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Abstract: The detection of deepfake images and videos is a critical concern in social communication
due to the widespread utilization of deepfake techniques. The prevalence of these methods poses
risks to trust and authenticity across various domains, emphasizing the importance of identifying
fake faces for security and preventing socio-political issues. In the digital media era, deep learning
outperforms traditional image processing methods in deepfake detection, underscoring its signifi-
cance. This research introduces an innovative approach for detecting deepfake images by employing
transfer learning in a hybrid architecture that combines convolutional neural networks (CNNs) and
long short-term memory (LSTM). The hybrid CNN-LSTM model exhibits promise in combating
deep fakes by merging the spatial awareness of CNNs with the temporal context understanding of
LSTMs. Demonstrating effective performance on open-source datasets like “DFDC” and “Ciplab”,
the proposed method achieves an impressive precision of 98.21%, indicating its capability to accu-
rately identify deepfake images with a limited false-positive rate. The model’s error rate is 0.26%,
emphasizing the challenges and intricacies inherent in deepfake detection tasks. These findings un-
derscore the potential of hybrid deep learning techniques for addressing the urgent issue of deepfake
image detection.

Keywords: CNN; LSTM; ResNet; deepfake; transfer learning

1. Introduction

The internet revolution has significantly influenced various fields of human knowl-
edge, making it essential for almost everything. It has revolutionized communication and
the way society communicates. Before the internet, individuals had to buy newspapers to
stay updated on the latest events. Today, a few clicks can provide information about the
most recent events, making it easier to stay informed and connected [1].

Modern technologies have many benefits but also allow illegal activity. Technology
has created “deepfakes”, realistic videos with facial swaps that hide manipulation. AI ap-
plications combine, replace, merge, and overlay photos and videos to create fake content
that looks real. Due to the potential for widespread technology abuse, this issue is a legal
and social concern [2]. Multimedia files that have been “deeply faked” [3] using deep
learning (DL) models are called “deepfake” files. Deepfakes use computer-generated faces,
animated facial expressions, or synthetic voices or faces to imitate political leaders, actors,
comedians, and artists. Early examples included politicians, actors, and comedians [4].
The further use of deepfakes for extortion, market manipulation, bullying, political subver-
sion, terrorist propaganda, revenge porn, fake news, and court video evidence is likely [2].
To correct the record and stop deepfakes is harder than to spread false information [5].
To resist deepfakes, you must understand their causes and technology. Only recently has
scientific research into social media misinformation begun [6].

In June 2019, an Instagram user posted a Mark Zuckerberg video discussing stolen
data. Along with advertising agency Canny, Bill Posters and Daniel Howe created the
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deepfake video. They altered images of Zuckerberg in public and combined them with
an actor’s face. The video’s CBS logo added credibility. Hours of training took place
using shorter 2017 real-life videos [7]. While the video was fake, the process can produce
realistic replacements, which can be problematic when targeting politicians or celebrities.
According to anecdotes, hostile actors may be the greatest threat to deepfakes because they
mass produce and spread them [7]. Figure 1 is an illustration of the many alterations that
may be made to a person’s facial appearance.

Figure 1. Deepfake published on the Instagram social network in July 2019 of Mark Zuckerberg [7].

1.1. Deepfake Impact

Altering a person’s age, gender, ethnicity, beauty, skin color or texture, hair color,
hair style, hair length, eyeglasses, cosmetics, moustaches, emotions, beards, stances, gazes,
mouth openings and closings, eye color, injuries, and the effects of drugs are all examples
of these types of manipulations. Non-experts and non-technical people can now create
sophisticated deepfakes and altered face samples by using widely available face editing
apps (such as FaceApp [8], ZAO [9], Face Swap Live [10], Deepfake Web [11], PotraitPro
Studio [12], Reface [13], Audacity [14], Sound forge [15], and Adobe Photoshop [16]), as
well as AgingBooth [17]. Bots, trolls, conspiracy theorists, hyperactive partisan media
outlets, and possibly even foreign governments have the potential to use deepfakes to
spread false information. This is a potential outcome. Deepfakes can be used to realistically
dub foreign videos [18] and reanimate historical people for education [19]. Both uses
are valuable. Fake pornographic videos can tarnish someone’s reputation or blackmail
them [20], manipulate elections [21], instigate wars [22], stir division in the name of religion
or politics [23], wreck financial markets [24], and steal identities [25]. These demonstrate
fakes’ destructive power. It is obvious that deepfakes have many more harmful uses than
positive ones. This is because real applications are few. Recent technological advances have
made it easy to build a deepfake with a single still image, allowing con artists to utilize them
in real life [26]. A CEO was targeted to steal 243,000 USD using an audio deepfake [27].
Deepfakes and altered faces make automatic facial recognition systems (AFRSs) more
vulnerable to intrusions [28].

1.2. Challenges with Deepfake Detection

Deepfakes can have AFRS error rates of 95% [28], morphing error rates of 50–99% [29],
makeup manipulation error rates of 17.08% [30], partial face tampering error rates
of 17.05–99.77% [31], digital beautification error rates of 40–74% [32], adversarial exam-
ples error rates of 93.82% [33], and GAN-generated synthetic samples error rates of 67% [34].
Like the prior example, hostile environments reduce the automated speaker verification
accuracy from 98% to 40% [35]. Several readily available tools can identify deepfakes and
modified photos. As shown in [36–40], a full examination shows that most of them have
limited generalization ability. This was evident upon analyzing them. If they encounter a
new deep fake or manipulation that was not taught, their performance will suffer. Earlier
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research [41–43] viewed the battle between deep fakers and detectors as a reactive defense
mechanism rather than a war. A recent study validated this notion. Deepfakes cause prac-
tical challenges that the academic community has yet to overcome in terms of a system’s
robustness against adversarial attacks [44], judgement explanatory ability [45], and real-time
mobile deepfake detection [46]. Over the last few years, computer vision and machine
learning (ML) researchers have become more interested in deepfake creation and detection.

1.3. Models and Methods

The investigation of deepfake detection models and methods has highlighted several
notable approaches. The authors in [36] presented a novel method for detecting and local-
izing forged faces using semantic and noise maps, achieving top accuracy. Its two-stream,
multi-scale framework outperformed others across datasets. In [37], the authors used
MSCCNet, a new network for pixel-level face manipulation localization that improves
accuracy through multi-spectral class centers and multi-level feature aggregation. In nu-
merous experiments, it outperformed comprehensive benchmarks. Despite pixel-level
annotation and classification limitations, the proposed approach laid the groundwork for
face manipulation forensics advancements. The authors in [38] present a Critical Forgery
Mining (CFM) framework for face forgery detection, utilizing fine-grained triplet learning
and progressive learning control for enhanced generalization. CFM extracts critical forgery
information and improves model robustness, resulting in state-of-the-art detection perfor-
mance. In [39], the authors introduced Dual Contrastive Learning (DCL) for face forgery
detection, focusing on feature learning through contrastive learning at various granularities.
DCL outperformed state-of-the-art methods on multiple datasets by specially constructing
positive and negative paired data and using Inter-Instance and Intra-Instance Contrastive
Learning. The authors of [40] introduced “face X-ray”, a new image representation that
reveals blending boundaries in forged images to detect face forgery. It performs well
across unseen forgery methods and is not manipulation-dependent. Face X-ray detects un-
seen forgeries by focusing on intrinsic image discrepancies, outperforming other methods.
In [41], the authors introduced F3-Net, a Frequency in Face Forgery Network, to detect
face manipulation using frequency-aware clues. F3-Net uses a cross-attention module for
collaborative learning to find forgery patterns using frequency components and statistics.
It outperforms other methods, especially when the media is not very good. The authors
in [47] proposed a novel forensic technique to distinguish between fake and real video
sequences by utilizing optical flow fields to detect frame disparities. This technique has
shown promise, as evidenced by an 81.61% accuracy rate using the VGG16 model on the
FF++ dataset. Further research could explore an integration with frame-based methods to
enhance its accuracy. In [48], the authors used the Xception Net architecture in conjunction
with CNN and LSTM to detect deepfakes, which they trained on the DFDC dataset. While
it was effective in handling high-quality deepfakes, achieving up to 73.20% accuracy on
mixed training sets, its performance varied significantly across different datasets. In [49],
the authors described a method that uses 3D input data and spatio-temporal convolutional
methods. Using the R3D method, they achieved a high accuracy of 97.26% on the Celeb-DF
dataset. This approach benefits from its ability to capture motion features but requires
substantial computational resources. In [50], the authors suggested improving detection
through transfer learning from face recognition and leveraging temporal information from
video sequences. The best performance was noted with Inception ResNet in single-frame
tests and LSTM combined with a 2D Conv. encoder for multi-frame tests on the FaceForen-
sics++ dataset; the multi-frame analysis found that the LSTM with a 2D Conv. encoder
had the highest mean accuracy of 77.7%. The authors of [51] pushed for a mixed method
that uses several CNN models, including VGG16, InceptionV3, and Xception Net. This
method worked better on the DFDC dataset, catching up to 97% of low-quality fake videos.
The authors in [52] explored various CNN architectures for detecting deepfake images,
with VGGFace performing exceptionally well across several metrics, including a 97% accu-
racy rate. Finally, video deepfake detection utilizing hybrid DL of CNN and LSTM, and
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the optical flow feature to extract features, was suggested in [53]; three datasets—DFDC,
FF++, Celeb-DF, and VGG-16—were tested. An accuracy of 66.26% at 30 frames, 91.21% at
70 frames, and 79.49% at 90 frames represented the performance variance. These findings
imply a major change in deepfake detection. Table 1 illustrates the contributions and
limitations of previous works.

Table 1. Comparative analyses of the related works.

Study Approach and Model Dataset Accuracy

[47] Optical flow fields based
on VGG16

FaceForensics++
dataset

• The VGG16 model achieved an accuracy of 81.61%.

[48] CNN-LSTM using Xception Net DFDC dataset • Accuracy on custom test set: 70.57%
• Accuracy with mixed train splits: 73.20%

[49] 3D input data with R3D Celeb-DF dataset • Achieved an accuracy of 97.26%

[50]
Transfer learning from face

recognition and
temporal information

FaceForensics++
dataset

• LSTM with 2D Conv. encoder achieved the
best-averaged accuracy (77.7%) for
multi-frame classification.

[51] Fusion of VGG16, InceptionV3,
and Xception Net DFDC dataset

• Outperformed state-of-the-art models with 96.5%
accuracy on DFDC dataset.

• Achieved 97% accuracy on low-quality fake videos.

[52]

Eight different CNN architectures
(VGGFace, DenseNet169,

DenseNet201, VGG19, VGG16,
ResNet50, DenseNet121, and

custom models)

Large dataset

• VGGFace model accuracy: 97%
• ResNet50 model accuracy: 96%
• DenseNet201 model accuracy: 95%
• DenseNet169 model accuracy: 94%
• VGG19 model accuracy: 93%
• VGG16 model accuracy: 92%
• DenseNet121 model accuracy: 96%
• Custom model accuracy: 90%

[53] Hybrid DL of CNN and LSTM
with optical flow feature

DFDC, FaceForensics ++,
Celeb-DF datasets

• Accuracy for DFDC dataset at 30 frames: 66.26%
• Accuracy for FF++ dataset at 70 frames: 91.21%
• Accuracy for Celeb-DF dataset at 90 frames: 79.49%

Proposed Hybrid CNN-LSTM Model Based
on Transfer Learning DFDC, Ciplab datasets • Accuracy for DFDC dataset: 98.21%

• Accuracy for Ciplab dataset: 97.81%

The motivation for combining CNN and LSTM for face forgery detection is the pressing
need to counter the alarming proliferation of deepfakes. These synthetic media assets
pose a significant threat because they enable the creation of misleading content that can
rapidly spread misinformation or disinformation. Such fabricated media can profoundly
impact public perceptions on crucial matters ranging from politics and health to security,
potentially influencing elections, inciting unrest, or triggering public panic. The ability to
generate hyper-realistic fake news and impersonate authoritative figures undermines trust
in media sources, contributing to the erosion of foundational societal trust in information
integrity. As the line between authentic and fabricated content blurs, it becomes imperative
to employ advanced techniques such as CNN and LSTM integration to combat this growing
menace effectively. In this work, the hybrid CNN-LSTM model was designed to combine
the spatial awareness of CNNs with the temporal context understanding of LSTMs. This
fusion of both spatial and temporal information can be a distinguishing feature compared
to other works that may focus more on one aspect or the other. The proposed method
directly employs the exact parameters of a pre-trained model, potentially reducing the need
for extensive fine-tuning or modification. This will lead to a more efficient and effective
transfer of knowledge from the pre-trained model to the deep fake detection task.

In line with various contributions in the field, this paper presents a significant advance-
ment in combating the proliferation of deepfake images and videos. The key contributions
of this paper include the following:

• This study introduces a novel approach that holds promise for enhanced deepfake
detection by amalgamating CNNs and LSTM networks through transfer learning.
This approach redefines traditional transfer learning by embedding the transfer of
knowledge within the architecture of the algorithms.
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• We incorporate both the spatial awareness of CNNs and the understanding of temporal
context of LSTMs into a hybrid model. This integration acknowledges the multi-faceted
nature of deepfake creation, where both spatial and temporal cues play crucial roles.

• By combining these two neural network architectures, the model gains a comprehen-
sive understanding of the features inherent in deepfake images, thus enhancing its
overall detection capabilities.

• This nuanced approach not only contributes to advancing the state-of-the-art in deep-
fake detection but also sets a precedent for future research. It encourages the devel-
opment of more sophisticated models capable of tackling the evolving techniques
employed by malicious actors.

2. Preliminaries
2.1. Deep Learning

Deep learning (DL), a subset of machine learning within AI, traces its origins to early
AI efforts focused on logical problem-solving [54]. Originally aimed at tasks easy for
computers but challenging for humans using strict rules, AI’s significant challenge today
involves solving intuitive problems—areas where humans excel but struggle to articulate
methods. DL addresses this by allowing computers to learn from experience using a
hierarchical structure of concepts, simplifying the need for detailed human instruction.
This method enables the construction of complex ideas from simpler ones without ex-
plicit programming, enhancing abilities in areas such as object recognition and speech
understanding. Fields such as linear algebra and information theory now influence DL’s
development, which began in the 1940s and evolved from concepts such as cybernetics
and connectionism [54].

2.2. Deepfakes

The term “deepfake” was coined in 2017 by a Reddit user named deepfake, referring
to synthetic media generated using AI-driven adversarial networks [55]. Deepfakes utilize
video, audio, and face-swapping technologies. In the realm of computer vision, significant
advances have been made in human face reconstruction and tracking [56], which are critical
for creating such manipulations. These techniques are split into two main categories:
facial identity and expression manipulation. The latter includes technologies such as
Face2Face, which allows for real-time expression transfer between faces using standard
hardware [57]. Another method is to animate faces based on audio inputs [58]. Conversely,
facial identity manipulation involves replacing one person’s face with another, commonly
seen in apps such as Snapchat. Deepfakes require extensive training, making them more
time-consuming than simpler graphic-based methods [56]. Figure 2 shown an example of
facial manipulation methods.

Figure 2. Examples of reenactment, replacement, editing, and synthesis deepfakes of the human
face [56].
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2.3. Convolutional Neural Networks (CNN)

CNNs, or convolutional neural networks, are advanced multi-layer neural networks
modeled after biological visual systems. Kunihiko Fukushima’s 1980 neocognitron, which
recognized visual patterns hierarchically [59], originally inspired CNNs. LeCun [23] popu-
larized CNNs, revolutionizing image processing by eliminating the need for manual feature
extraction. To efficiently handle visual information, they work by processing data directly
from matrices or tensors, particularly in color imaging [60]. The basic structure of a CNN
can be seen in Figure 3 [60].

Figure 3. CNN basic architecture [60].

In convolutional neural networks, each point in an input image is processed using a
convolution operation with a filter, or kernel, which moves across the image by a defined
number of pixels known as the “stride”. Small strides can cause overlapping information,
while zero padding—adding a border of zeros around the image—helps maintain the
output size. Let’s consider a scenario where C0 filters was applied, also referred to as
kernels, each with a size of k × k, to an input image. If the dimensions of the input
image are Wi × Hi × Ci (where Wi represents the width, Hi the height, and Ci the number
of channels, typically Ci = 3 for RGB images), the resulting output volume will have
dimensions of W0 × H0 × C0. In this context, C0 corresponds to the number of filters that
are employed in the convolution operation where the parameters “P” and “S” are used to
denote “padding” and “stride” [59]:

W0 =
Wi − k + 2p

s
+ 1 (1)

H0 =
Hi − k + 2p

s
+ 1 (2)

When applying a convolution operation between an image I and a filter Kl, where
the image has three channels and the filter is of size 5 × 5 × 3 (where 3 corresponds to
the number of channels of the input image), the convolution operation can be expressed
mathematically as follows: Let I be the input image with dimensions Wi × Hi × 3, and Kl
be the filter with dimensions 5 × 5 × 3. The result of the convolution operation between
image I and filter Kl can be expressed as follows [59]:

Kl ∗ I(i, j) =
2

∑
c=0

4

∑
n=0

4

∑
m=0

Kl(n, m, c)I(i + n − 2, i + m − 2, c) (3)

where (I ∗ Kl) _ {i, j} represents the value at position (i, j) in the output feature map after
applying filter Kl to the image I. The triple summation represents the convolution operation,
where x and y iterate over the spatial dimensions of the filter (5 × 5), and c iterates over
the color channels of the input image (three channels). This formula computes the dot
product between the filter Kl and the corresponding region of the input image I for each
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position (i, j) in the output feature map. If the image has three channels and is linked to
filters Kl (l = 1,. . ., C0) with dimensions 5 × 5 × 3 (where 3 is the number of channels in the
input image), then the following equation can be used to describe the convolution between
image I and filter Kl [59]:

z(x) = Φ(K ∗ x + b) (4)

where z(x) is the output of the convolution operation for the image patch x, Φ is the
activation function, often the ReLU function, K is the filter (kernel) being applied, and b is a
bias term [59].

ResNet

He et al. explored deeper CNNs and identified the “vanishing gradient” problem as a
major challenge, mitigated by normalization and specific initializations but still affecting
performance without overfitting. The authors took an innovative approach to this problem.
They used a pre-trained shallower model and added identity mapping layers to make the
deeper network perform like the shallower one. To solve degradation, they created a deep
residual learning framework [61]. In their network architecture, they used residual mapping
(expressed as H(x) = F(x) + x) rather than the desired mapping (H(x)). They appropriately
named their residual mapping model ResNet [61]. The ResNet architecture consists of
stacked blocks with 3 × 3 convolutional layers. To improve network performance, they
periodically doubled the number of filters and set layer strides to 2. An illustration of a
residual block is shown in Figure 4. The initial network layer is a 7 × 7 convolutional
layer. However, the architecture lacks fully connected layers at the end. The ILSVRC-2014
competition tested ResNet with 34, 50, 101, and 152 layers. Like GoogleNet, they added
a bottleneck layer to CNNs with depths over 50 to reduce dimensionality and improve
efficiency. The bottleneck design included 1 × 1, 3 × 3, and 1 × 1 convolutional layers.
The 152-layer ResNet network is eight times deeper than VGG networks, demonstrating its
depth and capability [61].

Figure 4. Residual learning: a building block [61].

2.4. Long Short-Term Memory (LSTM)

Gated recurrent neural networks (RNNs), particularly LSTM and those based on the
gated recurrent unit (GRU), are highly effective for sequential data processing. These
networks prevent the extremes of gradient annihilation or explosion, similar to leaky units,
by allowing adjustable connection weights across time steps for extended information
retention. This flexibility helps in scenarios such as sequence processing, where sub-
sequences need isolated consideration without prior state influence. The unique feature of
gated RNNs is their ability to learn when to reset this state autonomously, avoiding reliance
on preset judgements. The LSTM model, for example, enhances this by incorporating
adaptable self-loops that maintain gradient flow over time, making these networks versatile
across applications such as language translation, speech recognition, and more [59].

Figure 5 depicts the block diagram of the LSTM. The forward propagation equations
for a shallow recurrent network design are provided below. The most important component
is the state unit a(t) that has a linear self-loop similar to the leaky units described in the
previous section. However, here, the self-loop weight (or the associated time constant) is
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controlled by a forget gate unit fi(t) (for time step t and cell i) that sets this weight to a value
between 0 and 1 via a sigmoid unit [59]:

f (t)i = σ

(
b f

i + ∑
j

U f
i,jx

(t)
j + ∑

j
W f

i,jh
(t−1)
j

)
(5)

where x(t) is the current input vector; h(t) is the current hidden layer vector, containing the
outputs of all the LSTM cells; and bf, Uf, Wf are respectively biases, input weights, and
recurrent weights for the forget gates. The LSTM cell internal state is thus updated as
follows, but with a conditional self-loop weight fi(t) [59]:

s(t)i = f (t)i s(t−1)
i + g(t)i σ

(
bi + ∑

j
Ui,jx

(t)
j + ∑

j
Wi,jh

(t−1)
j

)
(6)

where b, U, and W denote the biases, input weights, and recurrent weights into the LSTM
cell, respectively. The external input gate unit gi

(t) is computed similarly to the forget
gate (with a sigmoid unit to obtain a gating value between 0 and 1), but with its own
parameters [59]:

g(t)i = σ

(
bg

i + ∑
j

Ug
i,jx

(t)
j + ∑

j
Wg

i,jh
(t−1)
j

)
(7)

The output hi
(t) of the LSTM cell can also be shut off via the output gate qi

(t), which
also uses a sigmoid unit for gating [59]:

h(t)i & = tanh
(

s(t)i

)
q(t)i (8)

q(t)i & = σ

(
bo

i + ∑
j

Uo
i,jx

(t)
j + ∑

j
Wo

i,jh
(t−1)
j

)
(9)

where parameters bo, Uo, Wo are its biases, input weights, and recurrent weights, respec-
tively. Among the variants, one can choose to use the cell state si

(t) as an extra input (with
its weight) into the three gates of the i-th unit, as shown in Figure 5. This would require
three additional parameters [59].

Figure 5. Block diagram of the LSTM recurrent network [59].
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Transfer Learning—LSTM

Traditional supervised machine learning (ML) trains models on labeled data from a
specific task and domain, anticipating their success in similar future scenarios. However,
we often need to train new models from scratch when encountering different tasks or
domains. Transfer learning addresses this by using knowledge from previously trained
models on new but related problems and efficiently applying learned insights across
various applications. This approach is crucial in contexts such as computer vision, where
data can be scarce and expensive, helping to bridge gaps in data availability [62]. Figure 6
shows a flowchart that explains the work of transfer learning.

Figure 6. A flowchart showing working of transfer learning [62].

3. Proposed LSTM-CNN Model

Deepfake videos are often short and low-resolution, making them suspicious of being
synthetic. However, they often display imperfections such as artefacts, resolution variations,
and color shifts due to limitations in the deepfake learning algorithm. These flaws are
more noticeable when the training dataset lacks comprehensive coverage of different facial
angles and lighting conditions, making it difficult to identify and categorize the videos.
To find deepfakes, an architecture made up of simple layers has been suggested in this
work. The proposed model focuses on advancing the field of deepfake detection through
the introduction of a novel approach. The presented research emphasizes the efficacy of
leveraging transfer learning within a hybrid architecture, combining CNNs and LSTM
networks. Transfer learning facilitates the model’s ability to boil insights from pre-trained
networks, enhancing its proficiency in distinguishing deepfake images. The hybrid CNN-
LSTM model showcased notable success in combating deep fakes by harnessing the spatial
awareness of CNNs and the temporal context understanding of LSTMs. By amalgamating
spatial and temporal analysis through the hybrid CNN-LSTM architecture, this study
contributes to the growing body of knowledge surrounding deepfake detection, offering a
promising solution in the ongoing battle against malicious image manipulation.

In the previous hybrid methods, the dataset underwent analysis and processing via a
CNN. The results of the CNN will be processed using LSTM, and, after that, the final results
will be obtained. The hybrid method suggested in this paper operates in a distinct manner
compared to previous methods, as it incorporates the fusion of CNN and LSTM. The LSTM
model is employed subsequent to each layer of the CNN. The process continues according
to the number of CNN layers. Three models were used in the proposed method in this
paper (model0 (simple), model1 (+dropout), and model2 (+residual blocks)). The transfer
learning technique was used in these models; the transfer learning feature captures the
“knowledge” that a model “acquired” during training on the initial task and dataset and
applies this knowledge to the next model, as explained in the pseudo code in Algorithm 1.
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Algorithm 1: pseudo code for the proposed hybrid method

Inputs:

• images: List of preprocessed images or video frames
• pre_trained_models: List of pre-trained CNN models for transfer learning
• CNN_layers: Number of layers in the CNN
• LSTM_layers: Number of LSTM layers corresponding to CNN layers
• dropout_rate: Rate of dropout if applicable
• use_residual: Boolean flag to use residual blocks

Output:

• deepfake_detected: Boolean flag indicating if a deepfake is detected

Procedure:

1. Initialize the Hybrid Model:

• Initialize hybrid_model based on Model0, Model1, or Model2

2. Load Pre-trained Models:

• For each model in pre_trained_models:

■ Load model with weights trained on a large dataset
■ If use_residual is True:

■ Enhance model with additional residual blocks

3. Feature Extraction and Analysis

• For each image in images:

■ For layer in range(CNN_layers):

■ feature_maps = Apply CNN layer of model to image
■ If layer corresponds to an LSTM layer:

• temporal_features = Apply LSTM to feature_maps
• If dropout_rate > 0:
• temporal_features = Apply dropout to temporal_features with dropout_rate
• Combine feature_maps and temporal_features

4. Decision Making:

• Decision = Make final decision based on combined features
• If decision indicates a deepfake:

■ deepfake_detected = True

• Else:

■ deepfake_detected = False

• Record decision for the current image

5. Model Performance Evaluation

Analyze recorded decisions to evaluate the model performance
Return deepfake_detected

In Figure 7, a flowchart of previous hybrid methods can be observed (Figure 7a) and a
flowchart of the proposed hybrid method is shown (Figure 7b).

To make the proposed model work better, residual blocks were added. The diagram
in Figure 8 illustrates the three proposed blocks. The simple and residual blocks consist
of three convolutional layers with ReLU and padding the same activation functions; the
symbols n and s represent the number and size of the filters. In the residual block, the
output of the first convolution layer is added to the output of the last convolution layer,
and a ReLU activation function is applied to the result obtained. The overall architecture of
the proposed model is composed of five simple (model0), dropout (model1), or residual
(model2) blocks with s = (1, 3, 3, 6, and 9) and n = (16, 32, 32, 64, and 128); after each
block, a Max pooling layer is added (except for the first block). Two fully connected
layers are added, one with 32 nodes and the last with a single node, followed by the
sigmoid function to obtain the classification result (binary classification). Each model has
4.7 million parameters.
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Figure 7. Flowchart explaining how the previous hybrid and proposed hybrid method works
(comparator): (a) flowchart of previous hybrid methods, (b) flowchart of the proposed method.

Figure 8. Blocks proposed in this paper: (a) simple block, (b) dropout block, (c) residual block.

3.1. Subsubsection Implementation Tools

To implement and optimize the proposed model, user-friendly open-source DL frame-
works that aimed to streamline the development of intricate and large-scale models were
accessed. A DL framework serves as an interface, library, or tool designed to facilitate the
creation of DL models with ease and speed without the need to delve into the intricate
details of underlying algorithms. These frameworks offer a clear and concise means to
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define models, utilizing a set of pre-configured and optimized components. Some of the
most widely used frameworks include the following:

1. TensorFlow: Researchers and engineers from the Google Brain team developed Tensor-
Flow, which stands as the most commonly used library in the field of DL. Its popularity
is attributed to its support for multiple programming languages, including Python,
C++, and R. TensorFlow boasts a flexible architecture that allows the deployment
of DL models on single or multiple CPUs, as well as GPUs. It finds applications in
various domains, including the following:

• Text-based tasks: language detection, text summarization;
• Image analysis: image captioning, facial recognition, object detection;
• Audio analysis;
• Time-series analysis.

2. Keras: Written in Python, Keras can run on CNTK, Theano, and TensorFlow. Keras
serves as a high-level API designed to enable rapid experimentation. It supports both
CNNs and RNNs and seamlessly operates on both CPUs and GPUs. Keras offers
various architectural options, such as those used for image classification, to tackle a
wide range of problems efficiently;

3. PyTorch: PyTorch is a port of the Torch DL framework and can be employed to
construct deep neural networks and perform tensor computations. While Torch
is based on Lua, PyTorch runs on Python. It is a Python package that facilitates
tensor calculations, wherein tensors are multidimensional arrays similar to numpy’s
ndarrays and can be executed on GPUs. PyTorch is versatile and capable of addressing
diverse DL challenges, including the following:

• Image tasks (detection, classification, etc.);
• Natural Language Processing (NLP);
• Reinforcement learning.

These DL frameworks have democratized the field of DL, making it more accessible to
a broader audience and accelerating progress in the development of advanced DL models.

3.2. Implementation Environment

The proposed model was implemented on the Kaggle platform, which provides a
cloud-based environment for data science and machine learning tasks. Kaggle is accessible
through www.kaggle.com (accessed on 1 December 2023) and offers both CPU and GPU
computation capabilities for running complex machine learning models. Python 3 was
used for implementing the model. Python is a widely used programming language in
the machine learning community due to its simplicity and the vast availability of libraries
and frameworks. It is available at www.python.org (accessed on 1 December 2023). Keras,
a high-level neural network API, was used with Tensor Flow serving as the backend
computation framework. TensorFlow is an open-source library for numerical computation
and machine learning. Keras provides a more user-friendly interface for building and
training deep learning models on top of TensorFlow. More information can be found at
www.tensorflow.org (accessed on 1 December 2023). The hardware specifications include
the following:

• OS: Windows 11 x86_64;
• CPU: Intel (R) CPU @ 2.00 GHz;
• RAM: 16 GB;
• GPU: NVIDIA GeForce GPU;
• GPU Memory: 16 GB.

3.3. Choice of Dataset

Two datasets were used in this study, as they were worked on individually (each data
set separately). The data that were worked on are shown below:

www.kaggle.com
www.python.org
www.tensorflow.org
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• The first dataset used was the Deepfake Detection Challenge (DFDC). This is a key
resource for digital media authentication, specifically deepfake detection. A collabora-
tion between Facebook, the Partnership on AI, Microsoft, and academics launched the
DFDC. It aims to advance deepfake detection technology to detect realistic-looking
AI-generated fake videos. The dataset has many videos. These include many deep-
fakes and real videos. Deepfake videos were created using various deep learning
methods, making the dataset diverse and difficult. One of the largest publicly avail-
able datasets, the DFDC contains thousands of videos. This scale is essential for
training and testing large-data deep learning models. Researchers and developers
train machine-learning models to recognize manipulated videos using this dataset.
DFDC videos are diverse and complex, making them ideal for testing advanced detec-
tion algorithms. The DFDC wants to stop misinformation and protect digital media
by improving deepfake detection. The dataset includes 119,122 224 × 224 images
(84% fake, 16% real) [63];

• The second dataset is the Ciplab dataset. Datasets usually contain a large number
of images or videos, often annotated or labeled to facilitate supervised learning.
The content might include diverse subjects, environments, and conditions to ensure
robustness in algorithm training. In the case of generative models such as Generative
Adversarial Networks (GANs), generating counterfeit face images is a straightforward
task. Consequently, a classifier can be trained by using these synthetically generated
images, and these classifiers tend to perform exceptionally well in discriminating
between real and GAN-generated face images. It is reasonable to assume that these
classifiers learn patterns inherent to images produced using GANs. The dataset
contains 23,632 224 × 224 images (fake: 60%, real: 40%) [64].

3.4. Classification Configuration

In binary classification tasks (e.g., real vs. deepfake), check for class imbalance issues.
If one class is significantly underrepresented, consider using techniques such as over-
sampling or under-sampling to balance the dataset. Data cleaning was performed to
address missing values, outliers, and inconsistencies. This step is crucial to ensuring
that the overall size of the retained dataset is unified. The following configuration was
considered in all stages of training the proposed model:

• Preprocessing dataset: 19,148 real images and 19,148 fake images were used. The
whole dataset was divided into two subsets, where 80% represented the training set
(subset intended for training the model) and the rest was one evaluation set (subset
intended for evaluation). The size of the images was 128 × 128;

• Model learning: since the classification type is binary, the binary-cross entropy
5.4 function was chosen to calculate the error rate for each iteration of training.

LoSs = −

output
size

∑
i=1

yi · log ŷi (10)

For model optimization, the Adam was used to update the network weights during
model training. The learning rate with an initial value of 10−4 was divided by 10 if the learning
precision did not increase during two successive epochs, up to the minimum value 106.

4. Experimental Results and Discussion

Several experiments with different batch sizes and dropouts (overfitting problem)
were performed. Additionally, additional residual blocks were added to the model and the
model was compared with and without these blocks. The training and validation precision
(accuracy) and error rate (Loss) were used to evaluate the performance of the model:

accuracy =
TP + TN

TP + TN + FP + FN
(11)

where
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• TP: true positive;
• TN: true negative;
• FP: false positive;
• FN: false negative.

4.1. Epochs, Batch Size, and Iterations

Due to the size of the dataset and the memory constraints of the computer unit utilized
for training, it was not possible to take all the training data into an algorithm in a single pass
in most cases. Epochs, batch size, and iterations are necessary terms to better understand
how data are best divided into smaller pieces.

• The epoch flows when the complete dataset went through the neural network and
the weights were adjusted precisely once. It is necessary to partition the dataset into
mini-batches if it cannot be fed to the algorithm all at once.

• The batch size represents all of the training samples included in a single mini-batch.
• The iteration indicates the number of network settings updated.

4.2. Batch Size

In the proposed case, it was the number of trained images in an iteration before
updating the network weights. Figure 9 shows the accuracy and learning error rate
achieved with batch sizes of 64, 128, and 256. From Figure 9, it is obviously the batch size
with the value 64 that gives the best result. For validation, Figure 10 shows the validation
accuracy and validation error rate with different batch sizes of 64, 128, and 256. From
Figure 10, it is obvious that the batch size with the best result for validation is 128.

Figure 9. The accuracy (precision) and learning error rate with different batch sizes: (a) accuracy with
batch size of 64, 128, and 256; (b) learning error rate with batch size of 64, 128, and 256.

Figure 10. The validation accuracy and validation error rate with different batch sizes: (a) validation
accuracy with batch size of 64, 128, and 256; (b) validation error rate with batch size of 64, 128, and 256.
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4.3. Dropout

In order to prove the validation results, the dropout regulation technique was used.
The key idea was to randomly remove units (with their connections) from the neural
network during training. The results in Figure 11 represent the accuracy and error rate
during the validation phase with dropout rates of 0, 0.25, and 0.5. It is clear that the
use of dropout minimized the error rate and the problem of overfitting. In addition, an
improvement in precision was noticed. From Figure 11, it is obvious that the dropout rate
with the best result is 0.25.

Figure 11. Validation accuracy and validation error rate with different dropout rates: (a) validation
accuracy with dropout rates of 0, 0.25, and 0.5; (b) validation error rate with dropout rates of 0, 0.25,
and 0.5.

4.4. Residual Blocks

After using the residual blocks in the model, the obtained results in Figure 12 show
that the use of residual blocks improved the model performance in terms of accuracy and
reduced the error rate; this effect also appears in the speed of model learning.

Figure 12. Validation results: model0 (simple), model1 (+dropout), and model2 (+residual blocks):
(a) validation accuracy for the three models and (b) validation error rate for the three models.

4.5. Final Results

The curves in Figures 13–15 represent the precision and error rate of the three models.
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Figure 13. Model0: training and validation results (accuracy and error rate) for both datasets:
(a) Model0 accuracy for the DFDC dataset, (b) Model0 error rate for the DFDC dataset, (c) Model0
accuracy for the Ciplab dataset, (d) Model0 error rate for the Ciplab dataset.

Model0 represents the initial model; the results shown in Table 2 were obtained after
15 epochs.

Table 2. Model0 precision and error rate.

Dataset Precision Error Rate

DFDC 94.13% 05.87%
Ciplab 92.91% 07.09%

In Model1, the dropout regularization technique was used.

Figure 14. Cont.
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Figure 14. Model 1: training and validation results (accuracy and error rate) for both datasets:
(a) Model1 accuracy for the DFDC dataset, (b) Model1 error rate for the DFDC dataset, (c) Model1
accuracy for the Ciplab dataset, (d) Model1 error rate for the Ciplab dataset.

The best result of model1 is shown in Table 3.

Table 3. Model1 precision and error rate.

Dataset Precision Error Rate

DFDC 95.32% 04.68%
Ciplab 95.24% 04.76%

Finally, model2 had an architecture with the residual blocks.

Figure 15. Model2: training and validation results (accuracy and error rate) for both datasets:
(a) Model2 accuracy for the DFDC dataset, (b) Model2 error rate for the DFDC dataset, (c) Model2
accuracy for the Ciplab dataset, (d) Model2 error rate for the Ciplab dataset.
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The obtained accuracy and error rate of Model2 are shown in Table 4.

Table 4. Model2 precision and error rate.

Dataset Precision Error Rate

DFDC 98.24% 0.26%
Ciplab 97.32% 0.15%

Section 4.5 discusses the final results of the three proposed models in this study, as
depicted in Figures 13–15. It is obvious that Model2 outperforms the other two models in
terms of accuracy. Tables 2–4 present the accuracy and error rate of the three models when
applied to the DFDC and Ciplab datasets. Figure 16 presents a comparison of the precision
between the proposed models and other related works in Section 1.3. It is evident that
Model2 gives better results than the other related works in Section 1.3. Table 5 presents a
comparison of the error rate and accuracy between the proposed Model2 and other related
works in Section 1.3. It is clear that Model2 yields superior results than the other related
works. Figures 17 and 18 provide an explanation of the precision and recall of the proposed
Model2, respectively.

Figure 16. Comparison of the precision between the proposed CNN-LSTM model (Model2) with
other related works in Section 1.3 [47–53].

Table 5. Error rate and accuracy of the proposed CNN-LSTM model (Model2) with other related
works in Section 1.3.

Study Accuracy Error Rate

Amerini et al., 2019 [47] 81.61% 29.43%
Aneja et al., 2020 [48] 73.20% 26.8%

de Lima et al., 2020 [49] 97.26% 02.74%
Dogonadze, N et al., 2020 [50] 77.7 22.3%

Khan et al., 2021 [51] 97% 3%
Shad et al., 2021 [52] 97% 3%
Saikia et al., 2022 [53] 91.21% 8.79%
Proposed (Model2) 98.24% 0.26%



Electronics 2024, 13, 1662 19 of 22

Figure 17. Precision of the proposed CNN-LSTM (Model2).

Figure 18. Recall of the proposed CNN-LSTM (Model2).

5. Conclusions

In this paper, a novel DL architecture model for deepfake detection was proposed us-
ing a hybrid combination of LSTM and CNN methods and implemented using the Python
language and Kaggle platform. Two datasets of DFDC and Ciplab were selected to evaluate
the performance of the proposed model. The preprocessing of the dataset included using
19,148 real images and 19,148 fake images. The whole dataset was divided into two subsets,
where 80% represented the training set with an image size of 128 × 128. Additionally, the
binary-cross entropy 5.4 function was utilized to calculate the error rate for each iteration of
training. The results obtained indicated an accuracy of 97.32% and 98.24% and a low error
rate of 0.15% and 0.26% for the two datasets used, respectively. This confirmed the adapt-
ability of the proposed model in handling accurate deepfake prediction because LSTMs
can capture sequential temporal dependencies effectively. LSTMs can describe temporal
connections between frames to uncover deepfake discrepancies. Meanwhile, using CNN
it is possible to evaluate the frame’s content to find visual artefacts, inconsistencies, or
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strange patterns that may indicate manipulation or synthesis. Therefore, combining LSTM
and CNN provides the ability to concentrate on the areas in which it excels, which could
result in a model that is both more efficient and effective. Moreover, it allows the model to
adapt to a wide range of deepfake generation techniques.
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