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Abstract: Map-matching is a core functionality of pedestrian navigation applications. The localization
errors of the global positioning systems (GPSs) in smartphones are one of the most critical factors
that limit the large-scale deployment of pedestrian navigation applications, especially in dense urban
areas where multiple road segments exist within the range of GPS errors, which can be increased by
tall buildings neighboring each other. In this paper, we address two issues of practical importance
for map-matching based on the Hidden Markov Model (HMM) in pedestrian navigation systems:
large localization error in the initial phase of map-matching and HMM breaks in open field traversals.
A heuristic method to determine the probability of initial states of the HMM based on a small number
of GPS data received during the short warm-up period is proposed to improve the accuracy of initial
map-matching. A simple but highly practical method based on a heuristic evaluation of near-future
locations is proposed to prevent the malfunction of the Viterbi algorithm within the area of open
fields. The results of field experiments indicate that the enhanced HMM constructed via the proposed
methods achieves significantly higher map-matching accuracy compared to that of state of the art.

Keywords: Hidden Markov Model (HMM); Viterbi algorithm; pedestrian navigation; map-matching

1. Introduction

Pedestrian navigation refers to the technology or systems designed to assist individuals
in locating, tracking, and following routes to reach a specific destination on foot, primarily
using smartphones equipped with a GPS receiver [1]. Map-matching is regarded as one of
the core technologies that enable satisfactory user experience for navigation services by
providing accurate information on current trajectories. However, the inherent inaccuracy
of GPS caused by various factors such as satellite signal attenuation, multipath effects,
and atmospheric interference, especially in densely populated urban areas where several
narrow alleys and corridors coexist within the typical GPS error distance, can lead to an
unacceptably low accuracy in identifying the trajectories of pedestrians.

The main objective of a map-matching algorithm is to map a sequence of observed
GPS data to a road segment, providing more accurate and reliable location information for
many ITS services such as navigation, map update/inference, object tracking, and traffic
prediction [1–12]. The HMM is the foundation of map-matching methods as it is capable of
handling noisy observations and complex road networks [13]. With the HMM, noisy GPS
measurements serve as the observations of the model, while the hidden states represent
road segments. The HMM can be specified using three kinds of probability distributions:
an initial probability distribution over states, an emission probability distribution, and a
transition probability distribution. The Viterbi algorithm is commonly used to find the
optimal hidden state sequence of the HMM [14]. The conventional methods define the initial
probabilities over states as a uniform distribution and the emission probability distribution
based on the distance between the GPS measurements and the closest road segments.
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Despite wide acceptance in vehicular navigation, HMM-based map-matching methods
have not received much attention in pedestrian navigation due to the unique challenges
that remain to be overcome [1,2]. The localization error of GPSs in smartphones used by
pedestrians is one of the critical factors that limit the large-scale deployment of pedestrian
navigation applications. An erroneous map-matching result can result in incorrect navi-
gation on a long sequence of different road segments, which could make users backtrack
toward the initial locations often.

Other challenges are caused by pedestrian movement patterns that are often highly
diverse and complex due to their greater freedom of movement. Pedestrian movement
patterns include walking speed, chosen routes, and their responses to the situation on the
road. A pedestrian can, for instance, move through various spaces and terrains, including
narrow alleys, open fields, and areas near buildings. These pedestrian movement patterns
in urban environments can cause temporary breakdowns or incorrect map-matching results
in the Viterbi algorithm. Our goal is to enhance the performance of map-matching in
terms of matching accuracy without using additional sensor data such as camera images or
inertial measurement data in order to preserve the convenience of smartphone navigation
applications that rely solely on GPS and map data.

In this paper, we address two issues of practical importance within HMM for map-
matching in pedestrian navigation systems:

• Persistent map-matching errors due to the large localization error in the initial phase
of navigation;

• Lack of handling the state of open field traversal.

Our main contributions can be summarized as follows: First, a novel method to
determine the probability distribution for initial states is proposed based on a heuristic
approach that leverages a small number of initial GPS measurements to make predictions
on the likelihood of reaching a road segment in subsequent moments, assuming continuing
movements. Second, an enhanced HMM is proposed to improve map-matching accuracy
in the presence of pedestrians moving in open fields. We thoroughly evaluate and analyze
the proposed method with field-collected datasets. The data consists solely of GPS values
collected through the GPS module of mobile phone, excluding data from any other sensors.
The results show that the proposed method improves the map-matching accuracy for GPS
measurements on road segments and detection rate for GPS measurements in open fields.

This paper is organized as follows. Section 1 provides a brief introduction to the
HMM for map-matching. Section 2 describes related works. The preliminaries of HMM in
map-matching using the Viterbi algorithm are discussed in Section 3. Section 4 provides a
detailed explanation of the enhanced HMM in map-matching for pedestrians (EHMM-P).
Section 5 analyzes the experiment results of the proposed method through experiments.
Section 6 summarizes our work and discusses future research.

2. Related Works

The existing methods for map-matching can be categorized into geometric methods,
topological methods, probabilistic methods, and advanced methods [15–23].

The geometric methods mainly focus on the geometric attributes of trajectories and
road networks, encompassing Euclidean distances and closeness. Closeness is often de-
fined through various similarity metrics such as the Fréchet distance [24]. The topological
methods concentrate on the connectivity of road segments so that they can avoid unreason-
able mismatches such as discontinuous paths [17,25]. Although these techniques exhibit
notable computational efficiency, they may yield imprecise outcomes when the location
error is large.

The probabilistic methods take both geometric and topological information into ac-
count. In the context of map-matching, the HMM methods are most commonly employed
since they can be applied in a straightforward manner. Specifically, each recorded GPS
measurement is treated as an observation, while each road segment comprising a true path
is considered as a hidden state. Each road segment in close proximity to the observation
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has the potential to be the true road segment, thereby becoming a candidate road segment
with an associated emission probability for the observation. The transition probability,
which incorporates topology information, is utilized to estimate the movement between
two consecutive timestamps.

The goal of HMM methods for map-matching is to find the optimal matching road
sequence for a GPS trajectory. The Viterbi algorithm, based on dynamic programming, is
one of the most frequently used methods in map-matching [14]. There exist many different
methods to define the emission and transition probability distributions for map-matching.
In line with the study conducted by Newson et al., a significant number of studies define
the emission probability distribution [13]. The definitions of transition probabilities vary
according to the different factors considered [7,22,26–29]. A new transition probability that
considers the rationality of moving speed and distance is proposed in [26]. The importance
of the number of turns and travel distance between road segments is used in [28] to estimate
transition probabilities through inverse reinforcement learning.

In the past few years, several advanced map-matching algorithms have been pro-
posed [5,21–23,28,30]. These algorithms include methods based on the Kalman filter (KF) as
well as techniques that utilize different neural networks to integrate multiple data sources.
Maaref et al. propose a navigation methodology that utilizes a particle filter to estimate
the state of a ground vehicle by integrating pseudo-ranges drawn from ambient signals
of opportunity [5]. Hansson et al. explored the effectiveness of HMMs in identifying
traveled lanes of a vehicle using a high-definition map with a lane-change signal and
visual information, with little impact from speed and headings information [21]. Choi et al.
utilize a global navigation satellite system (GNSS) combined with an inertial navigation
system, a camera, and a digital map to detect road facilities and achieve vehicle localization
based on map-matching [22]. Lee et al. propose a method for recognizing driving lanes
on highways that achieves low-cost and precise vehicle positioning by matching the road
boundaries detected using a LiDAR sensor with a precise digital map [23]. Based on
various data sources and neural networks, these methods are expensive to run and require
a significant amount of data. A cooperative vehicular localization scheme named C-SOM
(Constrained Self-Organizing Map) based on vehicle-to-vehicle communication is proposed
in [31]. It estimates distances between neighboring vehicles using weighted least squares
of double difference and then utilizes C-SOM with adjusted GPS data to decrease location
estimation errors.

While most of the aforementioned methods focus on vehicle map-matching, pedes-
trian map-matching necessitates distinct approaches, owing to its unique characteristics
compared to vehicles. Pedestrian map-matching is mostly carried out indoors, such as
in [2,24,32,33]. An algorithm is proposed in [2] to improve indoor pedestrian dead reck-
oning accuracy by compensating for position error via magnetic map-matching, using
multiple sensors and outlier mitigation with roughness weighting factors. AdaPFnet is a
map-matching algorithm for indoor pedestrian navigation based on deep learning tech-
niques [24]. There are relatively few studies on outdoor pedestrian map-matching, such
as [5,25]. Ren et al. propose a movement pattern recognition algorithm to improve map-
matching efficiency and accuracy in pedestrian/wheelchair navigation systems/services
based on GPS positions, orientation data from a compass, and movement states recognized
from accelerometer data [25]. A method in map-matching for pedestrians based on the
Fréchet distance is discussed in [3]. The work in [34] mainly investigates HMM-based
map-matching with multipath effects. This method simulates multipath effects through 3D
building models and geometric methods and calculates the hypothetical position of GPS
trajectory samples, which are then used in map-matching.

Some existing research efforts have focused on creating new road networks for open
fields. Behr et al. triangulate all identified open fields on the map using the computational
geometry algorithms library (CGAL) meshing method and added boundary edges as arcs
to expand the road network [35,36]. Sasaki et al. propose an algorithm for interpolating
missing road segments by using vehicle trajectories based on map-matching and clustering



Electronics 2024, 13, 1685 4 of 27

techniques [37]. Ding et al. proposed using Mapillary data to generate bicycle network
information [38]. Most of the aforementioned methods incur high computational costs,
particularly when there are large open fields or when there are many obstacles within open
fields, such as amusement facilities, which make the road network more complex. But,
open fields do not necessarily require a road network as pedestrians can move freely in
such spaces without following specific paths.

3. Preliminaries
3.1. Map-Matching Problem

Given a road network G(V, E), a directed graph with vertices V representing road inter-
sections and edges E representing road segments, and a GPS trajectory o1, o2, . . . , oT , T ∈ R,
where T is the number of GPS measurements and ot, 1 ≤ t ≤ T, is a GPS measurement,
i.e., the latitude and longitude coordinates (xt, yt) ∈ R, the goal of map-matching is to
find the optimal road segment sequence on the road network G that matches the trajectory
o1, o2, . . . , oT with its ground truth path. Note that the road segment, ri, 1 ≤ i ≤ |E|, is a
directed edge in a road network with a length, start vertex, and end vertex.

3.2. HMM Methods for Map-Matching

A HMM can be constructed with the hidden states and observations representing road
segments and GPS measurements. The Viterbi algorithm can generate the hidden state
sequence that best matches the observed sequence of states, identifying the most probable
path corresponding to the observed trajectory in the road network.

HMM λ is defined based on three main parameters: the initial state probability
distribution π, the emission probability distribution matrix B, and the transition probability
distribution matrix A.

λ = (A, B, π) (1)

We adopt the parameters proposed in [13] and explain them briefly as follows.

3.2.1. Emission Probability Distribution

The emission probability is the probability of observing a GPS measurement ot given
the road segment ri. For a given ot and ri, the closest point on the road segment ri is denoted
as xt,i. The emission probability matrix B is composed of emission probability distribution
bi(ot) defined as

bi(ot) = P(ot|ri) =
1√

2πσo
e−

1
2 (

∥ot−xt,i∥
σo )

2

, 1 ≤ i ≤ N, 1 ≤ t ≤ T (2)

where σo is the standard deviation of Gaussian GPS noise and N is the number of hidden
states in HMM. ∥ot − xt,i∥ is the Euclidean distance between GPS measurements ot and the
closest point xt,i on road segment ri of GPS measurement ot. GPS noise is assumed to have
a zero mean Gaussian distribution [13].

3.2.2. Initial State Probability Distribution

The initial state probability distribution π refers to the probability distribution over
road segments when the time sequence begins. These probabilities indicate the likelihood
of the system being in each specific road segment at the initial timestamp of the observed
sequence. The initial probability distribution over states is defined as

πi = P( o1|r i), 1 ≤ i ≤ N (3)

where o1 is GPS measure at the initial timestamp, which is the first observation. In [13],
the initial probability distribution is defined in the same form as the emission probability
distribution, while some HMM models define it as a uniform distribution.
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3.2.3. Transition Probability Distribution

The transition probability is the probability of a pedestrian moving between road
segment rj and road segment ri at two times. The transition probability matrix A is
composed of the transition probability distribution aij, defined as

aij = P
(
ri
∣∣rj
)
=

1
β

e−
|∥ot−1−ot∥−∥xt−1,j−xt,i∥r

|
β , 1 ≤ i, j ≤ N (4)

where, ∥ot−1 − ot∥ is the Euclidean distance between GPS measurements ot−1 and ot and∥∥xt−1,j − xt,i
∥∥

r indicates the distance between the closest point xt−1,j on the road segment rj
of GPS measurement ot−1 and the closest point xt,i on the road segment ri of GPS measure-
ment ot, which is recorded as “route distance”, as shown in Figure 1. β measures the differ-
ence between the Euclidean distance and the route distance,

∣∣∣∥ot−1 − ot∥ −
∥∥xt−1,j − xt,i

∥∥
r

∣∣∣.
For a valid state transition, the Euclidean distance and the route distance between the two
closest points are approximately similar [13].
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by courtesy of Newson and Krumm [13]. The dashed arrows represent distances.

3.3. Viterbi Algorithm

In HMM, the process of determining the sequence of latent or unobservable vari-
ables that correspond to a given sequence of observations is referred to as the decoding
problem. To address this problem, the Viterbi algorithm is employed in HMMs. This
algorithm utilizes dynamic programming principles to calculate the optimal path proba-
bilities, thereby achieving a globally optimal solution. Specifically, the Viterbi algorithm
recursively computes the optimal path probability at the current timestamp by considering
previous probabilities, along with the state transition probability distribution and emission
probability distribution. By comparing the probabilities of different paths, the path with the
maximum probability is selected as the optimal path. The Viterbi algorithm generates the
most probable state sequence for a given observation sequence by utilizing the constructed
trellis. The Viterbi trellis is shown in Figure 2. Given observations o1, . . . , ot, . . . , oT and
the HMM model λ, the optimal hidden state sequence h1, . . . , ht−1, ht, . . . , hT can be found
based on the Viterbi algorithm. S = {si|1 ≤ i ≤ N} is the set of hidden states, and aij
represents the probability of transitioning from state sj to state si.
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The Viterbi algorithm works as follows:

(1) Initialization. Initialize the algorithm by assigning initial values for the first hidden
state based on the initial probability distribution and emission probability distribution.

δ1(i) = πibi(o1), 1 ≤ i ≤ N (5)

(2) Recursion. Iteratively compute the probabilities of all possible hidden state sequences
up to a given GPS measurement ot.

δt(i) = max
1≤j≤N

[
δt−1(j)aij

]
bi(ot), 2 ≤ t ≤ T, (6)

(3) Termination. Identify the final state by finding the sequence

Electronics 2024, 13, x FOR PEER REVIEW 6 of 28 
 

 

found based on the Viterbi algorithm. ࡿ = ௜|1ݏ} ≤ ݅ ≤ ܰ} is the set of hidden states, and 
ܽ௜௝  represents the probability of transitioning from state ݏ௝  to state ݏ௜. 

 
Figure 2. The Viterbi trellis for computing the optimal sequence through the hidden states. 

The Viterbi algorithm works as follows: 
(1) Initialization. Initialize the algorithm by assigning initial values for the first hidden 

state based on the initial probability distribution and emission probability distribu-
tion. 

(݅)ଵߜ = ௜ߨ ௜ܾ(݋ଵ), 1 ≤ ݅ ≤ ܰ (5)

(2) Recursion. Iteratively compute the probabilities of all possible hidden state sequences 
up to a given GPS measurement ݋௧. 

(݅)௧ߜ = max
ଵஸ௝ஸே

,(௧݋)௧ିଵ(݆)ܽ௜௝൧ܾ௜ߜൣ 2 ≤ ݐ ≤ ܶ, (6)

(3) Termination. Identify the final state by finding the sequence ऀୱ that maximizes the 
probability. 

ऀ௦ = arg max
ଵஸ௜ஸே

(7) [(݅)்ߜ]

(4) Backtracking. Trace back through the sequence to determine the most likely path of 
hidden states that led to the identified final hidden state. 

(5) Return the optimal hidden state sequence. 
,ଵ݋ ௧(݅)  is the maximum probability of producing observation sequenceߜ (6) ,ଶ݋ … ,  ௧݋

when moving along a hidden state sequence ℎଵ, ℎଶ, … , ℎ௧ିଵ and geĴing into state ℎ௧. 

4. The Enhanced HMM for Map-Matching 
4.1. Problem Statements 

The initial state distribution plays a crucial role in the Viterbi algorithm for HMM in 
map-matching. The Markov property implies that the distribution of the current state de-
pends on the distribution of the previous state, making the distribution of the initial states 
influential, especially for those states within a certain amount time in the early stage of 
navigation, despite the stationary distribution property. Traditionally, the uniform distri-
bution is commonly used to specify the initial state distribution and the emission proba-
bility distribution is typically based solely on the distance between GPS measurements 
and road segments [13,26,27,39]. However, taking just the distance into account may be 
insufficient due to the large GPS error. We propose using a heuristic approach to deter-
mining the probability distribution of initial states. That is, given a pedestrian trajectory 

s that maximizes the
probability.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 28 
 

 

found based on the Viterbi algorithm. ࡿ = ௜|1ݏ} ≤ ݅ ≤ ܰ} is the set of hidden states, and 
ܽ௜௝  represents the probability of transitioning from state ݏ௝  to state ݏ௜. 

 
Figure 2. The Viterbi trellis for computing the optimal sequence through the hidden states. 

The Viterbi algorithm works as follows: 
(1) Initialization. Initialize the algorithm by assigning initial values for the first hidden 

state based on the initial probability distribution and emission probability distribu-
tion. 

(݅)ଵߜ = ௜ߨ ௜ܾ(݋ଵ), 1 ≤ ݅ ≤ ܰ (5)

(2) Recursion. Iteratively compute the probabilities of all possible hidden state sequences 
up to a given GPS measurement ݋௧. 

(݅)௧ߜ = max
ଵஸ௝ஸே

,(௧݋)௧ିଵ(݆)ܽ௜௝൧ܾ௜ߜൣ 2 ≤ ݐ ≤ ܶ, (6)

(3) Termination. Identify the final state by finding the sequence ऀୱ that maximizes the 
probability. 

ऀ௦ = arg max
ଵஸ௜ஸே

(7) [(݅)்ߜ]

(4) Backtracking. Trace back through the sequence to determine the most likely path of 
hidden states that led to the identified final hidden state. 

(5) Return the optimal hidden state sequence. 
,ଵ݋ ௧(݅)  is the maximum probability of producing observation sequenceߜ (6) ,ଶ݋ … ,  ௧݋

when moving along a hidden state sequence ℎଵ, ℎଶ, … , ℎ௧ିଵ and geĴing into state ℎ௧. 

4. The Enhanced HMM for Map-Matching 
4.1. Problem Statements 

The initial state distribution plays a crucial role in the Viterbi algorithm for HMM in 
map-matching. The Markov property implies that the distribution of the current state de-
pends on the distribution of the previous state, making the distribution of the initial states 
influential, especially for those states within a certain amount time in the early stage of 
navigation, despite the stationary distribution property. Traditionally, the uniform distri-
bution is commonly used to specify the initial state distribution and the emission proba-
bility distribution is typically based solely on the distance between GPS measurements 
and road segments [13,26,27,39]. However, taking just the distance into account may be 
insufficient due to the large GPS error. We propose using a heuristic approach to deter-
mining the probability distribution of initial states. That is, given a pedestrian trajectory 

s = arg max
1≤i≤N

[δT(i)] (7)

(4) Backtracking. Trace back through the sequence to determine the most likely path of
hidden states that led to the identified final hidden state.

(5) Return the optimal hidden state sequence.
(6) δt(i) is the maximum probability of producing observation sequence o1, o2, . . . , ot

when moving along a hidden state sequence h1, h2, . . . , ht−1 and getting into state ht.

4. The Enhanced HMM for Map-Matching
4.1. Problem Statements

The initial state distribution plays a crucial role in the Viterbi algorithm for HMM in
map-matching. The Markov property implies that the distribution of the current state de-
pends on the distribution of the previous state, making the distribution of the initial states
influential, especially for those states within a certain amount time in the early stage of
navigation, despite the stationary distribution property. Traditionally, the uniform distribu-
tion is commonly used to specify the initial state distribution and the emission probability
distribution is typically based solely on the distance between GPS measurements and road
segments [13,26,27,39]. However, taking just the distance into account may be insufficient
due to the large GPS error. We propose using a heuristic approach to determining the
probability distribution of initial states. That is, given a pedestrian trajectory o1, o2, . . . , oT
and a road network G, the goal is to determine an initial state distribution πi of the HMM
in order to find the most probable road segment for the initial GPS measurement o1.

HMM breaks can occur in many cases, such as when there are no road segments
within the search area of a GPS measurement [13]. An open-field area such as a lawn field
and an open square are good examples. The search area is a circular region of radius R
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centered around a GPS measurement. Road segments covered by the search area of a GPS
measurement are candidate roads for this GPS measurement. We propose adding a new
hidden state in our HMM so that GPS measurements obtained while a person is traversing
an open field can be matched to the new hidden state. In our experiment, the value of
search area radius does not dynamically adapt to changes in the environment.

The problem definition of handling the open field traversal is defined as follows: Given
a pedestrian trajectory o1, o2, . . . , oT traversing open fields and a road network G, the goal
is to represent an open field as a hidden state of the HMM and redefine the emission and
transition probability distributions to improve the stability and accuracy of map-matching.

4.2. EHMM-P

This paper proposes an enhanced HMM in map-matching for pedestrians (EHMM-P)
that can improve the performance of pedestrian navigations using the Viterbi algorithm
in terms of map-matching accuracy based on heuristics. Our proposed method leverages
a small number of GPS measurements during a short warm-up period to specify the
initial state distributions. It also incorporates an additional open-field hidden state so

and introduces a new emission and transition probability distribution considering the
preceding GPS measurements and other factors, i.e., distance difference, direction difference,
and position difference. It then utilizes a human trajectory forecasting model that learns
human mobility patterns to generate open-field trajectories that align with human behavior.

4.2.1. Probability Distributions of the Initial States

The probability distribution of initial states is usually defined by a uniform distribu-
tion, while the emission probability distribution is defined as a function based only on
the distance between GPS measurements and road segments, as shown in Equation (2). It
is clear that the probability of initial states would be unreliable due to the GPS error. We
propose a new initial state distribution πi based on a small number of GPS measurements
during a short warm-up period called calibration time tini that is a user-defined param-
eter. The GPS measurements zm, 1 ≤ m ≤ M collected during tini are called calibration
points. M is the total number of calibration points collected during the calibration time
tini. Calibration points are used to determine the probability density function for the initial
states. From the work on the second-order HMM, we can understand that utilizing his-
torical information more extensively is more beneficial for map-matching of the current
GPS measurement [38,40]. Similarly, it is beneficial for map-matching of the initial GPS
measurement when there are more correction points. In the experiment section, we will
describe how to select an appropriate calibration time.

We acknowledge that human mobility is spatiotemporally continuous, with the current
position depending on the preceding or even more distant locations. Therefore, how
to utilize historical information at the current time is a question worthy of profound
consideration. Diverging from conventional approaches like the second-order HMM that
utilizes historical data, we performed a mapping of calibration points based on pedestrian
movement patterns. We introduce the notion of an arrival point, which refers to the
location on a road segment that a pedestrian is assumed to reach at a particular future time
based on the current GPS location and a fixed walking distance. Each calibration point
corresponds to an arrival point at the current time. The distance error between these arrival
points and the real road segment is attributed to GPS error, known to follow a Gaussian
distribution [13]. The probability of a road segment being in the initial state is higher than
other road segments when arrival points are closer to that road segment. Subsequently, we
will explain how to compute and use arrival points.
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The position of an arrival point is determined by the location of a calibration point and
the expected distance traveled along the route during the calibration time. The expected
distance can be calculated by multiplying the time between the moment a calibration point
is collected and the current time by the average speed uM, which can be estimated as

uM =
1

M − 1∑M−1
m=1 ||zm+1 − zm||. (8)

Figure 3 shows an illustration of uM where vm,m+1 is the distance between calibration
point zm and zm+1 and M = 4, which was determined based on the experiments conducted
as described in Section 5.2 A.
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The on-route position of a calibration point is determined by computing the closest
point on the route in order to obtain an arrival point. We define the xz

m,k, 1 ≤ k ≤ N, as
the closest point on road segment rk of calibration point zm . To distinguish the closest
point of calibration points and the closest point of the first GPS measurement, we define
xt,i, 1 ≤ i ≤ N as the closest point on the road segment ri of the GPS measurement ot. We
can then determine an arrival point for each calibration point by multiplying uM by the
number of time steps between the calibration point and the initial GPS measurement o1.
Each time step is separated by 1 sec according to 1 Hz GPS data collection frequency. xz′

m,k
is defined as the arrival point of zm. Figure 4 illustrates two scenarios of how to obtain the
arrival points of calibration points along the road towards o1. In Figure 4a, the closest point
xz

3,2 on road segment r2 of calibration point z3, walking along road segment r2, will reach
the arrival point xz′

3,2 after one time step, that is, at the initial time. The distance between
xz

3,2 and xz′
3,2 is u3, as indicated by the orange line. Similarly, xz

2,2 will arrive at xz′
2,2 after

two time steps. The length of the blue line is 2u3 representing the distance between xz
2,2

and xz′
2,2. And, xz

1,2 will arrive at xz′
1,2 after three time steps. The distance between xz

1,2 and

xz′
1,2 is denoted by the green line, with a length equal to 3u3. In Figure 4b, the closest point

xz
3,1 on road segment r1 of calibration point z3, walking along road segment r1, will reach

the arrival point xz′
3,1 after one time step, that is, at the initial time. The walking path is

illustrated with the orange line and the length is u3. Similarly, xz
2,3, walking from road

segments r3 to r1, will arrive at xz′
2,3 after two time steps. The walking path is represented

by the blue polyline, with a length of 2u3. And, xz
1,2, walking from road segments r2 to r3

and then to r1, will arrive at xz′
1,2 after three time steps. Represented by the green polyline,

the walking path from xz
1,2 to xz′

1,2 has a length of 3u3.
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We introduce a distance component to the initial state probability, based on the total
distance between the closest point x1,i of GPS measurement o1 on road segment ri and
arrival points xz′

m,k, 1 ≤ m ≤ M, 1 ≤ k ≤ N, denoted as do1
ri .

We define a new probability distribution for the initial states at the time of o1:

πi = 1 −
do1

ri

D1
, 1 ≤ i ≤ N, (9)

where D1 = ∑N
i=1 do1

ri is the summation of distance do1
ri for N candidate road segments.

Intuitively, πi takes on the largest value for the road segment on which the arrival
points are closest to the closest point of the initial GPS measurement. Figure 5 illustrates
an example where the arrival point of the calibration point, denoted by xz′

m,k, indicates the
on-road location that calibration point zm would reach at the initial time according to the
average speed uM and do1

r2 is the sum of the distances from three arrival points to the closest
points x1,2 of o1 on r2.
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Consequently, the initial probability of the hidden states can be computed using

δ1(i) = πibi(o1) =

(
1 −

do1
ri

D1

)
P(o1|ri), 1 ≤ i ≤ N, (10)
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4.2.2. Emission and Transition Probability Distributions

As discussed earlier, conventional HMMs might incorrectly match GPS measurements
on an open field to road segments. Therefore, a HMM needs to be enhanced to be capable
of handling both open-field as well as non-open-field trajectories. In our enhanced HMM
model, we represent an open-field as a special hidden state and redefine the emission and
transition probability distributions to ensure the continuity and accuracy of map-matching.

Given GPS measurements ot, 1 ≤ t ≤ T, as the observations, the set of hidden states
is augmented by hidden state so representing an open-field so that the new set of hidden
states becomes S = {s1, s2, . . . , sN , so}, 1 ≤ n ≤ N.

The introduction of an open-field as a new hidden state requires adjustments to the
emission and transition probability distributions of the conventional HMM. We propose
new emission and transition probability distributions that leverage the preceding GPS
measurements and the information between measurements and hidden states.

Emission Probability Distribution

Many HMMs for map-matching have adopted the approach proposed by [13] to
design emission probabilities that road segments close to the GPS measurements are more
likely to be the correct road segments. Intuitively, the emission probabilities are inversely
proportional to the distance between the GPS measurement and the road segment. We adopt
this idea and use the probability density function based on the distance between a GPS
measurement and the closest points on the road segments as the new emission probability.
However, when the state corresponds to an open field, the GPS measurement would not
have the closest points on the road segments. Therefore, we use GPS measurement ot
itself as a candidate position to replace the closest point on the road segment. In this
case, the Gaussian probability density function based on GPS error reaches its maximum
value, which is evidently incorrect. Thus, we introduce the so-called the total length factor
to differentiate the probability depending on whether the state is in the open-field state
or a road state. Intuitively, when there are many roads within the search area of a GPS
measurement, it is more likely that the GPS measurement is on the road rather than on the
open field. The GPS measurements on an open field may have few or no roads within the
search area.

Lt = λe−∑N
c=1 lc , 1 ≤ t ≤ T (11)

where lc is the length of the road segment rc within the search area, and λ is the parameter
of the exponential distribution to be empirically determined. Figure 6 shows an example
of Lt. The red circle represents the search area at time t. l1 and l2 are lengths of the road
segments r1 and r2 within the search area for GPS measurement ot, while the lengths of
l3, . . . , lN are zero. The emission probability distribution is defined as

P(ot|si ) =


(1 − Lt)

1
σ
√

2π
e−

∥x−ot∥2

2σ2 , if si is a road state,

Lt
1

σ
√

2π
e−

∥x−ot∥2

2σ2 , if si is an open − field state,
x = ot.

(12)

where σ is the standard deviation of Gaussian GPS noise. ∥x − ot∥ represents the Euclidean
distance between the estimated position x and GPS measurement ot. The estimated position
x is the closest point on that candidate road segment when the state si corresponds to a
road segment. When the state si corresponds to an open field, the estimated position x is ot,

and the distance-based Gaussian distribution 1
σ
√

2π
e−

∥x−ot∥2

2σ2 always yields the maximum

value 1
σ
√

2π
. In this case, Lt is used to determine probabilities. The observation, ot, has the

probability that can be observed from each of the hidden states. Therefore, we need to
compute Equation (12) N + 1 times, with each computation representing the probability of
ot located in a specific state.
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Transition Probability Distribution

The conventional transition probability assumes that the Euclidean distance between
two GPS measurements is similar to the route distance between the two closest points for
correct matching [13]. However, the difference between the Euclidean distance and the
route distance, as described in Equation (4), cannot be determined in the case of an open-
field location due to the lack of route distance. We propose new transition probabilities
for four kinds of transition scenarios: (a) from a road segment to another road segment,
(b) from a road segment to an open field, (c) from an open field to a road segment, and (d)
remaining on an open field. The movement vector ut of a GPS measurement ot is defined
as the average vector of a few preceding GPS measurements:

ut =
1

W

W

∑
w=1

vt−w,t−w+1, 2 ≤ t ≤ T, 2 ≤ W ≤ M (13)

where W is the number of preceding GPS measurements, and vt−w,t−w+1 is the vector from
ot−w to ot−w+1. Note that W should be less than or equal to the number of calibration
points M. When t = W, v0,1 represents the vector vzM ,o1 between zM and o1. When
t < W, vt−w,t−w+1 represents the vector vzM−W+t ,zM−W+t+1 between calibration zM−W+t and
zM−W+t+1. In the Viterbi algorithm, the calculation of the transition probability can be
performed starting from t = 2.

Using the movement vector found, three different probabilities can be obtained based
on the three new attributes described below. These probabilities are then multiplied
together to determine the transition probabilities.

(1) Distance Difference

The difference between two distance values, i.e., the distance between the estimated
positions at two consecutive time steps and the magnitude of the movement vector (we
denote this quantity as ‘distance difference’ hereafter), is caused by GPS errors, which
follow Gaussian distribution [13]. The probability distribution based on the distance
difference is defined as

Pdi f f
(
si
∣∣sj
)
=

1
σ
√

2π
e−

|∥ut−1∥−dxx′ |
2

2σ2 , 1 ≤ i, j ≤ N + 1 (14)

where σ is the standard deviation of Gaussian GPS noise. x represents the estimated
position of ot, and x′ represents the estimated position of ot−1. In the case of a hidden state
for a road segment, the estimated position should be the closest point of the current GPS
measurement on the road segment. On the other hand, in the case of an open field, the
estimated position would be the current GPS location. That is, x represents the closest
point xt,n on rn for GPS measurement ot when si corresponds to road segment rn, whereas x
represents the GPS measurement ot when si corresponds to an open field. dxx′ represents the
distance between two estimated positions, x and x′. When one of the estimated positions
is the GPS measurement itself, dxx′ = ∥x − x′∥. Otherwise, dxx′ = ∥x − x′∥r, where ∥·∥r
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denotes the route distance. |∥ut−1∥ − dxx′ | is the difference between the magnitude of the
movement vector ut−1 and dxx′ .

For each transition, the distance difference between two estimated positions and
the magnitude of the movement vector will be computed. An example of the distance
differences in each transition scenario is shown in Figure 7. Two blue points, ot−1 and ot,
represent GPS measurements. Two yellow points, x′ and x, represent estimated positions of
GPS measurement ot−1 and GPS measurement ot. dxx′ is the distance between two estimated
positions. A red arrow ut−1 represents the movement vector. For each scenario, dxx′ is
calculated as described above. In Figure 7a, both hidden states correspond to road segments,
from which we take the closest points on the roads as the estimated points and compute the
route distance from x to x′. In Figure 7b–d, each of them contains at least one hidden state
corresponding to an open-field state, so. Therefore, we use the GPS measurement itself as the
estimated point to calculate the Euclidean distance between the two estimated points. The
probabilities

{
Pdi f f

(
si
∣∣sj
)∣∣∣1 ≤ i, j ≤ N + 1

}
of all possible transitions need to be computed

using Equation (14) within these four kinds of distance differences. Note, however, that it
does not imply that probabilities

{
Pdi f f

(
si
∣∣sj
)∣∣∣1 ≤ i, j ≤ N + 1

}
only include four values.

For instance, in Figure 7a, rm could correspond to any road segment, {r1, . . . , rN}, resulting
in N × N time computations for this scenario. Similarly, Figure 7b,d each require N time
computations, while scenario Figure 7c requires only one computation. The smaller distance
difference will reach the higher probability Pdi f f

(
si
∣∣sj
)
.
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(2) Direction Difference 

Figure 7. The distance differences in four kinds of state transition scenarios: (a) state transition
from road segment rm to road segment rn; (b) state transition from road segment rm to open field so;
(c) state transition from open field so to open field so; and (d) state transition from open field so to
road segment rn.

(2) Direction Difference

We consider the angle θuv between the movement vector ut and the vector vx′x of
estimated positions at two consecutive time steps as the direction difference. As mentioned
before, x represents the estimated position of ot, and x′ represents the estimated position of
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ot−1. The notion of the direction difference is made based on the assumption that humans
tend to maintain their original direction of movement. The direction difference is defined as

θsisj =
1

1 + θutvx′x

, 1 ≤ i, j ≤ N + 1 (15)

where θuvx′x is the radian value of the angle between ut and vx′x from x′ to x. For each
transition, we calculate the direction difference. In order to make this value large, when the
direction difference is small, the reciprocal of θuvx′x is used with 1 added in the denominator
to prevent the error of division by zero, as given in Equation (15).

The direction differences in four kinds of state transition scenarios are shown in
Figure 8. For different hidden states, corresponding to different estimated points x′ and x,
we use the vector with the starting point x′ and the end point x as vx′x. The angle between
vx′x and the movement vector ut−1 is θuvx′x .
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(3) Position Difference

The heuristic method to compute the initial state probabilities based on arrival points
described in Section 4.2.1 can be adopted here to differentiate the probabilities of state
sequences. At time t, we can determine the maximum probability of a state sequence
ending with hidden state sj of time t − 1. We then obtain a sub-sequence from time t − w to
t − 1, denoted as ht−w, . . ., ht−1 = sj, 1 ≤ w ≤ W. The sequence is stored in matrix X. The
estimated position of hidden state ht−w serves as the starting point, moving in the direction
and distance of ∥ut−1∥. The state sequence would reach the arrival position at time t − 1.
The direction of this arrival point is obtained based on the state si at time t and, walking
the distance ∥ut−1∥, it reaches the arrival point x′w of GPS measurement ot−w at time t,
where ut−1 is the movement vector mentioned before. We calculate the distance between
the arrival point x′w and the estimated position x of ot. Subsequently, the summation of
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distances between the estimated position x of the GPS measurement ot and these arrival
points is calculated. Like considering only the distance between two GPS measurements, if
there were no GPS errors, the arrival point x′w would coincide with the estimated position
x of ot. The GPS error introduces a difference between an arrival point and the estimated
position of ot. Thus, the sum of distances follows a Gaussian distribution. It is defined as

Parr
(
si
∣∣sj
)
=

1
σ
√

2π
e−

|∑W
w=1 dxx′w

|2

2σ2 , 1 ≤ i, j ≤ N + 1, 1 ≤ W < t ≤ T (16)

where dxx′w represents the distance between the estimated position x of ot and the arrival
point x′w of ot−w. The transition probability is high when the summation of distances is
small. The arrival point in each state transition scenario is shown in Figure 9. As described
before, when the state is road segment, the estimated point is the closest point on the
road. When the state is an open area, the estimated point is the GPS measurement itself.
Figure 9a is the estimated point xt−1,m of ot−1 and moves along the road direction for one
time step, reaching the arrival point x′t−1,m. Figure 9b–d are their respective corresponding
estimated points x′ at time t − 1; taking ut−1 as the velocity and walking for a time step,
they will reach their arrival point x′1 at Time t. dxx′1

represents the distance between the
estimated position x of ot and the arrival point x′1 of ot−1. Note that only w = 1 is shown in
this example.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 28 
 

 

direction and distance of ‖࢛௧ିଵ‖. The state sequence would reach the arrival position at 
time ݐ − 1. The direction of this arrival point is obtained based on the state ݏ௜ at time ݐ 
and, walking the distance ‖࢛௧ିଵ‖, it reaches the arrival point ݔ௪

ᇱ  of GPS measurement 
 ௧ିଵ is the movement vector mentioned before. We calculate the࢛ where ,ݐ ௧ି௪ at time݋
distance between the arrival point ݔ௪

ᇱ  and the estimated position ݔ of ݋௧. Subsequently, 
the summation of distances between the estimated position ݔ of the GPS measurement 
 ௧ and these arrival points is calculated. Like considering only the distance between two݋
GPS measurements, if there were no GPS errors, the arrival point ݔ௪

ᇱ  would coincide with 
the estimated position ݔ of ݋௧. The GPS error introduces a difference between an arrival 
point and the estimated position of ݋௧. Thus, the sum of distances follows a Gaussian dis-
tribution. It is defined as 

௔ܲ௥௥൫ݏ௜หݏ௝൯ =
1

ߨ2√ߪ
݁ି

ቚ∑ ௗೣೣೢ
ᇲೈ

ೢసభ ቚ
మ

ଶఙమ , 1 ≤ ݅, ݆ ≤ ܰ + 1, 1 ≤ ܹ < ݐ ≤ ܶ (16)

where ݀௫௫ೢ
ᇲ  represents the distance between the estimated position ݔ of ݋௧ and the arri-

val point ݔ௪
ᇱ  of ݋௧ି௪. The transition probability is high when the summation of distances 

is small. The arrival point in each state transition scenario is shown in Figure 9. As de-
scribed before, when the state is road segment, the estimated point is the closest point on 
the road. When the state is an open area, the estimated point is the GPS measurement 
itself. Figure 9a is the estimated point ݔ௧ିଵ,௠ of ݋௧ିଵ and moves along the road direction 
for one time step, reaching the arrival point ݔ௧ିଵ,௠

ᇱ . Figure 9b–d are their respective corre-
sponding estimated points ݔ′ at time ݐ − 1; taking ࢛௧ିଵ as the velocity and walking for 
a time step, they will reach their arrival point ݔଵ

ᇱ  at Time ݐ. ݀௫௫భ
ᇲ  represents the distance 

between the estimated position ݔ of ݋௧ and the arrival point ݔଵ
ᇱ  of ݋௧ିଵ. Note that only 

ݓ = 1 is shown in this example. 
Based on the probability distributions associated with the three new aĴributes de-

scribed above, the new transition probability distribution can be defined as 

ܲ൫ݏ௜หݏ௝൯ = ௦೔௦ೕߠ ∗ ௗܲ௜௙௙ ൫ݏ௜หݏ௝൯ ∗ ௔ܲ௥௥ ൫ݏ௜หݏ௝൯. (17)

As mentioned in [13], while some of the GPS errors may not be strictly based on 
Gaussian distribution, both their experiment and ours have demonstrated its effective-
ness. 

  

(a) (b) 

Electronics 2024, 13, x FOR PEER REVIEW 15 of 28 
 

 

 
 

(c) (d) 

Figure 9. The arrival points in four kinds of state transition scenarios: (a) state transition from road 
segment ݎ௠ to road segment ݎ௡; (b) state transition from road segment ݎ௠ to open field ݏ௢; (c) state 
transition from open field ݏ௢ to open field ݏ௢; and (d) state transition from open field ݏ௢ to road 
segment ݎ௡. 

4.2.3. Algorithm 
We define ߜ௧(݅) as the maximum probability of the state sequence of the length ݐ 

that ends in state ݏ௜. ߰௧ (݅) is defined as the ݐ − 1 state of states sequences with maxi-
mum probability at state ݏ௜ and time ݐ, which will be saved in the matrix ࢄ. When we 
compute the third part of transition probability, ௔ܲ௥௥ ൫ݏ௜หݏ௝൯ , we can obtain the sub-se-
quence from ࢄ. The ߜ௧(݅) and ߰௧(݅) are defined as follows: 

(݅)௧ߜ  = max
ଵஸ௝ஸேାଵ

(18) ,(௜ݏ|௧݋)௝൯൧ܲݏ௜หݏ௧ିଵ(݆)ܲ൫ߜൣ

    ߰௧(݅) = arg max
ଵஸ௝ஸேାଵ

௝൯൧ݏ௜หݏ௧ିଵ(݆)ܲ൫ߜൣ . (19)

After (18) and (19) are updated recursively, the probability of the optimal state se-
quence ܲ∗ and the end state of the optimal state sequence ்݅

∗  are defined in (20) and (21), 
respectively. 

ܲ∗ = max
ଵஸ௜ஸேାଵ

(20) [(݅)்ߜ]

்݅
∗ = arg max

ଵஸ௜ஸேାଵ
(21) [(݅)்ߜ]

As a result, the Viterbi algorithm finds the sequence of states with the maximum 
probability product via backtracking ߰௧ାଵ(݅௧ାଵ

∗ ). The optimal path corresponding to the 
given observation sequence is obtained by concatenating the optimal states in the optimal 
state sequence. The optimal state sequence could include both road segments and open-
field states. Each open-field state at a different timestamp is associated with the GPS meas-
urement at that timestamp. 

With the introduction of open fields as a hidden state and the incorporation of mul-
tiple factors in the proposed HMM, the computational cost increases. The algorithm pro-
posed in this research still has the same time complexity as conventional HMM-based 
map-matching. The complexity of the Viterbi algorithm is ࣩ(ܶܰଶ)  for conventional 
HMM. We add a new hidden state, the open-field state, for which the complexity of our 
proposed EHMM-P is ࣩ(ܶ(ܰ + 1)ଶ) = ࣩ(ܶܰଶ). Our approach can achieve the computa-
tion of approximately 1000 GPS points per second, similar to the reference work, where 
Viterbi was also employed to search for the optimal path of HMM for map-matching [41]. 
Algorithm 1 shows the summary of the proposed EHMM-P. Table 1 shows the summary 
of notations. 

Algorithm 1. EHMM-P 
Inputs: GPS trajectory ݋ଵ, ,ଶ݋ … , ்݋ ; Road network ܩ(ܸ,  (ܧ

Figure 9. The arrival points in four kinds of state transition scenarios: (a) state transition from road
segment rm to road segment rn; (b) state transition from road segment rm to open field so; (c) state
transition from open field so to open field so; and (d) state transition from open field so to road
segment rn.

Based on the probability distributions associated with the three new attributes de-
scribed above, the new transition probability distribution can be defined as

P
(
si
∣∣sj
)
= θsisj ∗ P

di f f

(
si
∣∣sj
)
∗Parr

(
si
∣∣sj
)
. (17)
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As mentioned in [13], while some of the GPS errors may not be strictly based on
Gaussian distribution, both their experiment and ours have demonstrated its effectiveness.

4.2.3. Algorithm

We define δt(i) as the maximum probability of the state sequence of the length t
that ends in state si. ψt(i) is defined as the t − 1 state of states sequences with maximum
probability at state si and time t, which will be saved in the matrix X. When we compute
the third part of transition probability, Parr

(
si
∣∣sj
)
, we can obtain the sub-sequence from X.

The δt(i) and ψt(i) are defined as follows:

δt(i) = max
1≤j≤N+1

[
δt−1(j)P

(
si
∣∣sj
)]

P(ot|si ), (18)

ψt(i) = arg max
1≤j≤N+1

[
δt−1(j)P

(
si
∣∣sj
)]

. (19)

After (18) and (19) are updated recursively, the probability of the optimal state se-
quence P∗ and the end state of the optimal state sequence i∗T are defined in (20) and (21),
respectively.

P∗ = max
1≤i≤N+1

[δT(i)] (20)

i∗T = arg max
1≤i≤N+1

[δT(i)] (21)

As a result, the Viterbi algorithm finds the sequence of states with the maximum
probability product via backtracking ψt+1

(
i∗t+1

)
. The optimal path corresponding to the

given observation sequence is obtained by concatenating the optimal states in the optimal
state sequence. The optimal state sequence could include both road segments and open-
field states. Each open-field state at a different timestamp is associated with the GPS
measurement at that timestamp.

With the introduction of open fields as a hidden state and the incorporation of multiple
factors in the proposed HMM, the computational cost increases. The algorithm proposed in
this research still has the same time complexity as conventional HMM-based map-matching.
The complexity of the Viterbi algorithm is O

(
TN2) for conventional HMM. We add a new

hidden state, the open-field state, for which the complexity of our proposed EHMM-P is
O
(

T(N + 1)2
)
= O

(
TN2). Our approach can achieve the computation of approximately

1000 GPS points per second, similar to the reference work, where Viterbi was also employed
to search for the optimal path of HMM for map-matching [41]. Algorithm 1 shows the
summary of the proposed EHMM-P. Table 1 shows the summary of notations.

Table 1. Summary of Notations.

Notations Descriptions

ot, 1 ≤ t ≤ T GPS measurement
ri, 1 ≤ i ≤ N Road segment

so Open-field hidden state
S = {s1, s2, . . . , sN , so} The set of hidden states

δt(i) The maximum probability of state sequences of the length t that end in state si
ψt(i) The t − 1 state of the state sequences with maximum probability at state si and time t

X The matrix of ψ
P∗ The probability of the optimal state sequence
i∗T The end state of the optimal state sequence
δ The standard deviation of GPS measurements
λ The parameter of the exponential distribution
lc Length of the c-th road segment within the search area

rlist Matched road segment sequence
olist Matched open-field sequence
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Algorithm 1 EHMM-P

Inputs: GPS trajectory o1, o2, . . . , oT ; Road network G(V, E)
Outputs: Matched road segments rlist and open-field trajectory olist
1. Initialization:
For each si, i = 1, 2, . . . , N do
2. δ1(i) = πibi(o1)
ψ1(i) = 0
3. For each ot, t = 2, . . . , T do
4. For each si, i = 1, 2, . . . , N and so do
5. Recursion:
δt(i) = max

1≤j≤N+1

[
δt−1(j)P

(
si

∣∣∣sj

)]
P(ot|si )

ψt(i) = arg max
1≤j≤N+1

[
δt−1(j)P

(
si

∣∣∣sj

)]
X[i, t] = ψt(i)
6. Termination:
P∗ = max

1≤i≤N+1
[δT(i)]

i∗T = arg max
1≤i≤N+1

[δT(i)]

7. Backtracking:
For t = T − 1, . . . , 1 do
i∗t = ψt+1

(
i∗t+1

)
8. Initialize rlist and olist as empty lists
9. For i∗t in

{
i∗1 , i∗2 , . . . , i∗T

}
do

10. If i∗t is a road segment do
11. rlist.add(i∗t )
12. Else olist.add(i∗t )
13. Return rlist and olist

4.2.4. Trajectory Prediction in Open-Fields Based on Human Mobility Patterns

The EHMM-P method determines which GPS measurements should be matched to
an open-field based on the probability distributions. A pre-trained model called Y-net is
utilized for the GPS measurements identified as open-field measurements to generate open-
field trajectories that align with human behavior [42]. Y-net can predict scene-compliant
multimodal human trajectories within the open-field based on scene semantics and human
mobility patterns using a few open-field measurements identified via EHMM-P and a
destination measurement (i.e., the last location identified via EHMM-P before exiting the
open-field). We select the trajectory that is closest to the GPS trajectory determined via
EHMM-P from the multiple trajectories predicted using Y-net as the trajectory predicted
using EHMM-P+Y-net. This approach aligns with human mobility patterns and does not
deviate from the overall pedestrian trajectory.

5. Experiments

A series of comparative experiments using field data was conducted to evaluate
the proposed EHMM-P. The EHMM-P comprises new probabilities of initial states, new
emission, and transition probability distribution. Comparisons were made between the con-
ventional HMM and Behr’s method in order to evaluate the performance of the proposed
method [2,35]. Behr’s approach involves creating a grid on the open field and utilizing
Dijkstra’s algorithm to find the path with minimum energy consumption.

The experimental setup involved utilizing a dataset collected from real-world scenar-
ios, which included GPS measurements and corresponding ground truth locations. The
map-matching of each method was evaluated from various perspectives to assess their
performance. This section begins with an introduction to the collection and pre-processing
of the dataset, followed by a series of comparative experiments. Finally, the performance of
each method is analyzed and discussed.
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5.1. Data Collection and Data Preprocessing

The pedestrian walking trajectory data used in the experiment were collected from
pedestrians carrying GPS-equipped mobile phones at a sampling frequency of 1 Hz as they
walked along pre-defined routes in the campus. We computed the ground truth location
based on the distance and angle data measured between current location and landmark
position. The road network data were .shp format with nodes and links. The ground truth
locations and corresponding road segments were manually measured and recorded.

To evaluate the proposed EHMM-P, we collected two pedestrian walking trajectory
datasets. Dataset I was collected to evaluate the proposed probability distributions of the ini-
tial states at ten intersections near the campus, denoted by the yellow markers in Figure 10.
The area is characterized by dense architecture, with buildings not exceeding 20 m in height.
For each intersection, we planned five paths around each interaction to contain various
scenarios. We walked for approximately thirty seconds while collecting GPS measurements,
repeating it five times on each path. Dataset I comprised 7700 GPS measurements in total.
We were allowed to go straight or make turns through the intersections.
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Dataset II was primarily collected within the campus and comprised extended trajec-
tories traversing open fields where buildings are sparse. It encompassed five pre-defined
routes, each of which was traversed twice in the opposite direction, as shown in Figure 11.
Each trajectory contains at least two open fields. Comprehensive information regarding
Dataset II is provided in Table 2.
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Figure 11. Dataset II: ten trajectories on campus. The terms in Korean represent the names of
buildings and places.

Table 2. Detailed information of each path.

Path ID No. of GPS Measurements No. of Open-Field GPS Measurements

1 910 317
2 794 320
3 1442 641
4 917 489
5 767 374

Total 4830 2141

5.2. Results and Discussion

In this chapter, we compared the outcomes obtained by utilizing various calibration
times for map-matching. We conducted a comparative assessment of the accuracy achieved
using different methods for map-matching on trajectories that traverse open fields. The
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map-matching accuracy is defined as the ratio of correctly matched GPS measurements to
the total number of GPS measurements with corresponding ground truth road segments,
as given in Equation (22):

Acc =
Tc

Tr
∗ 100% (22)

where Tc is the number of GPS measurements correctly matched on road segments, and Tr
is the total number of ground truth points on road segments. We also use a performance
metric called ‘route mismatched fraction’, d−+d+

d0
, proposed by [13] to measure the matching

accuracy. This fraction is the sum of the lengths of mismatched road segments, denoted as
d+, and the lengths of unmatched road segments, denoted as d−, divided by the total length
of the correct route, denoted as d0. The route mismatch fraction is only avaliable for the
locations on the road segments. We compute the Fréchet distance using Behr’s method to
evaluate the prediction of open-field locations. The Fréchet distance is a standard distance
measure for curves to describe the similarity between two paths. Given two sequences
of points α ≡ p1, . . . , pn, and β ≡ q1, . . . , qm, and a monotone path (i, j) ∈ ∏(n, m), the
discrete Fréchet distance between the two sequences, is the distance

d(α, β) = inf
i,j

max
t

∥∥∥pi(t) − qj(t)

∥∥∥. (23)

A. Performance Evaluation of Proposed Method for Initial Map-Matching

We compare the influence of probability distributions of initial states based on the
traditional and the proposed methods in terms of the accuracy of entire map-matching.
We use the distance-based emission and transition probability distribution suggested by
Newson and Krumm in both methods on Dataset I [13].

The accuracy of map-matching for the initial single GPS measurements was assessed
across various calibration time lengths. Figure 12 displays the map-matching accuracy
in various calibration times ranging from 4 to 8 s. For the trade-offs between insufficient
duration for obtaining a movement vector and the adverse impact on user experience, we
selected a calibration period of 4 to 8 s in our experiments. The conventional HMM remains
unaffected by the calibration time. Fluctuations in HMM results occur because different
initial points are selected when using different calibration times, leading to variations in
the initial point matching results and impacting the map-matching accuracy. The results
indicate that the map-matching accuracy of EHMM-P outperforms that of the traditional
method within the 4 to 8 s calibration time. The escalating calibration time correlates
with an improved matching accuracy for EHMM-P, suggesting that a greater number of
calibration points yields more accurate results. Nevertheless, longer calibration times
correlate with increased user waiting times, which must be strictly controlled for optimal
user experience in practical applications. To strike a balance between response time and
map-matching accuracy, we adopted a 4 s calibration time in the subsequent experiments.
In practice, the calibration time can be set as an adjustable parameter, permitting users to
select shorter calibration times for faster outcomes or longer calibration times for higher
map-matching accuracy.

Figure 13 displays the map-matching results of intersection 4 on Dataset I, utilizing
probabilities of initial states based on the traditional and the proposed methods. The red
lines are road segments. The blue and green circles are the closest points of the road segment
as the map-matching results of the traditional and proposed method for visualization,
respectively. The yellow and orange circles are the GPS measurements and ground truth
locations, respectively. The first four GPS measurements were used as the calibration
points for our model and GPS measurement 4 is the initial point. The conventional HMM
matched all these GPS measurements to the right-side road segment, which is the most
probable sequence of states predicted by the Viterbi algorithm. Our method computes the
initial probability based on Equation (10). As shown, our proposed method maps GPS
measurements to the left-side road segment that the ground truth on. The initial matching
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of GPS measurement 4 significantly influences the matching results of all subsequent GPS
measurements.
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Figure 12. Map-matching accuracy of traditional and our proposed probabilities of initial states with
various calibration time length on Dataset I.
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B. Performance Evaluation of Map-matching

Next, a comparison of three different methods for map-matching was conducted:
(i) the conventional HMM, (ii) Behr’s method, and (iii) the proposed EHMM-P. We exam-
ined the performance of these methods using different search radii since the size of the
search radii has a considerable amount of impact on the performance of models. With an
increase in the search radius, the number of candidate road segments also grows. In the
case of conventional HMMs, explicit identification of open-field GPS measurements is not
carried out. GPS measurements without candidate road segments within the search area
are considered as open-field GPS measurements in conventional HMMs.

We measured the map-matching accuracy, as shown in Figure 14a, for various values of
search radii in dense urban areas of Dataset I. When the search radius is 5 m, the accuracies
of conventional HMM and EHMM-P are lower than those of other radii as the small search
area with a lack of candidate road segments leads to numerous points on the road being
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directly classified as open-field points. With the increase in the search radius, there is
an increased probability of matching points with substantial errors on the road to road
segments, resulting in an enhancement of the matching accuracy of conventional HMM and
EHMM-P. Figure 14b illustrates the accuracy of identifying open-field GPS measurements
using three different methods on Dataset II. As mentioned above, the HMM will match GPS
measurements to road segments within the search area as the radius increases, leading to a
decrease in the determination rate of open-field measurements. Behr’s method generates
a grid road network over open fields, allowing GPS measurements from such areas to
be matched onto the created road network, resulting in higher accuracy with a larger
search radius. As the search radius increases to 25 m, it leads to an increased likelihood
of matching to road segments because of the total length factor, thereby reducing the
accuracy of identification of EHMM-P. In our scenario, as the radius increases, the accuracy
of EHMM-P remains higher than other methods. Figure 14c presents the route mismatch
fraction proposed by [13] of the three methods on the entirety of Dataset I. As the radius
increases, some locations with large errors can match to the correct roads that are farther
away, which could reduce the magnitude of the route mismatch fraction. Our proposed
EHMM-P achieves better map-matching performance than conventional HMM in dense
urban areas, excluding open fields.
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Figure 14. (a) Map-matching accuracy. (b) Open-field measurement determination accuracy. (c) Route
mismatch fraction for various values of search radii R (m).

The performance of open-field predicted trajectories is evaluated using the average
Fréchet distance, as shown in Figure 15. Behr’s method outputs the prediction of trajectories
for those GPS measurements that are included in the tessellation. Our EHMM-P method
with Y-net could predict a trajectory of open-field measurements. As the determination
accuracy increases, Behr’s method and EHMM-P correctly match more locations in open
fields, resulting in a reduced discrepancy between the predicted trajectory and the actual
trajectory compared to when locations are incorrectly matched to roads. EHMM-P+Y-net



Electronics 2024, 13, 1685 22 of 27

considers human mobility patterns, which can predict the trajectory closer to the ground
truth path with a small Fréchet distance.
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Figure 15. Average Fréchet distance of traditional HMM, Behr’s method, and proposed EHMM-P
method for various values of search radii R (m) on Dataset II.

Additionally, we computed the average reductions in positioning error for the entire
trajectories via map-matching on Datasets I and II, and presented them in Table 3.

Table 3. Average reductions in positioning error.

Method HMM Behr’s Method EHMM-P

Reduced Error (m) 1.02 2.35 4.63

Figure 16 illustrates prediction results using the three methods, i.e., (a) conventional
HMM, (b) Behr’s method, and (c) EHMM-P, respectively. To provide a clearer demon-
stration of the prediction of each method, we use the closest point on the road segment
matched to GPS measurements as the visualized prediction results, instead of displaying
the matched road segments; for the points matched to the open-field, we draw the trajectory
predicted using EHMM-P+Y-net. The map-matching results consider not just whether
the GPS measurements are matched to the correct road segment but whether open-field
GPS measurements are mapped onto road segments as well. The traditional HMM always
matches GPS measurements to road segments if they exist within the search range. As we
can see clearly in Figure 16a, all GPS measurements are matched to corresponding roads.
On the other hand, the method proposed by Behr and EHMM-P can identify open-field
points. In Figure 16b, tessellation of the open-field (light blue area) is used in path matching
in the Behr’s method (pink polyline). In this case, for ground truth locations from location
198 to location 249 in the open-field, EHMM-P and Behr’s detected locations 200 to 250
and locations 205 to 243 as open-field locations are used, respectively. Although EHMM-P
incorrectly matches points 198 and 199 to the road segment, all points prior to location 198
are correctly matched to the ground truth road segment. In contrast, Behr’s method incor-
rectly matches points prior to 198 to the wrong road segment. Similarly, as the trajectory
exits the open-field, EHMM-P can identify more GPS measurements to the correct hidden
states, whereas Behr’s method mismatches some open-field measurements to the wrong
hidden states. Compared to Figure 16b,c, it can be observed that our method achieves a
higher map-matching accuracy and detection rate of open-field GPS measurements.
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(blue), (b) Behr’s method (pink), and (c) EHMM-P (green). The GPS trajectory is represented as
yellow points and the ground truth trajectory is represented as orange points. The red lines are
road segments.

C. Human Behavior-Based Trajectory Prediction in Open-fields

Y-net is used to generate open-field trajectories that align with human behavior for
the open-field locations determined using EHMM-P [42]. The input consists of the GPS
measurements in the open-fields and Google Earth maps, while the output is the prediction.
The pink polyline and green circles in Figure 16b,c illustrate the trajectories generated using
Behr’s method and EHMM-P+Y-net, respectively. EHMM-P determines GPS measurements
starting from location 200 as the open-field point, with location 200 to 204 inputted to the Y-
net for predicting subsequent pedestrian trajectories. The top 20 trajectories with the highest
probability are generated by the Y-net. The trajectory with the smallest average distance
to the GPS measurement trajectory was selected using EHMM-P+Y-net. By incorporating
learned human behavior patterns and environmental information from Google Earth
images, the model captures the complexity of pedestrian motion, resulting in predicted
trajectories that closely resemble actual human walking patterns and effectively avoid
obstacles.

6. Conclusions

This paper proposes an enhanced HMM for map-matching in pedestrian navigation.
EHMM-P focuses on improving the accuracy of map-matching for pedestrians, specifically
targeting the issues of persistent map-matching error due to the large localization error in
the initial phase of map-matching and lack of handling in the state of open-field traversal.
EHMM-P introduces a new probability distribution for the initial states of HMM, which is
established using a limited set of GPS data collected during a warm-up period. The HMM
model is adapted to incorporate an additional hidden state for open-field scenarios, accom-
panied by redefined emission and transition probability density functions. Furthermore,
an existing Y-net model trained on human mobility patterns is employed to predict human



Electronics 2024, 13, 1685 25 of 27

trajectories in open fields, selecting the most similar trajectory as the EHMM-P+Y-net
prediction, which most likely aligns with human behavior for GPS measurements.

Extensive comparative experiments using field GPS data validate the performance
of EHMM-P. The results confirm its effectiveness in improving pedestrian map-matching
accuracy compared to traditional HMM and Behr’s methods. EHMM-P demonstrates good
generalization across different datasets and performs well in diverse scenarios. The limita-
tion of our proposed method is that it is not truly a real-time method since it requires a short
period of time to collect the calibration points to compute the initial state probability and
dynamic adaptive behavior of the map-matching method under various GPS/positioning
environments is not considered in the proposed method. And, the transition and emission
probabilities may not be based on the Gaussian distribution for some GPS measurements.
A machine learning approach may be considered as an alternative to improve the accuracy
in unstable GPS environments. Future research directions include leveraging deep learning
methods to further enhance the performance of EHMM-P, incorporating a wider range of
human behavioral patterns for trajectory prediction and exploring inverse reinforcement
learning to improve the probabilistic representation of HMM.
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