Service’s Meteorological
Data Portal [41]. The KMA provides different types of weather forecasts, such as ultra-
short-term forecasts, short-term forecasts, medium-term forecasts, and long-term forecasts.
The ultra-short-term forecast predicts weather elements such as temperature, precipitation,
and lightning strikes at one-hour intervals for up to four hours ahead, providing instant
weather insights, while the short-term forecast extends predictions for variables such as
temperature, humidity, wind speed, and precipitation up to three days ahead, with updates
every three hours [42].

Since a solar PV power generation forecasting model needs to have forecasts at least
one day ahead for effective power utilization planning [43], we specifically used daily aver-
age temperature, daily minimum temperature, daily maximum temperature, air tempera-
ture, humidity, wind speed, and precipitation data from the KMA short-term forecast [39].
Although the forecasts are available three days in advance, for the purpose of this study,
we only focus on using the forecasts provided one day in advance to improve the accuracy
and reliability of the day-ahead forecasts. The solar PV power generation data, which are
collected in 1-h increments, contrast with the KMA short-term forecast data, which are
initially available in 3-h increments. For these purposes, these data have been cleverly
converted to hourly intervals using linear interpolation, which improves the temporal
resolution and applicability for solar PV power forecasting.

A key challenge for KMA short-term forecasts is the lack of solar irradiance data, which
are critical for predicting solar PV power generation. To address this, we adopted a creative
strategy to indirectly simulate the effects of solar irradiance on the proposed method. By
examining how solar power generation changes with different weather conditions, such as
season and time of day, we could estimate the role of solar irradiance in power generation.
In addition, to compensate for the lack of direct solar irradiance data and to improve the
predictive accuracy of our model, we developed multiple DNN models and applied the
stacking ensemble method. This innovative two-step strategy enhances the ability of our
model to mimic the effects of solar irradiance and significantly improves the prediction
accuracy. As a result, this approach allowed us to build a comprehensive model with
22 carefully selected input variables, as shown in Table 3.
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Table 3. Input variables for solar PV power generation forecasting modeling.

No. Input Variable Variable Type No. Input Variable Variable Type

1 MonthX Numeric 12 3:00 p.m. Binary
2 MonthY Numeric 13 4:00 p.m. Binary
3 DayX Numeric 14 5:00 p.m. Binary
4 DayY Numeric 15 6:00 p.m. Binary
5 8:00 a.m. Binary 16 Avg. Temperature Numeric
6 9:00 a.m. Binary 17 Min. Temperature Numeric
7 10:00 a.m. Binary 18 Max. Temperature Numeric
8 11:00 a.m. Binary 19 Temperature Numeric
9 12:00 p.m. Binary 20 Humidity Numeric

10 1:00 p.m. Binary 21 Wind Speed Numeric
11 2:00 p.m. Binary 22 Precipitation Numeric

Our dataset includes only external variables, such as weather conditions and time
stamps, and intentionally omits internal factors. This choice ensures that the dataset is
broadly applicable across South Korea, without being limited by the specific details of
individual solar PV systems. This universal applicability is key to developing effective
energy harvesting strategies that can be easily adapted to different solar PV installations in
South Korea. Thus, the dataset configuration can provide great value by supporting the
creation of predictive models that are both powerful and widely applicable, helping power
producers improve their operations and increase the environmental friendliness of their
power generation.

Min–max normalization can make all input variables similar by putting them on a scale
from 0 to 1 [44]. This technique allows the model to learn more accurately and overcome
any shortcomings in the data. We used Equation (5) to train the consistency of the DL-based
solar PV power generation prediction model by applying min–max normalization to all
input variables, including time stamps and weather information.

XNorm = (X − XMin)/(XMax − XMin), (5)

where XNorm represents the new value of a number in the set of observations X after
normalization. The minimum and maximum values of X are represented by the variables
XMin and XMax. We applied them to the training set before applying the XNorm values from
the training set to the test set. As a result, the minimum and maximum values of an input
variable can be zero and one.

Figure 1 shows a synchronized overview of normalized meteorological variables and
solar PV power generation at three different locations in Incheon for July 2019. Each
variable—temperature, humidity, wind speed, precipitation, and PV power generation
for three solar power plants in Incheon—is represented by a min–max normalization to
ensure an equitable scale of 0 to 1. This normalization technique allows us to identify
patterns and correlations in the fluctuating climate of Incheon’s monsoon season and its
subsequent impact on PV power generation. The hourly time index represents a sequential
timeline that captures the intricacies of solar energy variability in a region characterized by
strong climatic transitions. This graphical representation not only illustrates the temporal
distribution of each parameter but also serves as a powerful visual reinforcement of the
variability inherent in solar energy systems, especially during periods of climatic extremes
such as the onset of the East Asian Monsoon [45].

We ensured that the processed datasets were designed to enhance replicability and
further research. To this end, the preprocessed datasets are publicly available for those
who wish to use them in model training or additional studies. Researchers can find these
datasets in the Supplementary Material of this paper, specifically in Tables S1–S3. This
step is taken to underscore our commitment to openness and the advancement of scientific
inquiry in the energy field.
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2.2. Model Construction

Figure 2 shows the overall architecture of the proposed solar PV power generation
forecasting method. First, we divided the preprocessed dataset into a training set (2018) and
a test set (2019) in a 5:5 ratio as described earlier. We performed two stages of optimization
techniques on nine DNN models and derived final predictions. The details of this study
are described in the following subsections.
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Figure 2. Procedure for multistep-ahead solar PV power generation forecasting.



Electronics 2024, 13, 1659 9 of 30

2.2.1. Stage 1: Optimized Deep Neural Network Architecture with Optuna

A multilayer perceptron (MLP), also known as a typical NN configuration, allows
computers to learn tasks by example, as shown in Figure 3 [46]. It is similar to a schematic
that guides the computer in formulating a solution to a problem. The framework of
an MLP consists of individual elements, called perceptrons, organized in layers. An
MLP conventionally includes three types of layers: the input layer, which captures data
that the computer uses to make a prediction; one or more hidden layers, which relevant
pertinent information from the input layer to refine the prediction; and the output layer,
which provides the final result based on the synthesized information from the hidden
layers [46,47]. We used Equation (6), which integrates the input data, neural connections
(weights), and an activation function, to compute the output values of the neurons in the
hidden layer of an MLP.

yj = φ(∑wij × xi + bi) (6)
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The input layer of an MLP consists of neurons, each of which is represented by xi.
Synaptic weights, abbreviated as wij, reflect the connections between neurons in the input
and hidden layers. The activation function (φ) controls the output of the hidden layer
neurons. When an MLP contains more than two hidden layers, it is referred to as a DNN,
indicating a deeper level of computational complexity [47,48]. Biases (bi) are added to
the inputs of the activation function to help the network make more accurate predictions.
Weights serve as important links not only between the input and hidden layers, but also
between multiple hidden layers and between the last hidden layer and the output layer,
and they play an important role in information processing and modeling. A feature of
MLPs is their ability to process information in a distributed manner, with each neuron
acting independently. This makes the system fault-tolerant because it can continue to learn
and process data even if some neurons fail [48].
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MLPRegressor is one of the components of scikit-learn, the widely used ML package
in Python. It is a DL model for regression tasks that is adept at predicting numerical
outputs from given input features [49]. While DNN models are typically constructed
using frameworks such as TensorFlow, Keras, or PyTorch, which excel in GPU environ-
ments, MLPRegressor provides an effective benchmark for utilities and government or-
ganizations managing solar PV systems, particularly in scenarios where investment in
advanced computing infrastructure is not feasible. MLPRegressor facilitates efficient model
deployment on lower-capacity systems, underscoring its role as a practical solution in
resource-constrained environments.

In addition, MLPRegressor can produce excellent results on structured datasets [29,48].
Its performance can be significantly improved by tuning key hyperparameters: hidden layer
sizes, activation functions, batch size, learning rate, and maximum iterations. Therefore, to
address the challenge of solar PV power generation prediction on low-power systems, we
decided to use scikit-learn’s MLPRegressor and adjust these hyperparameters for optimal
results. This approach balances the need for cost efficiency and effective use of computa-
tional resources, ensuring that our model is widely applicable and can operate effectively
in constrained computing environments, making it an excellent benchmark model.

The configuration of the hidden layer has a significant impact on the efficiency of the
network, highlighting the importance of considering the number of layers and nodes, as
well as the activation function, when designing the network [28]. Although increasing the
number of hidden layers often improves network efficiency, it also increases the possibility
of overfitting [28,29]. Identifying the optimal number of hidden layers to prevent overfitting
can be particularly challenging, especially for those not specialized in ML and DL, such
as energy experts. This complexity arises because the development of DL models can
yield different results based on different training conditions, and is particularly resource-
intensive [29]. To mitigate these challenges, we first built several DNN models with
different hidden layer structures. For our prediction efforts, we created nine DNN models
with the number of layers ranging from 4 to 12 within the training set.

Traditional hyperparameter tuning techniques have been extended to include gradient-
based optimization, evolutionary algorithms, simulated annealing, particle swarm opti-
mization, hyperband, gradient-based optimization, random search, and Bayesian optimiza-
tion to improve DL models [50,51]. While these methods expand the range of tools available
to improve model performance, they often share the same drawbacks: high computational
requirements, significant time commitment, and a complexity that can be intimidating to
practitioners not trained in ML, such as those working in the energy industry. Under severe
time and computational resource constraints, these approaches may not provide the best
model efficiency and scalability due to their thorough and often random search through
hyperparameter spaces.

Optuna [48,52], a versatile Python toolkit, provides a unified interface for refining
hyperparameters in ML constructs to increase their effectiveness. Hyperparameters are the
pre-training configurations of algorithms, as opposed to the parameters that are adjusted
during the training process itself. Within the architecture of an NN, critical hyperparameters
include the number of hidden layers, the learning rate, and the intensity of regularization.
Designed to streamline the hyperparameter optimization process, Optuna extends an
intuitive and customizable application programming interface for architecting ML models
and defining the scope of hyperparameter exploration. This suite uses a variety of methods
to traverse the hyperparameter terrain, including the Tree-structured Parzen Estimator, as
well as random and grid searches, to find the best hyperparameters that improve metrics
such as accuracy or F1 score.

Optuna is unique in its ability to synchronize simultaneous trials, which are different
evaluations of a model configured with different hyperparameter combinations. This
feature drives Optuna’s ability to traverse the hyperparameter landscape with increased
speed and precision. A key feature of Optuna is its early termination mechanism, which
allows the optimization effort to be halted when the likelihood of further trials refining
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the results is minimal, thereby optimizing resource utilization and mitigating the risk of
overfitting. In addition, Optuna includes a tracking API that provides insight into the
trajectory of the optimization and detailed records of each trial, essential for the analysis
and refinement of the optimization strategy. We defined the hyperparameter search space
as shown in Table 4 and set the number of iterations in Optuna to 1000. We then used
Optuna through fivefold cross-validation on the training set to determine the optimal
hyperparameter values for each DNN model, as shown in Figure 4.

Table 4. List of hyperparameters for optimal deep neural network (DNN) model construction.

Hyperparameter Definition Range

hidden_layer_sizes Number of neurons in each hidden layer, for 2 to
10 layers

2–10 hidden layers, each with 1–40 (Step: 1)
[48]

activation Activation function for the hidden layer relu [29]
solver The solver for weight optimization adam [29]
alpha L2 penalty (regularization term) parameter 0.0001–0.001 (Step: 0.0001) [48]

batch_size Size of minibatches for stochastic optimizer 5–100 (Step: 1) [48]
learning_rate Learning rate schedule for weight updates constant, adaptive [48]

learning_rate_init Initial learning rate 0.0001–0.1 (Step: 0.0001) [48]
max_iter Maximum number of iterations 100–2000 (Step: 10) [48]
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In this paper, we constructed nine DNN models with 2 to 10 hidden layers in the
training set and carefully determined the optimal hyperparameter settings for each model
using Optuna’s fivefold cross-validation. This preliminary step ensured that we identified
the most effective configurations to improve the predictive accuracy of our models.

In addition, we took a strategic approach to the challenge of constructing a sufficient
validation set within a limited timeframe, especially when a separate validation set may
not have been feasible due to the constraints of not having an extended training period. We
performed another round of fivefold cross-validation on the training set based on these
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optimized hyperparameters to prepare adequate training data for our meta-learning model
within the stacking ensemble framework. This method allowed us to ensure robust learning
from even a one-year training dataset, effectively overcoming potential limitations in the
availability of validation datasets. In parallel, we used the entire training dataset, now
fully trained with the optimized hyperparameters, to make preliminary solar PV power
generation predictions on the test set. This comprehensive approach was able to maximize
the predictive capabilities of our models under the specific constraints of the study.

2.2.2. Stage 2: Ranger-Based Online Learning Model for Multistep-Ahead Prediction

Even with DNN models optimized by Optuna, the high computational load of DNNs
for online learning poses a challenge, especially for real-time energy management. To
address this issue, our stacking ensemble method, which integrates different DNNs with
an RF meta-regression model, leverages the predictive capabilities of DNNs while mitigat-
ing their computational demands. This approach provides significant benefits to energy
managers by enabling efficient, real-time prediction of solar PV power generation, which
is critical for optimizing energy distribution and demand forecasting. By combining the
analytical depth of DNNs with the operational efficiency of RF, the proposed method can
provide a practical solution for advancing energy management practices, highlighting the
originality and applicability of our approach in the energy sector.

RF [53,54] is a prime example of a bagging ensemble technique. It constructs multiple
decision trees (DTs) trained on randomly selected subsets of variables (features) and out-
puts the result by averaging (for regression tasks) or majority voting (for classification tasks)
over the predictions of all DTs [54]. Efficient for online learning and requiring minimal
hyperparameter tuning, RF works efficiently on large datasets and shows excellent per-
formance in areas such as bioinformatics and time series prediction because it can handle
large numbers of input variables without the need for variable elimination [55,56]. Its
robust performance and ability to handle multicollinearity make it suitable for handling
highly correlated inputs from DNN models. In addition, RF generally requires less hyper-
parameter tuning than other ML methods and often provides satisfactory performance
even with default hyperparameter settings [57]. We focus on two commonly adjusted RF
hyperparameters for model training: the number of trees to grow (n_estimators for Python
and nTree for R) and the number of variables considered for partitioning at each tree node
(max_features for Python and mTry for R) [56,57].

We selected the RF algorithm based on its adaptability to the specific needs and
constraints of this study, rather than on claims of universal superiority [58,59]. The imple-
mentation of online learning, which selects optimal hyperparameters at each time point
for model training and prediction, poses significant challenges in real-world industrial
settings due to its computational and time requirements [33]. RF’s adaptability and ease of
tuning are particularly valuable in these settings. RF is characterized by robust performance
with minimal need for hyperparameter optimization, in contrast to DL models that often
require careful tuning of hyperparameters to achieve peak performance. Furthermore, its
effectiveness as a meta-regression model in a stacking ensemble highlights its versatility.
In addition, RF correctly handles multicollinearity, ensuring model robustness for highly
correlated input variables [60]. This feature allows for more effective learning and final
prediction of solar PV power generation estimation and prediction values in the training
and test sets derived from DNN models. Therefore, the adoption of RF was based on its
balanced learning capabilities and conformity with the requirements and limitations of the
study [61,62].

The RandomForestRegressor implementation in Python and the randomForest package
in R are widely appreciated for their rich functionality. However, they are not ideally
optimized for high-dimensional datasets. Furthermore, a major drawback is the slow
execution speed of the model. The Ranger, an innovative software package, has been
developed to overcome these limitations and increase efficiency for high-dimensional data
analysis [63]. Efficient memory management is achieved by minimizing data duplication,
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storing node information in compact data structures, and freeing memory in a timely
manner. The Ranger package introduces two innovative partitioning methods. The first
method sorts feature values by index before partitioning, while the second method splits
raw values directly and organizes them afterward. These methods optimize the runtime
for the main and minor nodes used in the first and second scenarios, respectively. These
runtime optimization methods make Ranger a powerful tool for RF implementations in
complex scenarios.

The essence of stacking ensemble learning is to orchestrate a diverse collection of
models, such as DNNs, to work in parallel and synergize their predictions through a
meta-regression framework, such as RF, to refine the overall prediction accuracy [29,64].
However, because many of these weak learners are based on ML or DL methods that
rely heavily on data characteristics, stacking ensemble learning may have limitations in
improving solar PV power generation predictions. As a result, ML or DL methods may
struggle to achieve high accuracy on out-of-sample (unseen) datasets that differ significantly
from the in-sample (training) data. For example, if the observed PV power in the test
dataset significantly exceeds that in the training dataset, a model calibrated to the latter
may not effectively predict escalation [61]. In addition, achieving satisfactory predictive
performance with insufficient data becomes difficult, especially when the available training
data are scarce [61,65].

We used R Ranger to construct an online learning model that uses time series cross-
validation (TSCV) to address these challenges [65]. TSCV emphasizes the evaluation of
multiple prediction horizons within each training set. Additional training sets were used
according to the planned time period, each containing one observation not included in the
previous training set. We designed the test set to range from one hour to one day (up to
11 h) after the current period to allow for multistep-ahead prediction of solar PV power
generation, as shown in Figure 5. The prediction accuracy was calculated at each time
point and the results were averaged to evaluate the effectiveness of the prediction model.
To train the Ranger model, nine input variables were selected, encapsulating predictions
from DNNs with 2 to 10 hidden layers. In addition, in accordance with best practices and
to tailor our model specifically for regression tasks, we set the number of trees to 128 and
the number of features to 3, reflecting one-third of our nine input variables for optimized
regression [57,66].
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Figure 5. Time series cross-validation for multistep-ahead solar PV power generation forecasting.

The proposed method excels in predicting solar PV power output by combining
ensemble learning with TSCV. This approach could overcome the limitations of static DL
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algorithms such as DNN, LSTM, Bi-LSTM, GRU, and one-dimensional CNN (1D-CNN)
by progressively incorporating fresh data to gradually increase the prediction accuracy.
The proposed method captures complicated nonlinear interactions in the data by using a
two-stage NN optimization that incorporates different DNNs in the first stage and an RF
algorithm as a meta-regression model in the second stage. It also uses incremental learning
to adapt to new trends and patterns as more data becomes available. Most importantly, this
approach is optimized for central processing unit (CPU) usage, ensuring broad application
in real-world environments with limited computing resources. As a result, even with a
small initial dataset, the proposed method ensures robust learning and accurate prediction,
which is important for ML applications that collect data over time.

3. Results
3.1. Experimental Setup

In this research, we established an experimental framework to test our proposed ap-
proach for solar PV power generation forecasting 11 steps (one day) in Incheon, South Korea.
The experimental hardware consisted of an Intel(R) Core(TM) i7-9700 CPU @3.00 GHz
and 64 GB RAM. Software tools included Anaconda 22.9.0 and Python 3.8.0 for data pre-
processing, and RStudio version R-4.2.2 along with R version 4.2.2 (2022-10-31 UCRT) for
additional data processing and development of the Ranger-based online learning model.
This setup was critical for evaluating and improving the accuracy of the solar PV power
generation prediction model. We set the random state and the random seed to 42 and 1234
in Python and R, respectively, to ensure the reproducibility of the experiment and to allow
direct comparison of models trained under identical conditions.

Two statistical measures were used to evaluate the accuracy of the prediction mod-
els: MAE, which is calculated as the average of the absolute differences between the
predicted and actual values, and RMSE, which measures the square root of the average
squared differences between the predicted and actual values, defined by the following
Equations (7) and (8), respectively:

MAE = ∑|Pt − At|/n, (7)

RMSE =
√

(∑(Pt − At)2)/n, (8)

where At and Pt denote the actual and predicted values at time t, n is the number of observations.

3.2. Experimental Results

In this study, we meticulously conducted experiments using the New-Incheon Sonae,
New-Incheon Observatory, and Incheon Fishery Water Purification Plant test sets (2019)
from Incheon, South Korea as unseen data to evaluate the performance of our proposed
model. Our main objective was to compare our proposed model with a set of benchmark
models, which had previously demonstrated remarkable performance in predicting solar
PV power generation. First, we constructed an RF model using Ranger as a benchmark
model for multistep-ahead forecasting, using TSCV with 22 input variables. Then, we
constructed DL models for multistep-ahead forecasting, starting with robust time series
forecasting models from the RNN family, including LSTM, Bi-LSTM, and GRU models [23].
In addition, we developed seven state-of-the-art models that incorporate attention mecha-
nisms (Att) [67–73]. These steps allowed us to comprehensively compare the established
benchmark models, known for their effectiveness in various domains, with our proposed
model. To create a comparable environment for multistep-ahead solar PV power generation
forecasting, we configured the time steps from 1 to 11 using a many-to-many approach. We
adhered to the core architectural frameworks of the models as described in the research
articles, and fine-tuned the hyperparameters using Optuna to ensure optimal performance.

The benchmark models include:

• Att-LSTM: Zhou et al. [67] developed the Att-LSTM model using a hybrid ensemble DL
framework with two LSTM NNs focused on temperature and power output for short-
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term PV power generation. The incorporation of an attention mechanism improved
the prediction accuracy by prioritizing significant input features.

• Att-Bi-LSTM: He et al. [68] constructed the Att-Bi-LSTM model, which combines a Bi-
LSTM architecture and attention mechanisms for predicting PV power generation from
solar PV systems, and demonstrated superior accuracy by selecting environmental
factors using the Pearson coefficient.

• Att-GRU: Jung et al. [69] introduced the Att-GRU-based energy forecasting model, an
attention-based GRU approach for multistep-ahead electrical load forecasting, which
outperforms other models by emphasizing crucial variables in response to sudden
changes in power consumption.

• Att-1D-CNN: Wu et al. [70] proposed the Att-1D-CNN model, which uses a CNN
and informer approach, and achieves accurate solar PV power generation prediction
by analyzing data correlations, significantly improving the prediction accuracy over
traditional models.

• Att-TCN: Ren et al. [71] introduced the Att-TCN model, a novel dual-channel TCN
that combines a multi-head attention mechanism with TCN to extract spatiotemporal
features, and demonstrated superior prediction performance for solar PV power
generation forecasting.

• Att-GRU-TCN: Xiao et al. [72] proposed the Att-GRU-TCN model for probabilistic power
flow in multi-microgrids, which integrates GRU and TCN with an attention mechanism
to improve reliability and efficiency in networks with incomplete information.

• Att-Bi-GRU-TCN: Zhou et al. [73] developed the Att-Bi-GRU-TCN model for short-
term solar PV power generation forecasting, which uses a two-step approach with
TCN and Bi-GRU to capture both short-term and long-term dependencies, ensuring
robust forecasting accuracy.

In Tables 5–10, we observed the exceptional performance of the proposed method.
This model showed excellent predictive capabilities with the smallest MAE and RMSE
values among the multistep-ahead predictions. For example, the proposed method showed
an average MAE of 149.53 kW and RMSE of 202.00 kW for the New-Incheon Sonae dataset,
which is significantly lower than the average MAE of up to 171.11 kW and RMSE of up
to 233.66 kW of the benchmark models in Table 5. The model’s effective implementation
of online learning and a sophisticated stacking ensemble approach can achieve a high
level of accuracy in predicting solar PV power generation for the New-Incheon Sonae,
New-Incheon Observatory, and Incheon Fishery Water Purification Plant datasets. The
stacking ensemble technique could effectively combine the predictive strengths of different
DNN models, resulting in a consistent and fine-tuned prediction.

Notably, both our model and the Ranger model, which incorporates online learning,
routinely outperform typical DL models. The results may demonstrate the effectiveness of
online learning in adapting to new, real-time data, which is an important feature for models
operating in dynamic situations. However, it is critical to understand the constraints
experienced. The DL models struggled to adapt to a training set spanning one year,
indicating a weakness in their ability to learn from large amounts of temporal data in a
short period of time. In addition, the lack of solar irradiance as an input variable limits the
ability to improve prediction accuracy. Since solar irradiance is such an important aspect of
PV power generation, its inclusion in future models could lead to significant improvements
in prediction accuracy.

To evaluate our proposed model for single-day-ahead forecasting in Incheon, we
compared it with several benchmark models. For a thorough evaluation, we analyzed
the performance over different time periods, including quarterly and overall metrics.
We evaluated the 11-step-ahead (day-ahead) forecast values of the proposed method by
measuring the forecast accuracy. First, we adopted a statistical method from the persistence
model, which relies on data from the corresponding time of the previous day. For example,
to forecast solar PV power generation at 14:00 on June 8, we used data from 14:00 on
June 7. We also used the hold-out technique to construct the Ranger-based RF model with
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22 input variables. In addition, we evaluated the prediction values of nine DNN models
configured for one-step prediction, whose performance was enhanced by hyperparameter
optimization using Optuna.

In the extended analysis, we found a striking trend: over time, our model with online
learning widens the performance gap in prediction accuracy over other models, as shown
in Tables 11–13. In particular, the proposed method showed a consistent improvement in
accuracy for day-ahead solar PV power generation forecasting, with a significant reduction
in MAE and RMSE values. In the New-Incheon Sonae dataset, this model maintained a
lower average MAE and RMSE of 151.66 kW and 204.72 kW, respectively, compared to
other DNN models with higher layers, which showed MAEs and RMSEs increasing to
185.54 kW and 255.43 kW, respectively. This pattern indicates that the proposed method’s
online learning capability is not only effective in adapting to immediate data trends but
also improves its prediction accuracy over time, outperforming benchmark models. We
concluded that the model’s ability to continuously learn and integrate new information
plays a critical role in its sustained superior performance.

Tables 14–16 present the results of a comprehensive evaluation of the day-ahead fore-
casting models, showing their varying effectiveness under different weather conditions.
Notably, the proposed method consistently outperformed not only the benchmark Persis-
tence model but also other models, such as Ranger and various DNN configurations, in
terms of accuracy under clear weather conditions by demonstrating lower MAE and RMSE.
Specifically, for the New-Incheon Sonae dataset, the proposed method achieved an MAE of
141.17 kW and an RMSE of 189.96 kW, surpassing the Persistence model’s MAE and RMSE
of 148.04 kW and 226.16 kW, respectively, as well as those of the Ranger and DNN models.

Conversely, the performance of the proposed method under rainfall conditions dropped
below that of the Persistence model, which proved to be more accurate, as reflected in
the MAE and RMSE metrics. For example, for the Incheon Fishery Water Purification
Plant dataset during rain events, our model recorded an MAE of 162.19 kW, while the
Persistence model showed a lower MAE of 132.16 kW. This discrepancy highlights the
current limitation of our dataset, which spans two years, with one year allocated to the
training set. The limited representation of rainy conditions in the dataset likely led to the
observed performance gap, although our model still outperformed the Ranger and DNN
models even under these conditions.

In Figure 6, we revisit the timeline first introduced in Figure 1, contrasting projected
and actual solar PV power generation data for July 2019. While the model effectively reflects
general trends in energy production, it occasionally shows shortcomings in identifying
sudden declines in power generation.

The reasons for these discrepancies vary. Despite its robust design, the model’s internal
workings may not fully capture the nuanced complexities of PV operations. In addition, the
potential scarcity of solar irradiance metrics could undermine the accuracy of the forecast.
Furthermore, location differences between our data points and Incheon’s meteorological
readings may have resulted in less accurate representations of local weather patterns, which
are influenced by subtle microclimatic variations.

To address these findings, subsequent research efforts will integrate finer-grained
weather data and refine the model’s mechanisms to more accurately reflect the dynamic
nature of PV production. The expected improvements from incorporating advanced DL
strategies aim to significantly refine the predictive accuracy of the proposed method. The ex-
pected improvements go beyond creating a reliable tool for forecasting PV generation; they
will improve grid management and energy distribution strategies amidst the variability
inherent in renewable energy sources.



Electronics 2024, 13, 1659 17 of 30

Table 5. Mean absolute error (MAE) comparison across multistep-ahead prediction models for the New-Incheon Sonae dataset (unit: kW).

Step Ranger LSTM [24] Bi-LSTM
[24] GRU [24] Att-LSTM

[67]
Att-Bi-

LSTM [68]
Att-GRU

[69]
Att-1D-

CNN [70]
Att-TCN

[71]
Att-GRU-
TCN [72]

Att-Bi-GRU-TCN
[73] Ours

1 152.15 170.97 173.56 171.32 172.29 165.32 163.85 169.03 165.04 170.55 166.99 142.87
2 153.82 165.58 173.97 161.89 172.05 165.79 165.37 172.68 165.80 172.81 168.75 146.58
3 155.07 166.01 172.23 163.85 172.46 165.51 168.67 169.40 172.06 172.30 170.14 148.71
4 155.32 166.27 173.12 166.56 171.47 165.63 168.48 166.29 174.60 172.12 170.61 149.52
5 155.62 167.39 172.25 165.86 172.97 165.00 167.51 167.12 176.10 171.37 172.09 150.47
6 156.08 171.34 171.81 164.26 173.20 167.55 170.65 168.62 176.29 171.83 171.10 150.64
7 156.52 177.69 169.89 164.92 173.21 166.89 167.48 170.93 176.95 173.85 172.34 150.94
8 156.13 173.54 168.21 165.60 171.94 169.11 165.94 171.11 177.94 172.23 171.12 151.07
9 156.29 170.43 168.32 165.00 170.34 168.09 165.17 171.35 176.90 172.98 169.81 151.23

10 156.39 173.03 168.66 162.81 165.75 165.13 165.03 169.80 177.73 171.85 167.15 151.11
11 156.55 180.00 163.19 160.60 163.45 162.26 169.09 169.98 176.16 168.63 164.99 151.66

Avg. 155.45 171.11 170.47 164.79 170.83 166.02 167.02 169.66 174.14 171.87 169.55 149.53

Table 6. Root mean squared error (RMSE) comparison across multistep-ahead prediction models for the New-Incheon Sonae dataset (unit: kW).

Step Ranger LSTM [24] Bi-LSTM
[24] GRU [24] Att-LSTM

[67]
Att-Bi-

LSTM [68]
Att-GRU

[69]
Att-1D-

CNN [70]
Att-TCN

[71]
Att-GRU-
TCN [72]

Att-Bi-GRU-TCN
[73] Ours

1 204.24 226.73 236.26 225.94 235.27 226.33 222.45 229.64 229.44 236.28 229.76 192.52
2 206.53 222.35 237.06 219.66 236.22 227.36 226.45 234.44 230.51 239.73 232.96 197.94
3 208.05 226.82 234.84 224.09 236.41 225.69 229.53 230.40 237.60 238.70 235.03 201.16
4 208.42 227.68 235.80 226.63 235.78 226.84 229.76 224.21 240.84 237.19 235.25 202.04
5 208.87 226.87 235.60 226.79 236.94 226.69 227.79 225.44 242.42 236.46 235.55 203.30
6 209.61 227.04 235.00 226.46 237.15 230.58 228.38 229.34 242.05 236.57 234.64 203.63
7 209.96 229.70 232.59 227.50 237.34 229.70 224.41 233.84 242.56 238.90 236.76 203.81
8 209.54 228.46 231.02 228.68 235.15 232.15 223.28 234.60 244.05 237.32 235.10 204.25
9 209.86 226.48 231.05 227.13 233.73 228.75 222.50 233.76 243.54 239.02 234.28 204.29

10 210.00 232.52 230.14 222.13 226.25 225.56 219.84 230.65 244.64 236.89 231.69 204.36
11 210.20 247.36 222.70 215.02 219.97 223.93 220.78 231.85 242.25 232.58 228.75 204.72

Avg. 208.66 229.28 232.91 224.55 233.66 227.60 225.01 230.74 239.99 237.24 233.62 202.00
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Table 7. MAE comparison across multistep-ahead prediction models for the New-Incheon Observatory dataset (unit: kW).

Step Ranger LSTM [24] Bi-LSTM
[24] GRU [24] Att-LSTM

[67]
Att-Bi-

LSTM [68]
Att-GRU

[69]
Att-1D-

CNN [70]
Att-TCN

[71]
Att-GRU-
TCN [72]

Att-Bi-GRU-TCN
[73] Ours

1 126.63 146.56 141.96 191.38 144.77 145.45 145.98 154.40 138.39 143.33 144.29 118.73
2 128.40 139.88 143.10 174.92 145.17 147.26 150.80 153.41 136.64 143.37 144.92 122.98
3 129.40 142.76 143.14 163.30 144.14 145.85 149.78 155.18 137.78 143.48 144.53 124.59
4 130.06 143.70 143.28 158.55 142.43 145.92 153.24 156.50 137.56 143.40 146.69 125.74
5 130.41 142.99 143.27 157.53 141.06 147.70 150.45 156.86 139.61 142.66 146.39 126.16
6 130.78 144.08 143.16 155.06 141.35 146.56 145.64 164.68 139.75 142.57 146.01 126.71
7 130.78 144.76 143.37 148.62 141.14 146.58 145.38 164.83 140.24 142.23 143.79 126.57
8 130.98 143.90 142.63 148.32 142.35 146.77 144.11 159.99 140.56 144.31 142.67 126.76
9 130.77 140.44 141.23 147.79 142.55 144.57 143.02 153.87 142.03 144.39 141.90 126.70

10 130.72 136.36 140.78 144.18 140.10 141.78 142.18 148.90 142.76 144.07 139.21 126.94
11 130.83 133.12 138.21 143.37 135.78 139.20 139.44 160.12 142.43 143.87 137.90 127.20

Avg. 129.98 141.69 142.19 157.55 141.89 145.24 146.37 157.16 139.80 143.42 143.48 125.37

Table 8. RMSE comparison across multistep-ahead prediction models for the New-Incheon Observatory dataset (unit: kW).

Step Ranger LSTM [24] Bi-LSTM
[24] GRU [24] Att-LSTM

[67]
Att-Bi-

LSTM [68]
Att-GRU

[69]
Att-1D-

CNN [70]
Att-TCN

[71]
Att-GRU-
TCN [72]

Att-Bi-GRU-TCN
[73] Ours

1 176.54 203.94 205.31 245.31 211.65 206.83 212.93 205.23 200.80 206.97 207.98 156.64
2 179.27 200.98 206.21 230.58 212.86 212.44 217.08 204.29 200.31 207.53 210.68 163.03
3 180.54 204.45 207.56 218.74 212.09 210.36 217.09 205.52 202.18 209.09 209.92 165.41
4 181.43 203.38 208.95 213.52 210.11 211.39 221.39 209.32 203.46 208.93 212.78 167.02
5 182.25 202.38 208.92 212.33 207.99 212.53 217.06 209.54 205.70 207.77 212.90 167.85
6 182.65 203.52 207.80 210.77 208.18 211.96 210.09 210.93 205.67 207.13 211.67 168.52
7 182.70 204.84 209.12 206.93 206.92 211.91 207.51 211.28 205.53 206.75 208.79 168.56
8 183.04 203.45 208.31 205.01 206.79 211.18 206.23 206.25 206.05 207.54 206.55 168.69
9 182.73 198.70 208.02 204.08 207.10 207.22 203.16 201.53 207.19 208.87 204.72 168.81

10 182.57 191.73 207.01 203.73 202.21 202.93 203.39 200.14 208.61 208.39 199.84 168.74
11 183.00 189.31 202.51 203.75 195.36 198.34 196.87 211.18 207.70 208.15 196.32 169.24

Avg. 181.52 200.61 207.25 214.07 207.39 208.83 210.25 206.84 204.84 207.92 207.47 166.59
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Table 9. MAE comparison across multistep-ahead prediction models for the Incheon Fishery Water Purification Plant dataset (unit: kW).

Step Ranger LSTM [24] Bi-LSTM
[24] GRU [24] Att-LSTM

[67]
Att-Bi-

LSTM [68]
Att-GRU

[69]
Att-1D-

CNN [70]
Att-TCN

[71]
Att-GRU-
TCN [72]

Att-Bi-GRU-TCN
[73] Ours

1 140.26 147.83 143.76 179.15 156.70 165.53 152.46 151.25 152.65 159.05 155.23 134.30
2 142.06 148.27 145.05 163.19 158.16 163.33 154.90 150.67 153.34 161.40 156.06 139.08
3 142.98 147.53 147.99 159.11 158.94 167.27 155.12 154.25 156.64 160.22 156.29 140.63
4 143.27 146.01 148.47 159.82 158.15 166.84 156.73 155.43 158.63 161.80 157.30 141.80
5 143.68 147.00 147.38 154.41 157.28 167.10 153.75 156.82 164.01 162.62 156.75 142.77
6 144.22 149.24 146.16 153.63 157.16 167.89 153.60 155.36 164.52 164.39 157.73 143.18
7 144.25 151.27 145.19 166.88 157.57 167.25 152.89 155.40 165.77 168.45 158.31 143.65
8 144.44 154.03 143.37 172.64 158.12 163.71 152.79 155.79 166.31 168.32 158.46 143.31
9 144.50 153.78 143.74 167.57 157.95 160.42 150.29 154.76 167.54 172.15 159.16 143.64

10 144.45 153.34 144.01 161.81 152.69 154.48 146.53 153.74 167.42 171.12 157.51 143.58
11 144.47 152.60 145.95 163.11 148.41 157.31 149.34 151.17 168.10 168.09 156.13 144.76

Avg. 143.51 150.08 145.55 163.76 156.47 163.74 152.58 154.06 162.27 165.24 157.18 141.88

Table 10. RMSE comparison across multistep-ahead prediction models for the Incheon Fishery Water Purification Plant dataset (unit: kW).

Step Ranger LSTM [24] Bi-LSTM
[24] GRU [24] Att-LSTM

[67]
Att-Bi-

LSTM [68]
Att-GRU

[69]
Att-1D-

CNN [70]
Att-TCN

[71]
Att-GRU-
TCN [72]

Att-Bi-GRU-TCN
[73] Ours

1 191.17 199.32 198.02 223.15 222.31 227.75 213.35 209.16 218.36 225.33 221.23 180.06
2 193.58 202.74 204.28 209.48 224.15 226.52 218.43 209.35 218.42 229.17 221.65 186.61
3 194.71 201.54 205.54 203.77 225.12 230.32 220.53 215.95 222.55 228.46 222.53 189.35
4 195.33 200.84 205.01 202.72 223.25 230.15 223.18 217.49 225.26 230.92 223.74 191.21
5 196.04 204.18 203.33 199.51 222.76 233.76 219.63 218.88 232.78 232.25 221.73 192.33
6 196.69 207.98 202.03 204.37 223.28 234.27 219.32 218.51 232.86 233.87 223.38 193.02
7 196.64 209.91 202.12 220.68 223.32 231.16 218.15 219.19 234.09 239.09 223.95 193.81
8 196.95 211.28 200.49 228.41 222.49 227.35 217.97 220.03 234.38 238.62 224.20 193.29
9 197.08 209.77 201.02 221.48 222.12 222.39 212.89 219.16 236.33 243.50 224.28 193.41

10 196.97 206.69 200.95 213.13 215.67 214.71 207.69 218.26 236.41 241.91 221.63 193.87
11 196.84 205.10 201.74 214.04 206.18 222.28 201.86 211.45 237.45 237.20 219.51 194.71

Avg. 195.64 205.40 202.23 212.80 220.97 227.33 215.73 216.13 229.90 234.57 222.53 191.06
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Table 11. MAE and RMSE comparisons across day-ahead prediction models for the New-Incheon Sonae dataset (unit: kW). HL indicates the number of hidden layers.

Model
Jan.–Mar. Apr.–Jun. Jul.–Sep. Oct.–Dec. Avg.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence 155.98 228.90 145.03 223.95 152.23 217.00 137.54 231.26 147.66 225.33
Ranger 146.67 203.00 163.98 226.73 172.26 227.08 178.09 244.83 165.35 226.02

DNN (HL: 2) 153.22 216.03 172.61 241.38 181.96 239.90 179.98 251.56 172.05 237.68
DNN (HL: 3) 152.82 214.98 167.46 234.08 170.42 224.52 175.35 245.54 166.58 230.13
DNN (HL: 4) 149.26 210.65 169.05 237.00 179.26 237.94 176.94 247.87 168.73 233.88
DNN (HL: 5) 151.42 212.71 171.57 239.27 184.31 242.80 178.59 250.63 171.58 236.90
DNN (HL: 6) 156.61 219.92 174.89 241.31 175.93 232.83 177.55 247.88 171.32 235.79
DNN (HL: 7) 149.89 212.75 168.68 236.05 179.25 235.15 174.57 246.72 168.19 233.09
DNN (HL: 8) 160.53 230.99 193.44 262.10 185.83 245.41 184.02 264.24 181.03 251.13
DNN (HL: 9) 157.31 223.52 181.86 249.99 185.94 244.11 178.54 252.16 176.00 242.79
DNN (HL: 10) 165.88 240.03 197.50 264.04 193.75 254.01 184.72 262.70 185.54 255.43

Ours 144.79 199.57 147.52 203.86 151.31 194.65 162.75 219.76 151.66 204.72

Table 12. MAE and RMSE comparisons across day-ahead prediction models for the New-Incheon Observatory dataset (unit: kW).

Model
Jan.–Mar. Apr.–Jun. Jul.–Sep. Oct.–Dec. Avg.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence 115.34 172.45 149.96 228.21 145.82 205.65 115.98 175.94 131.82 196.93
Ranger 122.89 174.81 162.69 227.35 161.80 221.24 107.43 160.86 138.72 198.20

DNN (HL: 2) 131.66 190.30 169.57 237.91 173.02 234.15 111.46 169.69 146.44 210.04
DNN (HL: 3) 135.99 194.08 170.45 237.15 168.46 226.68 110.12 167.41 146.25 208.15
DNN (HL: 4) 134.87 194.99 169.32 237.75 174.55 237.38 113.04 173.29 147.96 212.70
DNN (HL: 5) 140.14 200.92 178.78 251.04 177.20 239.97 117.81 180.11 153.48 219.90
DNN (HL: 6) 136.75 195.61 172.91 243.59 173.21 232.90 112.74 171.48 148.90 212.86
DNN (HL: 7) 133.38 194.05 173.52 247.44 173.57 235.79 112.42 171.19 148.23 214.36
DNN (HL: 8) 137.65 200.24 173.35 243.62 173.48 233.39 112.83 170.10 149.33 213.79
DNN (HL: 9) 193.89 220.54 210.35 244.40 180.27 205.69 191.60 214.61 193.98 221.72
DNN (HL: 10) 141.13 204.00 184.18 259.97 181.91 245.97 120.08 183.07 156.83 225.41

Ours 119.14 158.90 150.21 196.17 142.11 179.99 97.32 135.77 127.20 169.24
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Table 13. MAE and RMSE comparisons across day-ahead prediction models for the Incheon Fishery Water Purification Plant dataset (unit: kW).

Model
Jan.–Mar. Apr.–Jun. Jul.–Sep. Oct.–Dec. Avg.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence 161.06 234.32 154.87 234.35 154.51 214.23 131.65 198.87 150.45 220.83
Ranger 160.58 218.36 173.66 240.66 162.65 218.01 115.96 171.33 153.11 213.49

DNN (HL: 2) 177.65 243.16 196.83 270.23 176.47 233.18 127.11 187.26 169.39 235.22
DNN (HL: 3) 172.46 238.68 193.61 264.08 174.41 231.51 131.18 192.19 167.82 232.92
DNN (HL: 4) 172.92 239.06 200.84 275.78 175.70 232.54 123.82 184.64 168.20 235.11
DNN (HL: 5) 175.31 242.71 199.05 276.23 178.21 237.30 128.26 192.01 170.10 238.82
DNN (HL: 6) 174.68 241.96 200.25 277.26 177.83 234.69 126.17 189.93 169.62 237.86
DNN (HL: 7) 172.36 239.23 207.54 282.71 182.23 241.33 125.95 191.57 171.92 240.77
DNN (HL: 8) 169.13 236.70 189.34 261.31 176.14 236.41 131.86 195.42 166.54 233.56
DNN (HL: 9) 178.06 247.03 205.57 282.08 181.84 241.26 121.96 186.51 171.73 241.50
DNN (HL: 10) 180.50 248.94 197.63 276.87 175.72 233.06 125.17 187.41 169.62 238.61

Ours 159.48 215.19 160.07 213.17 151.87 191.57 108.27 153.48 144.76 194.71
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Table 14. Comparative analysis of day-ahead prediction models during dry conditions and precipita-
tion events for the New-Incheon Sonae dataset (unit: kW).

Model
Dry Conditions Precipitation Events

MAE RMSE MAE RMSE

Persistence 148.04 226.16 132.18 194.43
Ranger 162.22 221.27 222.66 299.37

DNN (HL: 2) 168.30 232.31 242.62 320.51
DNN (HL: 3) 162.97 224.86 233.85 311.10
DNN (HL: 4) 165.36 229.01 231.96 310.00
DNN (HL: 5) 168.15 232.02 235.51 313.18
DNN (HL: 6) 167.92 231.03 233.56 309.99
DNN (HL: 7) 164.75 228.15 231.55 309.72
DNN (HL: 8) 178.31 247.60 232.74 309.61
DNN (HL: 9) 173.04 238.68 231.76 309.26

DNN (HL: 10) 183.18 252.40 231.25 307.26
Ours 141.17 189.96 172.68 232.81

Table 15. Comparative analysis of day-ahead prediction models during dry conditions and precipita-
tion events for the New-Incheon Observatory dataset (unit: kW).

Model
Dry Conditions Precipitation Events

MAE RMSE MAE RMSE

Persistence 132.09 197.70 121.07 174.92
Ranger 133.16 190.05 238.99 309.68

DNN (HL: 2) 140.60 201.77 253.37 324.57
DNN (HL: 3) 140.39 199.95 252.94 321.57
DNN (HL: 4) 142.53 205.43 246.84 316.11
DNN (HL: 5) 148.46 213.37 245.68 315.69
DNN (HL: 6) 143.37 205.17 249.96 321.25
DNN (HL: 7) 142.74 207.06 249.26 318.61
DNN (HL: 8) 144.00 206.59 247.43 316.80
DNN (HL: 9) 194.34 222.04 189.13 217.54

DNN (HL: 10) 151.89 219.14 248.70 318.62
Ours 117.37 154.93 142.40 183.84

Table 16. Comparative analysis of day-ahead prediction models during dry conditions and precipita-
tion events for the Incheon Fishery Water Purification Plant dataset (unit: kW).

Model
Dry Conditions Precipitation Events

MAE RMSE MAE RMSE

Persistence 151.03 222.30 132.16 180.59
Ranger 148.93 208.00 230.29 296.06

DNN (HL: 2) 165.23 230.28 246.55 312.32
DNN (HL: 3) 164.12 228.32 238.08 305.78
DNN (HL: 4) 164.56 230.84 236.95 303.54
DNN (HL: 5) 166.36 234.68 239.89 305.54
DNN (HL: 6) 165.84 233.65 239.88 305.45
DNN (HL: 7) 167.91 236.25 245.97 312.43
DNN (HL: 8) 163.20 229.54 229.92 298.67
DNN (HL: 9) 167.80 237.19 244.91 310.70

DNN (HL: 10) 165.46 233.84 246.67 313.66
Ours 132.70 177.92 162.19 213.98
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Figure 6. Comparative analysis of actual and predicted solar PV power generation for July 2019 in 
Incheon. (a) New-Incheon Sonae; (b) New-Incheon Observatory; (c) Incheon Fishery Water Purifi-
cation Plant. 
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Figure 6. Comparative analysis of actual and predicted solar PV power generation for July 2019
in Incheon. (a) New-Incheon Sonae; (b) New-Incheon Observatory; (c) Incheon Fishery Water
Purification Plant.

3.3. Model Interpretability

Ensuring the accuracy and trustworthiness of predictive models is paramount. As such,
methods to clarify how models make decisions have gained prominence. The goal of this
research was to identify the most important influencing factors in the Ranger-based online
learning model. The Ranger package calculates variable importance by assessing how much
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the model’s accuracy decreases when the data for each variable is shuffled. This approach
quantifies the importance of each variable to the model’s predictive performance, with a
higher score indicating that a variable is more important in making accurate predictions. To
present these results, we used the ‘vip’ package, a notable tool in R’s extensive visualization
ecosystem, to illustrate the importance of variables [74].

Figures 7 and 8 show the importance of the input variables in models with fewer
hidden layers, providing an essential foundation for the detailed analysis in Figure 9. In
these preliminary figures, the DNN_HL02 model, which is characterized by a lower number
of hidden layers, emerges as consistently significant. This level of importance persists
across different model complexities, as shown in the heatmaps. Figure 9 further illustrates
that while models with a moderate number of hidden layers, specifically DNN_HL05
and DNN_HL07, show varying degrees of influence on variable importance, this does
not eclipse the persistent significance of the simpler DNN_HL02 model. Such observa-
tions suggest that models of lesser complexity retain their importance alongside more
complex models.
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Furthermore, DNN_HL02 not only retains its relevance across a spectrum of models
but also sees an increase in its impact, suggesting an enhanced role when analyzing
larger datasets. Similarly, Figure 9 shows the increasing importance of DNN_HL05 and
DNN_HL07, highlighting their improved ability to decipher the complexity of the data.
This reflects the complexity of the modeling process and the need to continuously explore
different model frameworks to gain deeper insights. Variations observed may signal
the dynamic characteristics of the subject matter at each site examined. Consistent color
intensity across models indicates general agreement on key variables, while variances reveal
detailed assessments of variable importance as model complexity is adjusted over time.

Our study provides an analytical view of variable importance through the lens of
different DNN models, focusing on their internal evaluation rather than direct predictive
performance. This calibrated view of the heatmaps provides us with a broader under-
standing of how different DNN configurations weigh variable importance, which aids in
the strategic selection and tuning of models for the New-Incheon Sonae, New-Incheon
Observatory, and Incheon Fishery Water Purification Plant datasets.

4. Discussion

In this paper, we proposed a two-stage DNN optimization method for solar PV
power generation prediction. Through comparative analysis with well-known benchmark
models, including Att-LSTM, Att-Bi-LSTM, Att-GRU, Att-1D-CNN, Att-TCN, Att-GRU-
TCN, and Att-Bi-GRU-TCN, the proposed method highlighted the superior performance of
the proposed model in terms of MAE and RMSE on three datasets: New-Incheon Sonae,
New-Incheon Observatory, and Incheon Fishery Water Purification Plant. Although these
results are promising, our investigation revealed limitations that guide the direction of
future research to improve prediction performance.

• To address the observed forecast discrepancies under different weather conditions,
we will consider incorporating additional independent variables to more accurately
capture the effects of precipitation, or adopting a hybrid forecasting approach. For
example, during expected rain events, we plan to leverage the predictive power of the
persistence model to improve the accuracy of the proposed method.

• Solar PV power generation is strongly correlated with solar irradiation. However,
none of the environmental factors used as input variables in this study were used.
Therefore, in the direction of future research, it is expected that more innovative
prediction performance can be developed by performing solar irradiation prediction
through existing input variables and using them together as input variables.
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• The hybrid models used as benchmarks are currently widely used techniques with
good performance in time series forecasting. However, the training data used in this
study has a period of one year, which is a very small amount of data in the field of
time series forecasting, and we believe that the following performance is due to this.
Therefore, if the amount of data is increased by data augmentation techniques, such as
generative adversarial networks (GANs) and diffusions, the prediction performance
of the models used as benchmarks will be improved, and the method proposed in this
study will also be improved.

• We aim to explore the frontiers of ML techniques, including advanced DL and ensem-
ble learning methods. These techniques have demonstrated the potential to identify
complex patterns within meteorologically influenced datasets. We are optimistic that
such approaches will refine the sensitivity of the proposed method to minute variations
in weather patterns and, by extension, solar PV power generation.

• We will focus on the incorporation of hyper-local weather data, possibly by establishing
dedicated weather monitoring stations at PV installation sites. An extension of the
model’s parameter set is also planned to better capture the dynamic behavior of PV
systems and the nonlinear interaction of solar irradiance [75].

• Solar energy, as an important renewable energy source, is being utilized globally, but
this research has been limited to the Incheon region of South Korea. Expanding our
data sources to a wider range of regions will facilitate the verification of the universality
of our proposed model and its ability to ensure grid stability with clean energy.

These strategic initiatives are expected to result not only in a more reliable tool for
forecasting solar PV power generation but also to contribute significantly to optimizing grid
management and strategic energy distribution in an era of increasingly variable renewable
energy sources.

5. Conclusions

Achieving robust solar PV power generation prediction on low-performance comput-
ing systems is critical due to the need to balance cost and efficient use of computational
resources. In this context, constructing the optimal DNN model for such prediction be-
comes a formidable challenge, requiring not only significant computational resources but
also a depth of knowledge that may be beyond the reach of many energy experts. To
address these issues, we proposed a stacking ensemble-based solar PV power generation
prediction model that uses actual data from solar PV systems in Incheon combined with
weather forecasts from the KMA. In the first stage, we constructed DNN models with
2 to 10 hidden layers using scikit-learn’s MLPRegressor optimized by Optuna, which
simplified the development process and ensured the accessibility of the model even on
low-performance systems.

In the next phase, we focused on preparing the training dataset for our meta-regression
model, a Ranger-based RF. Specifically, we used the predictions from each DNN model
as input features for the meta-regression model. A key innovation was the use of fivefold
cross-validation to ensure sufficient training data for our meta-regression model without
the need for a separate validation set, demonstrating the effectiveness of the model despite
data limitations. In addition, the Ranger-based RF online learning model effectively learns
from current trends and patterns in real time, taking into account the divergence between
training and evaluation periods, thereby improving prediction accuracy over time.

Experimental results demonstrated the model’s superior performance in minimizing
uncertainty and improving MAE and RMSE for multistep-ahead predictions. The use of
RF’s variable importance output clarified the contributions of different DNN models, in-
creasing the transparency and applicability of our prediction method. Despite its strengths,
the model’s exclusion of solar irradiance as an input was identified as a limitation, sug-
gesting an area for future improvement. Our study can provide robust solar PV power
generation predictions on low-power systems, thus simplifying the construction of optimal
DNN models for energy experts while balancing cost and computational efficiency.
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Appendix A

This section provides a comprehensive list of acronyms used throughout this doc-
ument, along with their corresponding definitions. The left column lists the acronyms
for quick reference, while the right column provides a detailed explanation of each term
to ensure clarity and enhance the reader’s understanding of the technical terminology
relevant to this study:

AC alternating current
ANN artificial neural network
ARIMA autoregressive integrated moving average
Att attention mechanism
Att-1D-CNN attention-based one-dimensional convolutional neural network

Att-Bi-GRU-TCN
attention-based bidirectional gated recurrent unit with temporal
convolutional network

Att-Bi-LSTM attention-based bidirectional long short-term memory
Att-GRU attention-based gated recurrent unit
Att-GRU-TCN attention-based gated recurrent unit with temporal convolutional network
Att-LSTM attention-based long short-term memory
Att-TCN attention-based temporal convolutional network
Bi-LSTM bidirectional long short-term memory
CNN convolutional neural network
CPU central processing unit
DC direct current
DL deep learning
DNN deep neural network
DT decision tree
EV electric vehicle

https://www.mdpi.com/article/10.3390/electronics13091659/s1
https://www.mdpi.com/article/10.3390/electronics13091659/s1
https://www.data.go.kr/index.do
https://data.kma.go.kr/cmmn/main.do
https://data.kma.go.kr/cmmn/main.do
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GAN generative adversarial network
GHG greenhouse gas
GPU graphics processing unit
GRU gated recurrent unit
KMA Korea Meteorological Administration
LSTM long short-term memory
MAE mean absolute error
ML machine learning
MLP multilayer perceptron
NN neural network
PV photovoltaic
RF random forest
RMSE root mean square error
RNN recurrent neural network
SVM support vector machine
TCN temporal convolutional network
TSCV time series cross-validation
Wp watt-peak
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