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Abstract: In this paper, a W-band waveguide bandpass filter with a standard fourth-order Chebyshev
response is proposed based on the computer numerical control (CNC)-milling technology. The
harmonics-staggered technique and orthogonal coupling method are incorporated into this waveg-
uide filter design without increasing the complexity of the filter structure in order to suppress the
intrinsic spurious responses near the passband. Furthermore, the proposed filter design maintains
a simple construction, which can be conveniently fabricated using CNC milling. The fabricated
waveguide filter exhibits an average insertion loss of 0.9 dB and a return loss of above 20 dB in a 3 dB
fractional bandwidth (FBW) of 5.5% centered at 85 GHz. The excellent spurious suppression property
can reach better than −25 dB up to 165 GHz. The wide stopband performance of the proposed
W-band filter is very competitive compared with the reported waveguide filters.

Keywords: bandpass filter; Chebyshev response; CNC milling; spurious suppression; waveguide
filter; W-band; wide stopband

1. Introduction

Millimeter-wave (mmWave) and terahertz (THz) bands have been widely used for var-
ious areas including wireless communications [1], imaging radars [2], radio astronomy [3]
and atmospheric science [4]. For instance, wireless communication around 100 GHz, which
can offer the potential for massive data rates and broad bandwidth, has attracted con-
siderable attention for beyond 5G and 6G communications [1,5]. The interest in modern
mmWave and THz communication systems and spectrum detectors has enabled a great
demand for abundant active and passive devices, such as oscillators [6], multipliers [7],
mixers [8], on-chip amplifiers [9], antenna arrays [10] and filters [11]. Filters, as one of
the key devices, can play an invaluable role in most systems, blocking unwanted or spu-
rious waves [12]. It is remarkable that the W-band from 75 to 110 GHz is an important
frequency window spectrum for multi-domain applications. Therefore, fast-developing
wireless communication systems at the W-band have driven a growing demand for band-
pass filters (BPFs) with high performance, such as low loss, high out-of-band rejection and
wide stopband.

Numerous mmWave and THz BPFs based on metamaterials, photonic crystals and
meshes have been reported [13], but they are exclusively selecting free-space waves in
quasi-optical systems. Compared with the substrate-based transmission lines such as
substrate-integrated waveguide (SIW) [14,15], microstrip line [16] and coplanar waveguide
(CPW) [17], the air-filled rectangular waveguide can exhibit advantages of low insertion
loss, high Q-factor, high power handling, and simple assembling. Thus, rectangular waveg-
uides are preferred as the transmission lines to construct BPFs [18–27], active circuits [7–9]
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as well as systems [2] from the W-band to THz band. However, the physical dimensions
suffer from high precision requirements due to short wavelength and small size of the
W-band BPFs. Therefore, a new generation of micro-machining technologies with high pre-
cision has been applied to realize W-band waveguide filters, such as the deep reactive ion
etching (DRIE) [18], wet etching [19], 3D printing [20], electro-forming [21], and thick SU-8
photoresist technology [22]. Although the micro-machining can manufacture waveguide
components operating at higher frequencies [23], currently, expensive clean-room, addi-
tional metal fixtures and connections are required, which will make them cost effective only
for large-scale array systems. Actually, most solid-state systems in the short-wavelength
band are adopting waveguides for main circuitry blocks in combination with lithographic
chips [2,7–9]. Thus, the most popular method for producing waveguide components is
still the computer numerical control (CNC) milling technique using a split-block way. This
technology can strengthen physical robustness while simplifying the assembling and inter-
connection, such as the W-band filters in [24–31]. In addition, the cross-coupling, extracted
poles and high-order modes have been introduced to achieve the advanced quasi-elliptical
filtering responses [26–31].

In modern wireless communication systems, the presence of multiple signal frequen-
cies can significantly degrade the communication quality of the overall system. Moreover,
spurious signals and harmonics within RF components can adversely affect the perfor-
mance of mixers and receivers. Therefore, it is essential to develop waveguide BPFs with
superior stopband suppression capabilities to address these challenges. However, spurious
bands caused by the intrinsic harmonics of waveguide resonators always exist, resulting in
poor and narrow upper stopband performance. In the microwave band, a variety of designs
have been presented to improve the stopband performance for waveguide filters such as
cascading lowpass filters [32–36]. However, these methods cannot be directly scaled up to
the W-band waveguide filters because of the structure complexity [32,33] and multi-order
cavities [36].

In this article, a W-band Chebyshev waveguide BPF with excellent stopband suppres-
sion performance is designed. The method of controlling both harmonics and couplings is
used to realize the extended stopband in the D-band. In addition, the proposed fourth-order
waveguide BPF can be easily implemented by the CNC milling technique, maintaining a
low-loss feature.

2. Spurious Suppression Methods

This section discusses two methods for the spurious suppression of waveguide BPF
based on the coupling resonator cavities.

2.1. Harmonic-Staggered Method

For most waveguide filter designs [18–31], the fundamental TE101 mode is generally
considered to construct the filter passband. Each resonator cavity can support multiple har-
monic resonances due to high-order modes; however, it will lead to introducing undesired
passbands [21,36]. The equivalent circuit diagram is shown in Figure 1, where it considers
the dominant passband and spurious passbands. Usually, the high-order resonant modes
such as TE102, TE201 or TE103 are regarded for coupling to the spurious passbands. There-
fore, the idea for breaking spurious passbands to improve stopband performance is mainly
focusing on the control of the harmonic modes or the coupled mechanism. As shown in
Figure 1, the first way is staggering the intrinsic high-order harmonics, which are marked
as the purple symbol “×”.
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Figure 1. Equivalent circuit diagram considering spurious passbands of the filter. 
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Figure 2. Normalized frequency distributions of several high-order modes in two cavities with ratio 
= 1.38 and ratio = 1.58. 

In order to verify the effectiveness of the above discussed harmonic-staggered tech-
nology, Structure-I with two resonators of ratio = 1.58 as well as Structure-II with one 
resonator of ratio = 1.58 and the other resonator of ratio = 1.38 are constructed, as shown 
in Figure 3a,b, respectively. Figure 4 illustrates the frequency response comparisons of 
Structure-II with Structure-I, where the amplitude of the first spurious passband caused 
by the TE102/TE201 mode can be suppressed by about 6 dB. 

Figure 1. Equivalent circuit diagram considering spurious passbands of the filter.

For a resonator cavity with a size of a × b × l, the TE101 and TEm0n modes can be
calculated by the following equations,
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where a and l are the width and length of the cavity along the x-axis and y-axis, respectively.
Following (1), the first harmonic passband is usually generated by the TE102 or TE201 mode.
Constructions with different ratios of a to l can be controlled to obtain staggered high-order
harmonics, i.e., different fTEm0n . Accordingly, Figure 2 gives the normalized frequency
distributions of several high-order modes (TEm0n) and the fundamental mode f 0 (TE101) in
two different cavities. The constitutive resonators are selected at the points of ratio = 1.38
and ratio = 1.58, where ratio = fTE102 / fTE101 is defined as the frequency ratio of the second
resonance mode to the fundamental one. It can be seen that the harmonic resonances
between fTE101 and fTE202 are irregularly distributed on the frequency spectrum for these
two types of resonators. The equation fTE202 = 2 · fTE101 is always correct for all resonators
in the filter design.

Electronics 2024, 13, 1793 3 of 11 
 

 

 
Figure 1. Equivalent circuit diagram considering spurious passbands of the filter. 

For a resonator cavity with a size of a × b × l, the TE101 and TEm0n modes can be calcu-
lated by the following equations, 

101 0

2 2 2 2
0 01 1 ...
2 2m nTE TE
c c m nf f

a l a l
       = + = +       
       

 (1)

where a and l are the width and length of the cavity along the x-axis and y-axis, respec-
tively. Following (1), the first harmonic passband is usually generated by the TE102 or TE201 
mode. Constructions with different ratios of a to l can be controlled to obtain staggered 
high-order harmonics, i.e., different 

0m nTEf . Accordingly, Figure 2 gives the normalized 
frequency distributions of several high-order modes (TEm0n) and the fundamental mode f0 
(TE101) in two different cavities. The constitutive resonators are selected at the points of 
ratio = 1.38 and ratio = 1.58, where 

102 101
/TE TEratio f f=  is defined as the frequency ratio of 

the second resonance mode to the fundamental one. It can be seen that the harmonic res-
onances between 

101TEf  and 
202TEf  are irregularly distributed on the frequency spectrum 

for these two types of resonators. The equation 
202 101

2TE TEf f= ⋅  is always correct for all 
resonators in the filter design. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
fTEm0n

/fTE101

rat
io=

1.3
8rat

io=
1.5

8 TE101 TE102=TE201 TE202

TE101 TE102 TE201 TE103 TE202

 
Figure 2. Normalized frequency distributions of several high-order modes in two cavities with ratio 
= 1.38 and ratio = 1.58. 
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Figure 2. Normalized frequency distributions of several high-order modes in two cavities with
ratio = 1.38 and ratio = 1.58.

In order to verify the effectiveness of the above discussed harmonic-staggered tech-
nology, Structure-I with two resonators of ratio = 1.58 as well as Structure-II with one
resonator of ratio = 1.58 and the other resonator of ratio = 1.38 are constructed, as shown
in Figure 3a,b, respectively. Figure 4 illustrates the frequency response comparisons of
Structure-II with Structure-I, where the amplitude of the first spurious passband caused by
the TE102/TE201 mode can be suppressed by about 6 dB.
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shown in Figure 5. For the TE101 mode, there are four regions with the strongest magnetic 
field (Hx and Hy) in the middle of all edges. For the higher mode TE102 or TE201, the maxi-
mum magnetic field only appears along the x- or y-direction, and the minimum magnetic 
field occurs along the edge of the x- or y-direction, as clearly displayed in Figure 5. Ac-
cordingly, by means of the orthogonal couplings, neither the TE102 mode nor TE201 mode 
can be effectively excited. This property can be confirmed by the simulation of the Struc-
ture-III model presented in Figure 3c. Figure 6 illustrates the frequency response compar-
ison of Structure-III with Structure-I. It is seen that the first spurious passband caused by 
the TE102 or TE201 mode can be greatly suppressed at the specific frequency, but the spuri-
ous passband response cannot be eliminated, which is just moved to higher frequency. 
Additional multiple resonators should be employed to completely eliminate the spurious 
passband [32], but it will increase the overall insertion loss at the working frequencies. 

There is a more practical approach for fully suppressing spurious passbands based on 
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2.2. Harmonic-Coupling Control Scheme

The second effective method is to break or modify the coupling paths of harmonics
to eliminate spurious passbands. The coupling coefficient between resonators depends
on the strength of the tangential component of magnetic field or the normal component
of electric field [12]. The magnetic field distributions of the first four modes (TE101, TE102,
TE201 and TE202) in a square resonator cavity with a ratio = 1.58 are simulated by Ansys
HFSS, as shown in Figure 5. For the TE101 mode, there are four regions with the strongest
magnetic field (Hx and Hy) in the middle of all edges. For the higher mode TE102 or TE201,
the maximum magnetic field only appears along the x- or y-direction, and the minimum
magnetic field occurs along the edge of the x- or y-direction, as clearly displayed in Figure 5.
Accordingly, by means of the orthogonal couplings, neither the TE102 mode nor TE201 mode
can be effectively excited. This property can be confirmed by the simulation of the Structure-
III model presented in Figure 3c. Figure 6 illustrates the frequency response comparison
of Structure-III with Structure-I. It is seen that the first spurious passband caused by
the TE102 or TE201 mode can be greatly suppressed at the specific frequency, but the
spurious passband response cannot be eliminated, which is just moved to higher frequency.
Additional multiple resonators should be employed to completely eliminate the spurious
passband [32], but it will increase the overall insertion loss at the working frequencies.
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There is a more practical approach for fully suppressing spurious passbands based
on the orthogonal architecture design [37]. The asymmetry between TE102 and TE201
modes after coupling addition can be compensated by moving orthogonal ports away
from the middle position with a slight shift, as shown in Figure 3d. From the response
comparison of Structure-I, -III and -IV in Figure 6, it is evidently clear that the first spurious
passband around 120 GHz can be significantly suppressed to exhibit much better stopband
performance. It is worth noting that some other harmonics at higher than 1.5f 0 frequencies
still exist.

3. Filter Design

In this section, a fourth-order waveguide filter with a symmetrical Chebyshev in the
W-band is developed to verify the usefulness of the above-mentioned spurious passband
suppression methods in improving the stopband performance, according to the following
specifications:

(1) Center frequency f 0 ≈ 85 GHz (W-band);
(2) 3 dB bandwidth FBW ≈ 5%;
(3) In-band return loss better than −20 dB;
(4) Very wide out of band up to 2 f 0.
As shown in Figure 7, this geometric configuration of the W-band filter comprises two

standard WR-10 waveguides (a × b = 2.54 mm × 1.27 mm), two cavities with ratio = 1.38
(Resonator-1 and Resonator-4) and two resonators with ratio = 1.58 (Resonator-2 and
Resonator-3). Obviously, the first strategy is employing four resonators with different
ratios to stagger the high-order harmonics to destroy the spurious passbands. The second
strategy is using the folded structure to form the orthogonal couplings to decrease the
unwanted TE102 nor TE201-mode responses and meanwhile obtain a compact structure,
as revealed in Figure 7. The adjacent resonators, namely Resonator-1 and -2, Resonator-2
and -3 and Resonator-3 and -4, are directly magnetic couplings, which are implemented
by the classical H-plane irises. It should be noted that there are no cross-couplings in this
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filter; as a result, a typical Chebyshev response will be obtained [12]. The third strategy is
shifting certain couplings to compensate coupling orthogonality to completely eliminate
the spurious passbands from the f 0 to 2f 0 band. In this design, the couplings between the
input waveguide and Resonator-1, Resonator-2 and 3, as well as Resonator-4 and the output
waveguide are shifted, as indicated in Figure 7. All the vertical corners have been filleted
with a 0.2 mm radius (R), which is necessary for such a high-frequency filter considering
the non-negligible drill size, as shown in Figure 7. Therefore, the previously discussed
methods including the harmonics-staggered technique and orthogonal coupling method
have been incorporated into this waveguide filter design without increasing the complexity
and difficulty of the structure.
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Several structural ways have been used in this design, while no other theory would be
involved. Therefore, this filter design can be realized by using the well-illustrated coupling
matrix method [12,38,39]. Based on the above specifications, the coupling coefficients of
this W-band filter can be synthesized in Table 1 and then be transformed into physical
dimensions according to the procedure. Thus, most of the initial parameters of this filter
can be acquired. In the last step, the shift value would be conveniently obtained using the
commercial simulator ANSYS HFSS while all the other parameters are kept unchanged.
The final step is only used to improve the stopband performance, while the variation in
passband is almost negligible.

Table 1. Coupling coefficients of the proposed Chebyshev filter.

MS1 M12 M23 M34 M4L

Coupling coefficient 0.0674 0.061 0.045 0.061 0.0674

After a fine-tuning optimization procedure in ANSYS HFSS, the final dimensions
of the proposed W-band waveguide filter are tabulated in Table 2. The proposed W-
band waveguide filter was fabricated in an aluminum (Al) block based on the H-plane
split method by the CNC-milling technology, as shown in Figure 8. The whole filter
structure was machined within one block to avoid the problems of misalignment and high
aspect ratio. The minimum radius of drills during the milling process is 0.2 mm, which
has been taken into account in the simulation. The assembled Al block has a volume
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of W × L × H = 20 × 20 × 20 mm3, as shown in Figure 8a. Figure 8b gives the top view
microphotograph of the internal structure, where it can be seen that both the fineness and
flatness are achieved to guarantee a good electrical contact.

Table 2. Parameter values of the proposed Chebyshev filter.

Para. Value Para. Value Para. Value Para. Value

a 2.54 a3 a1 w12 1.14 L14 0.78

b 1.27 l3 l1 l12 0.3 w4L wS1

a1 2.76 a4 a2 w23 1.0 l4L lS1

l1 1.81 l4 l2 l23 0.3 sS1 0.25

a2 2.29 wS1 1.47 w34 w12 s23 0.2

l2 a2 lS1 0.3 l34 l12 R 0.2
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4. Simulation and Measurement Results

The final simulated frequency response is shown in Figure 9 (dot dash line). It is
clear that a significant wide stopband from f 0 to 2f 0 is obtained through such design. The
spurious response suppression of better than −25 dB is greatly improved and the first
spurious appears at about 165 GHz, which is twice that of the center frequency (2f 0). This
waveguide filter has a standard Chebyshev response with a 3 dB fractional bandwidth
(FBW) of 5.5% in the W-band. Measurements of the fabricated filter were carried out by
the Agilent PNA-X vector network analyzer (VNA) connecting with frequency extension
modules of 75–110 GHz and 110–170 GHz, as shown in Figure 8c. The through-reflect-line
(TRL) calibration was first implemented, and then the packaged block was connected and
fixed to the standard waveguide converters through UG-387 flanges for measurement.

The tested and simulated S-parameter results of this W-band filter are compared in
Figure 9. Very good agreement between the simulations and measurements including the
passband and stopband performance is observed. It can be seen from the measured results
that this practical filter can provide excellent spurious suppression with −25 dB up to
2f 0. The original parasitic bands that resulted from harmonic modes between f 0 and 2f 0
have been completely eliminated. Consequently, this filter exhibits outstanding stopband
performance without introducing additional resonators, structures or losses.

In addition, as can be seen in the detailed performance in the 75–100 GHz band in
Figure 10, the basically symmetrical Chebyshev response has been achieved. The simulated
3 dB FBW is about 5.5% from 83.1 to 87.8 GHz, whereas the measured 3 dB FBW is about
5.5% from 82.5 to 87.2 GHz. They are matched well with the exception of a small band
shift of about 0.6 GHz (i.e., 0.7%·f 0) toward low frequency, which might be due to the
machining, assembly or measurement errors. The measured return loss (RL) is better than
20 dB, which is degraded slightly compared to the simulation. As shown in the bottom
subfigure of Figure 10, both the actual and expected losses are at the same level in the
passband. An insertion loss of about 0.9 dB has been achieved for this filter prototype.
The value of 3.5 × 106 S/m as the equivalent conductivity has been discussed in [26,27,40],
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which can include multiple effects of non-ideal metallic conductors, surface roughness,
electric contact, as well as other possible issues during the machining, assembling and
testing process. Of course, the IL performance can be further improved by gold or copper
plating within the block.
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Table 3 gives the performance summary of the recently reported W-band waveguide
filters compared to our work. Most filters [18–22] have exhibited high performance, such
as low loss, multiple transmission zeros and wide passband, except SIW filters [14,15] with
high dielectric losses. As can been observed from Table 3, the performance including the
low orders, passband width, IL and RL of our filter is comparable with the most advanced
W-band filters [14,15,18–31]. Although there is no transmission zero in this filter design,
the standard Chebyshev response with sharp side-bands has also been obtained, which
benefits from the spurious-free response nearby the passband. This proposed waveguide
filter has achieved a high rejection property out of band, especially in the wide upper
stopband, and it outperformed other classical filters in such a W-band. The aforementioned
results have also indicated that our proposed filter can be absolutely suitable through the
CNC-machining fabrication while maintaining high performance.
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Table 3. Performance summary of W-band waveguide filters based on different technologies.

Ref. Center
Frequency

Filter
Order

No. of
TZs

3 dB
FBW

IL/dB
(Average) RL/dB Stopband Suppression Technology

[14] 80 GHz 4 1 2.5% 3.9 10 No PCB-based SIW

[15] 93 GHz 4 2 3.4% 4.3 13.5 No GaAs-based SIW

[18] 93.7 GHz 4 — 4.9% 1.3 16 No DRIE

[19] 94 GHz 2 — 1.3% 1.75 15 No Wet-etching

[20] 100 GHz 4 — 4% 0.8 15 No Laser Micromachining

[20] 87.5 GHz 4 — 11.5% 0.5 18 No 3D-printing

[21] 90 GHz 10 — 20% 0.4 15 10th-order,
1st spurious@1.5f 0

Electroforming

[22] 100 GHz 4 2 5% 1.2 10 No SU-8 Photoresist

[24] 91.3 GHz 5 — 20% 0.6 15 No Offset-coupling, CNC

[25] 100 GHz 4 — 6% 0.5 13 No TM120-mode, CNC

[26] 92.6 GHz 4 4 5.5% 1.2 15 No Cross-coupling, CNC

[27] 100 GHz 4 1 10% 0.6 18 No Extracted pole, CNC

[29] 88.55 GHz 2 3 3.6% 1.15 18 No PCB, CNC

[30] 90 GHz 4 2 7.3% 0.63 20 No TM-mode, CNC

Proposed Filter 85 GHz 4 — 5.5% 0.9 20 Yes, better than −25 dB,
1st spurious@2f 0

CNC

In the near future, waveguide BPFs working at the W-band and above will be devel-
oped toward multiple passbands with a wider stopband. In addition, the environmental
experiments including wide adaptable temperature and mass manufacturing should be
explored for further design of the waveguide filter. It will provide a deeper insight into the
practical development and applications of the proposed W-band BPF.

5. Conclusions

A W-band waveguide filter with wide stopband performance has been proposed and
evaluated based on the CNC-milling technology. The intrinsic spurious responses from
f 0 to 2f 0 can be fully eliminated using multiple spurious passband suppression methods.
High performance including the standard Chebyshev response with a low IL of 0.9 dB in
the W-band and excellent stopband rejection level of −25 dB have been achieved. Such a
method can be even scaled up to the THz frequency band by using the advanced CNC-
milling or micro-machining technologies. It is of great potential for the applications in
millimeter-wave and THz waveguide components and systems.
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