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Abstract: The pathogenesis of cyclophosphamide (CY)-induced cardiotoxicity remains unknown,
and methods for its prevention have not been established. To elucidate the acute structural changes
that take place in myocardial cells and the pathways leading to myocardial damage under high-dose
CY treatments, we performed detailed pathological analyses of myocardial tissue obtained from
C57BL/6J mice subjected to a high-dose CY treatment. Additionally, we analysed the genome-wide
cardiomyocyte expression profiles of mice subjected to the high-dose CY treatment. Treatment with
CY (400 mg/kg/day intraperitoneally for two days) caused marked ultrastructural aberrations,
as observed using electron microscopy, although these aberrations could not be observed using
optical microscopy. The expansion of the transverse tubule and sarcoplasmic reticulum, turbulence
in myocardial fibre travel, and a low contractile protein density were observed in cardiomyocytes.
The high-dose CY treatment altered the cardiomyocyte expression of 1210 genes (with 675 genes
upregulated and 535 genes downregulated) associated with cell–cell junctions, inflammatory re-
sponses, cardiomyopathy, and cardiac muscle function, as determined using microarray analysis
(|Z-score| > 2.0). The expression of functionally important genes related to myocardial contraction
and the regulation of calcium ion levels was validated using real-time polymerase chain reaction
analysis. The results of the gene expression profiling, functional annotation clustering, and Kyoto En-
cyclopedia of Genes and Genomes pathway functional-classification analysis suggest that CY-induced
cardiotoxicity is associated with the disruption of the Ca2+ signalling pathway.

Keywords: cardiotoxicity; cyclophosphamide; functionally important gene; gene expression profiling;
ultrastructural aberration

1. Introduction

Cyclophosphamide (CY) is an old alkylating agent; it is one of the most frequently
used antitumour drugs [1,2]. CY is used not only as an antitumour agent but also as
an immunosuppressive agent for the treatment of nephrotic syndrome [3]. Although a
variety of conditioning agents are available for hematopoietic stem cell transplantation
(HSCT) to treat haematological malignancies, bone marrow failure, or immunodeficiency,
most standard treatment regimens and most commonly employed conditioning modalities
include a high dose of CY [2]. In recent years, post-transplant high-dose CY therapy has
become popular worldwide as a potent graft-versus-host disease prophylaxis, especially in
human leukocyte antigen haploidentical HSCT settings [4,5]. Thus, the use of high-dose
CY therapy is increasing.
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Cyclophosphamide has side effects such as emetogenicity, haematotoxicity, cardiac
toxic effects, pulmonary toxicity, liver damage, renal damage, haemorrhagic cystitis, car-
cinogenicity, and gonadal toxic effects [2]. Cardiotoxicity is a dose-limiting toxicity of CY.
It is well documented that acute cardiac failure occurs within a week in a small number
of patients receiving high doses of CY, with unpredictable and fatal consequences [5–7].
In addition, cyclophosphamide has recently been reported to influence thrombosis [8].

However, the detailed mechanism of the cardiotoxicity of CY is unclear, and preventive
measures have not yet been established. Due to the improving outcomes of HSCT, these
potentially fatal complications have attracted research interest.

Cyclophosphamide, a prodrug, is converted to the cytotoxic metabolites 4-hydroxycycl-
ophosphamide (HCY) and aldocyclophosphamide (AldoCY) via the cytochrome P-450
(CYP) enzyme system (CYP2B6, 2C9, 2C19, and 3A4) in the liver. Both metabolites then
circulate in the body and passively enter other cells. AldoCY undergoes an intracellular
β-elimination reaction to form phosphoramide mustard (PM), which exhibits alkylating
activity. Acrolein is formed as a by-product of this process. On the other hand, if intracel-
lular aldehyde dehydrogenase 1 activity is high, AldoCY is detoxified to o-carboxyethyl-
phosphoramide mustard (CEPM), an inactive metabolite [9,10] (Figure 1).
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Figure 1. Metabolic pathway of cyclophosphamide. The hepatic cytochrome P-450 enzyme
(CYP) system (CYP2B6, 2C9, 2C19, and 3A4) metabolises cyclophosphamide (CY) to 4-hydroxy-
cyclophosphamide (4-HCY). Subsequently, 4-HCY is oxidised to its tautomer aldocyclophosphamide
(AldoCY), absorbed by cells, and converted to phosphoramide mustard (PM) and acrolein via β-
elimination. AldoCY can be oxidised to o-carboxyethylphosphoramide mustard (CEPM) by aldehyde
dehydrogenase 1 (ALDH1).

In our previous study, we evaluated the myocardial cell injury associated with CY by
exposing H9c2 cells, a rat cardiac myocardial cell line, to CY metabolites [11,12]. We hy-
pothesised that the exposure would increase myocardial cell injury because of an increase
in acrolein levels and apoptosis. Co-exposure to the antioxidant and acrolein scavenger N-
acetylcysteine (NAC) [13] suppresses myocardial cell injury induced by the CY metabolites.
These results suggest that the protective activity of NAC is due to the inhibition of apop-
tosis, decreased acrolein production, and increased CEPM production [11]. Subsequently,
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other investigators have reported that acrolein may mediate CY-induced myocardial dam-
age [14–17].

Myocardial damage associated with the administration of CY in vivo has not been
evaluated using microarray analyses (i.e., elucidating changes in the gene expression
profiles). We determined the CY dosage based on the pharmacokinetics of CY and CY
metabolites and the clinical course in mice. We then performed a histological examination,
including the electron microscopy of the heart. These research processes were first attempts.
In this study, we aimed to examine the gene expression profiles of mice treated with CY
to elucidate the in vivo mechanism of high-dose CY toxicity using electron microscopy
and a comprehensive evaluation of gene expression. As acrolein is expected to be quickly
absorbed by proteins and not reach the myocardium when administered externally, this
study was primarily conducted by administering CY [18,19].

2. Materials and Methods
2.1. Reagents

CY (CAS # 6055-19-2) and NAC (Sigma-Aldrich, St. Louis, MO, USA) were dissolved
in normal saline (NS). Acrolein (10 mg/mL; AccuStandard®, New Heaven, CT, USA) was
dissolved in water.

2.2. Animals

Five-week-old female C57BL/6J mice (Charles River Japan, Kanagawa, Japan) were
maintained at 22 ± 2 ◦C under a 12-/12-h light/dark cycle (light on from 7:00 to 19:00 h);
water and food were provided ad libitum. The mice were sedated and anaesthetised. The
hypnotic sedative agent medetomidine hydrate (0.7 mg/kg) or analgesic agents midazo-
lam (4 mg/kg) and butorphanol tartrate (5 mg/kg) were mixed and dissolved in saline
solution. All experiments were conducted in accordance with the ARRIVE guidelines and
the Guidelines for the Proper Conduct of Animal Experiments established by the Science
Council of Japan. The animal study was approved by the Institutional Animal Care and
Use Committee of Kagoshima University, Kagoshima, Japan.

2.3. Plasma CY, HCY, and CEPM Concentrations after the Administration of High-Dose CY

To clarify the metabolic kinetics of CY, tail-vein blood samples were collected in
EDTA2NA at 1 and 3 h (or 4 h from mice administered 400 mg/kg CY) after a single
intraperitoneal administration of CY (400–700 mg/kg); the samples were centrifuged at
700 g for 15 min to obtain plasma (Figure S1). The concentrations of CY, HCY, and CEPM
were determined using liquid chromatography/tandem mass spectrometry (LC/MS/MS),
as previously described [11]. The area under the concentration–time curve (AUC) from
zero to infinity was estimated using a non-compartmental analysis with the trapezoidal
method in the MOMENT program, based on the available data points.

2.4. Histological Examinations

To examine pathological alterations associated with CY administration, the mice were
randomly assigned to CY-treated and control groups. For the mice in the control group,
250 µL of NS was administered intraperitoneally (i.p.) once a day for 2 days. Meanwhile,
the mice in the CY-treated group were administered 250 µL of 400 mg/kg CY solution
i.p. once a day for 2 days (Figure 2a). The mice in both groups were euthanised under
anaesthesia 7 days after the last dose and their hearts were collected. A section of the
heart tissue was placed in 4% paraformaldehyde phosphate buffer solution (FUJIFILM
Wako Chemicals, Tokyo, Japan) for haematoxylin–Eosin (HE) staining. For the electron
microscopy analysis, another section of the heart was placed in 2.5% glutaraldehyde in
0.1 M phosphate buffer (pH 7.4), dehydrated in ethanol, and embedded in Epon 812 (TAAB
Laboratories Equipment, Reading, UK). Ultrathin sections (80–90 nm) were obtained,
stained with uranyl acetate and lead citrate, and examined using electron microscopy
(H-7600; Hitachi, Tokyo, Japan) at an acceleration voltage of 100 kV.



Diseases 2024, 12, 85 4 of 15

Diseases 2024, 12, x FOR PEER REVIEW  4  of  15 
 

 

M phosphate buffer (pH 7.4), dehydrated in ethanol, and embedded in Epon 812 (TAAB 

Laboratories  Equipment, Reading, UK). Ultrathin  sections  (80–90  nm) were  obtained, 

stained with uranyl acetate and lead citrate, and examined using electron microscopy (H-

7600; Hitachi, Tokyo, Japan) at an acceleration voltage of 100 kV. 

 

Figure  2.  Experimental  procedures.  (a)  C57BL/6J  mice  (females  aged  six  weeks)  were 

intraperitoneally treated with normal saline (control) or 400 mg/kg cyclophosphamide (CY) once 

daily  for  two consecutive days. Seven days after  the  last dose,  the mice were euthanised under 

anaesthesia  and  their  hearts were  collected.  (b)  C57BL/6J mice  (females  aged  six weeks) were 

intraperitoneally treated with normal saline (control), 400 mg/kg CY, 5 mg/kg acrolein, or 400 mg/kg 

CY  with  200 mg/kg  N-acetylcysteine  (NAC)  once  daily  for  two  consecutive  days.  NAC  was 

administered 2 h before CY administration. Three hours after the last dose, the mice were euthanised 

under anaesthesia and their hearts were collected. 

2.5. Detection of Gene Expression Alterations   

To elucidate the gene expression alterations induced by CY, the mice were divided 

into four groups (Figure 2b). NS was used as a negative control. Mice in the CY-treated 

group were administered 250 µL of 400 mg/kg CY solution i.p. once a day for 2 days. Mice 

in the acrolein-treated group were administered 5 mg/kg acrolein aqueous solution i.p. 

Furthermore, to clarify the effect of NAC, 200 mg/kg NAC solution was administered i.p. 

to mice in the NAC + CY group at 2 h before CY administration (Figure 2b). Three hours 

after  the  last  dose,  all mice were  euthanised  and  their  hearts were  harvested  under 

anaesthesia. A section of the heart tissue was frozen in liquid nitrogen and stored at −80 

°C.   

   

Figure 2. Experimental procedures. (a) C57BL/6J mice (females aged six weeks) were intraperitoneally
treated with normal saline (control) or 400 mg/kg cyclophosphamide (CY) once daily for two
consecutive days. Seven days after the last dose, the mice were euthanised under anaesthesia and
their hearts were collected. (b) C57BL/6J mice (females aged six weeks) were intraperitoneally treated
with normal saline (control), 400 mg/kg CY, 5 mg/kg acrolein, or 400 mg/kg CY with 200 mg/kg
N-acetylcysteine (NAC) once daily for two consecutive days. NAC was administered 2 h before CY
administration. Three hours after the last dose, the mice were euthanised under anaesthesia and their
hearts were collected.

2.5. Detection of Gene Expression Alterations

To elucidate the gene expression alterations induced by CY, the mice were divided
into four groups (Figure 2b). NS was used as a negative control. Mice in the CY-treated
group were administered 250 µL of 400 mg/kg CY solution i.p. once a day for 2 days. Mice
in the acrolein-treated group were administered 5 mg/kg acrolein aqueous solution i.p.
Furthermore, to clarify the effect of NAC, 200 mg/kg NAC solution was administered i.p. to
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mice in the NAC + CY group at 2 h before CY administration (Figure 2b). Three hours after
the last dose, all mice were euthanised and their hearts were harvested under anaesthesia.
A section of the heart tissue was frozen in liquid nitrogen and stored at −80 ◦C.

2.6. Total RNA Isolation

The total RNA from the frozen heart tissue was isolated using the NucleoSpin®

RNA/Protein kit (MACHEREY-NAGEL, Düren, Germany), quantified using SpectraMax
ABS Plus (Molecular Devices, LLC., San Jose, CA, USA), and assessed using an Experion
automated electrophoresis station (Bio-Rad Laboratories Inc., Hercules, CA, USA).

2.7. Microarray Analysis

The microarray analysis was performed by Cell Innovator Inc. (Fukuoka, Japan).
cDNA was amplified and labelled using Low-Input Quick-Amp Labelling (Agilent Tech-
nologies, Santa Clara, CA, USA), hybridised using a SurePrint G3 Mouse Gene Expression
Microarray 8 × 60 K v2 (Agilent), and scanned using an Agilent scanner. We used Agilent
Feature Extraction Software (v9.5.1.1; Agilent Technologies, Santa Clara, CA, USA) to
calculate the relative hybridisation intensities and background values.

2.8. Data Analysis and Filter Criteria

We normalised the raw signal intensities of the samples (control vs. CY, control vs.
acrolein, and control vs. NAC + CY) using the quantile algorithm in the preprocessCore
library package [20] in the Bioconductor application [21], selecting probes with P flags in ≥1
sample. We used the normalised signal intensities of each probe to calculate intensity-based
Z-scores [22] and ratios (non-log-scaled fold-change) to identify up- and downregulated
genes via comparisons between the control (no CY exposure) and experimental samples
(CY, acrolein, and NAC + CY). The criteria were a Z-score of ≥2.0 and a ratio of ≥1.5-fold
for upregulated genes, and a Z-score of ≤–2.0 and a ratio of ≤0.66 for downregulated
genes. Significant over-representations of Gene Ontology (GO) categories and significant
pathway enrichment were determined using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID, 2021 update) [23], and functional annotation clustering
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional classification
analysis were performed [24]. We used MeV software 4.9.0 [25] to generate a heatmap, and
genes were sorted using the hierarchical clustering method, with colours used to indicate
the distance from the median of each row. The Pearson correlation was used as the distance
metric and average linkage clustering as the linkage method.

2.9. cDNA Synthesis and RT-PCR

cDNA was synthesised from the total RNA (see the “Total RNA Isolation” section)
using PrimeScript™ RT (Takara Bio Inc., Otsu, Japan), and the resulting cDNA was ampli-
fied using TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) (Takara Bio Inc., Otsu, Japan).
RT-PCR was performed at 95 ◦C for 30 s, followed by 40 cycles alternating between 95 ◦C
for 5 s and 60 ◦C for 30 s, using the Thermal Cycler Dice® Real-Time System (Takara Bio Inc.,
Otsu, Japan). mRNA levels were calculated using the cycle time (Ct) values normalised to
β-actin (Actβ) values. Using the 2–∆∆Ct method [26], samples were compared using relative
quantification (fold change) values.

2.10. Statistical Analysis

R statistical software (v3.4.2) was used for the analyses. All data are presented as the
mean ± standard error. Between-group differences were assessed using non-parametric
Wilcoxon tests, and results with p < 0.05 were considered significant. To detect significantly
over-represented GO categories and to characterise functionally regulated gene groups, we
used Fisher’s exact test.
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3. Results
3.1. Pharmacokinetics of High-Dose CY in Mice

CY and metabolite levels were measured in plasma samples of C57BL/6J mice that
were administered 400–700 mg/kg CY. Figure S1 shows the concentration–time profiles for
CY, HCY, and CEPM, as well as the mice survival estimates. At 1 h after the administration
of CY (400 mg/kg), the blood CY level was 25.3 µg/mL, whereas 4 h after administration, it
was <1.50 µg/mL (below the limit of measurement). The corresponding levels of HCY and
CEPM were 7.4 and 0.6 µg/mL, and 26.5 and 4.0 µg/mL, respectively. The AUC values for
CY, HCY, and CEPM were 246.4, 73.3, and 269.1 µM·h, respectively. Meanwhile, at 1 and 3 h
after the administration of 500 mg/kg CY, the plasma levels of CY, HCY, and CEPM were
118.6 and 2.3, 92.4 and 3.0, and 69.1 and 16.9 µg/mL, respectively. The mean AUC values
for CY, HCY, and CEPM were 1555.3, 1092.5, and 679.8 µM·h, respectively. Furthermore, for
a dose of 700 mg/kg, the CY, HCY, and CEPM levels were 251.2 ± 94.1 and 5.2 ± 6.4 µM·h,
57.7 ± 10.6 and 5.9 ± 4.4 µM·h, and 67.2 ± 40.0 and 26.4 ± 17.4 µM·h, respectively. The
mean AUC values for CY, HCY, and CEPM were 4809.2 ± 1782.0, 555.3 ± 115.1, and
1305.4 ± 254.9 µM·h, respectively. In C57BL/6J mice administered 400, 500, or 700 mg/kg
CY intraperitoneally, HCY and CEPM were produced in a manner comparable to that
observed in humans (Figure S2). Various doses of CY were administered to the mice, and
the maximum dose of CY that allowed the mice to survive for more than a week was
determined to be 400 mg/kg/day for two days, which was a part of the administration
schedule in this study (Figure S1).

3.2. Histopathological Examination

HE staining showed no difference between the CY-treated and NS-treated groups
(Figure 3a–d). However, the electron micrograph analysis revealed ultrastructural alter-
ations in the cardiac tissue of mice treated with CY. Treatment with CY (400 mg/kg ×
2 days) caused marked ultrastructural aberrations (Figure 3e–j). The nuclear membrane
cavity showed generalised dissociation and localised heavy dilation (Figure 3e). Lamellar
bodies appeared in the cytoplasm, and the expansion of the transverse tubule and sar-
coplasmic reticulum was observed (Figure 3e,f). Mitochondrial damage was observed,
including an expansion in size, the disintegration of cristae, and the loss of the matrix
(Figure 3f). Fat droplets and vacuolar degeneration were also observed (Figure 3f). In
addition, lamellar bodies were found in the damaged mitochondria (Figure 3f). Turbu-
lence in the myocardial fibre travel was observed (Figure 3g,h). Furthermore, in the same
myocardial cells, muscle contractile fibre structures were present, with contractile states
different from those observed in other parts (Figure 3i). Low-density contractile proteins
were detected in cardiomyocytes (Figure 3j). We measured the diameter and area of 100 mi-
tochondria from electron microscope images taken at 7000 times magnification in each
group using ImageJ software 1.53 (National Institutes of Health) (https://imagej.net/ij/,
accessed on 20 April 2024). The area of the mitochondria in the CY-treated group (me-
dian 118.5 ± 1.5 µm2) was significantly smaller than that in the control group (median
128.5 ± 1.1 µm2) (p value < 0.01). However, no significant difference was observed between
the diameters of the mitochondria in the CY-treated group (median 1.17 ± 0.04 µm) and
the control group (median 1.18 ± 0.03 µm) (p value = 0.87).

https://imagej.net/ij/
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Figure 3. Effect of cyclophosphamide (CY) on mouse cardiac tissue. Light microscopic examination
of the haematoxylin- and eosin-stained left ventricle cardiac tissue of mice treated with saline
((a,b), 100× magnification) and mice treated with CY ((c,d), 400× magnification). Images (b,d) are
magnified versions of images (a,c), respectively. Panels (e–j) show images of the ultra-structure
of the cardiac tissue of the mice treated with CY. The squares in panel (e) show the expansion
of transverse tubules and the sarcoplasmic reticulum. Arrows defined by outlines in panels (e,f)
show lamellar bodies. The circled areas in (f) show mitochondria that have either lost or expanded
their internal structure. The black arrows in panel (f) show lipid droplets. Panels (f,g) show the
turbulence of myocardial fibre travel. The dark area surrounded by a square shows muscle contractile
fibre structures with different contractile states from within the same muscle cell. Panel (j) shows
low-density contractile proteins in a cardiomyocyte. LV: left ventricle, NS: normal saline.

3.3. Identification of Gene Expression Profiles after the Administration of High-Dose CY

We examined changes in the expression of 52,141 genes using whole-gene microarray
analysis. The data were deposited at the National Center for Biotechnology Information
Gene Expression Omnibus [27] and are accessible through the Gene Expression Omnibus
Series (Accession Number GSE194073). At seven days after CY administration, the expres-
sion of 675 genes was significantly upregulated, whereas the expression of 535 genes was
significantly downregulated compared with the control values. Table 1 shows the 20 most
upregulated and 20 most downregulated genes after CY administration. At seven days after
the administration of acrolein, 280 genes were significantly upregulated and 299 genes were
significantly downregulated. Between-group differences in gene expression were examined
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using scatterplot and clustering analyses (Figure 4a,b). The number of genes with altered
expression in the CY-treated mice was higher than that in the acrolein-treated mice (Figure 4a).
Figure 4b presents the genes involved in myocardial contraction in mouse cardiac tissue
expressed at 3 h after the administration of CY. Figure 4c shows the gene expression patterns
observed in samples treated with CY, including heatmaps of the genes that differed in expres-
sion between the CY and NS groups. Furthermore, the pattern of the heatmap observed after
CY administration was partially altered by the NAC treatment. The pattern of the heatmap
observed after acrolein administration was similar to that after NS administration.

Table 1. Previous reports of HL C57BL/6J mice treated with CY: the 20 most up- and downregulated
genes among the 52,142 genes examined.

Upregulated genes:

Gene Symbol Acc# Z score Gene name

Hmox1 NM_010442 9.075 Haem oxygenase 1
Hamp NM_032541 8.900 Hepcidin antimicrobial peptide
Mt2 NM_008630 8.579 Metallothionein 2
Serpina3n NM_009252 8.301 Serine (or cysteine) peptidase inhibitor clade A, member 3N
Dmkn NM_001166173 7.662 Dermokine, transcript variant 3
Cd207 NM_144943 7.595 CD207 antigen
Dkk3 NM_015814 7.498 Dickkopf WNT signalling pathway inhibitor 3, transcript variant 2
Mlana XM_011247400 7.345 Melan-A
Sfrp5 NM_018780 7.028 Secreted frizzled-related sequence protein 5
Pip5k1a AK167816 6.856 Phosphatidylinositol-4-phosphate 5-kinase, type 1 alpha
Clec1b NM_019985 6.784 C-type lectin domain family 1, member b, transcript variant 1
Anxa8 NM_013473 6.760 Annexin A8, transcript variant 1
Fam32a NM_026455 6.494 Family with sequence similarity 32, member A
Gp9 NM_018762 6.430 Glycoprotein 9 (platelet)
Lgals3 NM_001145953 6.298 Lectin, galactose binding, soluble 3, transcript variant 1
Fam183b NM_029283 6.237 Family with sequence similarity 183, member B transcript variant 1
Clec4d NM_010819 6.155 C-type lectin domain family 4, member d, transcript variant 1
Cntf NM_170786 6.133 Ciliary neurotrophic factor
Ppbp NM_023785 6.065 Pro-platelet basic protein
Gata2 NM_008182 5.986 Glutathione S-transferase, alpha 2

Downregulated genes:

Gene Symbol Acc# Z score Gene name

Cx3cr1 NM_009987 −6.630 Chemokine (C-X3-C motif) receptor 1
Nckap5 NM_172484 −5.346 NCK-associated protein 5, transcript variant 2
Aplnr NM_011784 −5.227 Apelin receptor
Apln NM_013912 −5.118 Apelin
Itga9 NM_133721 −4.791 Integrin alpha 9, transcript variant 1
Tfrc NM_011638 −4.554 Transferrin receptor, transcript variant 1

Ppargc1b NM_133249 −4.504 Peroxisome proliferative activated receptor, gamma, coactivator 1 beta,
transcript variant 1

Akap7 XM_006512789 −4.497 A kinase (PRKA) anchor protein 7
Cops8 NM_133805 −4.479 COP9 signalosome subunit 8

Plekhh1 NM_181073 −4.462 Pleckstrin homology domain containing, family H (with MyTH4 domain)
member 1

Galnt17 NM_145218 −4.418 Polypeptide N-acetylgalactosaminyltransferase 17
Large1 NM_010687 −4.360 LARGE xylosyl- and glucuronyltransferase 1, transcript variant 2
Klhdc8a NM_144810 −4.358 Kelch domain containing 8A
Kcne1 NM_008424 −4.307 Potassium voltage-gated channel, lsk-related subfamily, member 1
Nrn1 NM_001374754 −4.275 Neuritin 1, transcript variant 2
Klra8 NM_010650 −4.228 Killer cell lectin-like receptor, subfamily A, member 8, transcript variant 2
Ccl21a NM_011124 −4.226 Chemokine (C-C motif) ligand 21A (serine)
Dbp NM_016974 −4.233 D site albumin promoter binding protein
Fhl2 NM_010212 −4.201 Four and a half LIM domains 2, transcript variant 1
Tuba4a NM_009447 −4.169 Tubulin, alpha 4A, transcript variant 1
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Figure 4. Gene expression profiles. (a) Scatterplots of gene expression in C57BL/6J mice administered
cyclophosphamide (CY) or acrolein. The X-axis shows the relative normalised log2-signal intensity
of the control (NS) samples and the Y-axis shows the normalised log2-signal intensity of the CY-
or acrolein-treated samples. (a) Blue dots and red dots indicate downregulated and upregulated
genes, respectively. (b) Scatterplots highlighting genes associated with myocardial contraction.
(c) Clustering diagram of gene trees and a heatmap generated using MeV software 4.9.0 with the
hierarchical clustering (HCL) method to sort the genes, with Pearson correlation estimates used as
the distance metrics and average linkage clustering used as the linkage method. Red and green
blocks represent high and low levels of expression, respectively, relative to those in the control group;
black blocks indicate expression levels similar to those in the control. (d) Expression levels of genes
associated with myocardial contraction after CY administration, as determined using RT-PCR.
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3.4. Gene-Enrichment and Functional Annotation Analyses

The initial data were generated based on the results of the NS- and CY-administration
groups and were categorised based on several annotation categories, including protein–
protein interactions and GO terms (p < 0.05). The five most frequent functional annotation
clustering categories obtained for the samples treated with CY for 3 h are shown in Table 2.
Genes related to dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopa-
thy, and hypertrophic cardiomyopathy, which is associated with myocardial dysfunction,
were significantly altered by the administration of CY. The generation of functionally reg-
ulated gene groups was based on the KEGG pathway database (Table 3). Three hours
after the administration of CY, the major genes identified in C57BL/6J mouse cardiac tissue
were those involved in dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmo-
genic right ventricular cardiomyopathy, viral protein interactions with cytokines and their
receptors, and extracellular matrix receptor interactions.

Table 2. Functional annotation clustering analysis of genes expressed in C57BL/6J mouse cardiac
tissue 3 h after the last dose of CY.

Annotation Cluster Count p

1 (Enrichment Score: 20.72)
Extracellular region 210 2.8 × 10−29

Extracellular space 196 1.3 × 10−20

Signal 349 7.0 × 10−12

2 (Enrichment Score: 13.13)
Signal 349 7.0 × 10−12

Disulphide bond 249 2.3 × 10−11

Glycoprotein 345 4.9 × 10−11

3 (Enrichment Score: 7.52)
Cell junction 89 2.3 × 10−9

Synapse 55 4.0 × 10−7

4 (Enrichment Score: 6.14)
Dilated cardiomyopathy 21 3.1 × 10−7

Hypertrophic cardiomyopathy 20 8.5 × 10−7

Arrhythmogenic right ventricular cardiomyopathy 18 1.4 × 10−6

5 (Enrichment Score: 4.00)
Membrane 451 1.9 × 10−12

Plasma membrane 361 1.2 × 10−6

Cell membrane 237 4.8 × 10−5

Table 3. KEGG pathway functional classification of genes in C57BL/6J mouse cardiac tissue expressed
3 h after the administration of CY.

Term Count p

Dilated cardiomyopathy 21 3.1 × 10−7

Hypertrophic cardiomyopathy (HCM) 20 8.5 × 10−7

Arrhythmogenic right ventricular
Cardiomyopathy (ARVC) 18 1.4 × 10−6

Viral protein interaction with cytokine
and cytokine receptor 20 1.7 × 10−6

ECM-receptor interaction 19 2.2 × 10−6

Focal adhesion 29 1.3 × 10−5

Metabolism of xenobiotics by cytochrome P450 16 1.5 × 10−5

Hematopoietic cell lineage 18 2.4 × 10−5

Fluid shear stress and atherosclerosis 23 4.1 × 10−5

Platinum drug resistance 16 4.6 × 10−5
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3.5. RT-PCR Validation of the Microarray Analysis Findings

Using RT-PCR and β-actin as a control, we examined the expression levels of nine
genes, including those that are important for myocardial function. The RT-PCR data
confirmed the results of the microarray analysis (Figure 4d). Figure 5 is a schematic
diagram showing genes that are important for myocardial contraction in cardiomyocytes,
with colour-coded changes in expression.
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Figure 5. Schematic representation of the gene expression profile in the cardiac tissue of a C57BL/6J
mouse. Red boxes denote genes that were upregulated 3 h after treatment with cyclophosphamide.
Blue boxes denote downregulated genes. Green boxes show genes with unchanged expression.
ACTC1: actin, alpha cardiac muscle, ACTG1: actin beta/gamma 1, CASQ2: calsequestrin 2, Cav1:
voltage-dependent calcium channel L type alpha-1C, Cyto: ubiquinol–cytochrome c reductase iron–
sulfur subunit, DHPR: voltage-dependent calcium channel L type alpha-1C, DMD: dystrophin,
IP3R: inositol 1,4,5-triphosphate receptor type 1, ITGA: integrin alpha 1, ITGB: integrin beta 1, JCN:
aspartate beta-hydroxylase, MYH6: myosin heavy chain 6, MYH7: myosin heavy chain 7, NCAD:
cadherin 2, type 1, N-cadherin, NCX: solute carrier family 8 (sodium/calcium exchanger), PG:
junction plakoglobin, Pln: phospholamban, RyR2: ryanodine receptor 2, SERCA2a: P-type Ca2+

transporter type 2A, SGCD: delta-sarcoglycan, TRDN: triadin.

4. Discussion

We examined the ultrastructural alterations induced by the administration of high-
dose CY in cardiac tissues using electron microscopic analysis. We found several structural
changes in the cardiomyocyte nuclear membrane, sarcoplasmic reticulum, mitochondria,
and muscle fibres after high-dose CY administration. Changes in the expression of genes
associated with high-dose CY administration were detected via a comprehensive gene
expression microarray analysis. Notably, most gene groups related to myocardial contrac-
tion and the Ca2+ signalling pathways were downregulated. The changes observed in
these gene groups were consistent with those observed in the electron microscopy analysis.
Genes that were altered by the administration of CY included genes related to oxidative
stress, endoplasmic reticulum stress, apoptosis, p53 expression, p38MAPK, GSK-3β, and
Akt/PI3K signalling. However, there have been no reports on the myocardial contrac-
tion or Ca2+ signalling pathway [28–33] that may be involved in the mechanism of CY
myocardial damage.
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The pumping action of the heart involves the contraction and relaxation of cardiomy-
ocytes, which constitute the heart. These mechanisms are mainly controlled by increases
and decreases in intracellular Ca2+ concentrations. The regulation of intracellular Ca2+ con-
centrations is important for the heart to continuously and smoothly pump blood throughout
the body [34,35]. The increase in intracellular Ca2+ concentrations in the myocardium is
triggered by an influx of Ca2+ through the L-type Ca2+ channels (DHPR) and Ca2+ release
from the sarcoplasmic reticulum (RyR2) upon stimulation [36,37]. The excess intracellular
Ca2+ binds to troponin C (TnC), a subunit of the contractile regulatory protein troponin, and
changes the steric configuration of tropomyosin, resulting in an interaction between actin
and myosin. A contraction is induced by the interaction between actin and myosin. The de-
crease in the intracellular Ca2+ concentration is caused by the uptake of sarco/endoplasmic
reticulum Ca2+-ATPase 2A into the sarcoplasmic reticulum, the extracellular efflux of the
Na+/Ca2+ exchange system, or efflux by cell membrane Ca2+ pumps, resulting in the
relaxation of the myocardium [38,39]. In our study, the gene expression of DHPR, RyR2,
and TnC, which are important proteins involved in the regulation of the Ca2+ concentration,
was decreased. The disruption of calcium regulatory mechanisms may cause elevated
intracellular calcium concentrations, resulting in inflammation and the apoptosis of car-
diomyocytes, leading to myocardial contractile dysfunction. Based on the new mechanism
identified in this study, CY myocardial injury may be prevented with the use of Ca2+

signalling sensitisers, such as levosimendan and pimobendan [40].
Concurrently, the gene expression analysis conducted after the administration of

acrolein, which is considered to be the main driver of CY-related myocardial damage
in in vitro research, revealed patterns that were different from those observed after the
administration of CY. Acrolein is a small molecule that is highly reactive when exposed to
unsaturated aldehyde and is quickly adsorbed by proteins and other substances [16,17].
Therefore, it may be necessary to re-examine whether the acrolein dosage and method of
administration used in this study were appropriate. Furthermore, given the metabolism
of CY, the myocardial injury model of CY may not be exactly replicated unless acrolein is
present in the myocardial cells. The findings of the present study preclude us from making
any conclusions regarding the contribution of acrolein to CY cardiotoxicity.

The NAC treatment significantly altered the expression of genes related to pathways
such as chemical cardiogenesis–DNA adducts, complement and coagulation cascades,
and retinol metabolism. The NAC treatment also significantly altered the expression of
genes related to dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmo-
genic right ventricular cardiomyopathy. The findings of the electron microscopy analysis
conducted after the administration of NAC were comparable to those achieved after CY
administration. The experimental methods used to evaluate the NAC treatment require
further research.

ST2, a member of the interleukin-1 receptor family [41], is released by cardiomyocytes
in response to myocardial stress [42]. ST2 levels were reported to be increased and were
associated with changes in left ventricular systolic function during a three-year follow-up
period after adjuvant radiotherapy for breast cancer [43]. ST2 levels are a potential new
biomarker in CY-induced cardiotoxicity.

Our study had several limitations. First, all of the mice used in this study were
young females. This is because cyclophosphamide-induced cardiotoxicity is often a clinical
problem in young females. However, more animal models are worthy of study. Second,
it is unclear whether the highly reactive acrolein properly affected the cardiomyocytes of
mice in the present exposure procedure.

5. Conclusions

At high doses, CY causes the expansion of transverse tubules and the sarcoplasmic
reticulum, leads to turbulence in myocardial fibre travel, and generates low-density con-
tractile proteins in cardiomyocytes, as observed using electron microscopy. The microarray
analysis revealed that high-dose CY treatment changed the cardiomyocyte expression of
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1210 genes associated with cardiomyopathy and cardiac muscle function. The results of the
gene expression profiles, along with functional annotation clustering and the KEGG path-
way functional classification analysis, suggest that CY-induced cardiotoxicity is associated
with the disruption of the Ca2+ signalling pathway; these findings are consistent with the
results of the electron microscopy. The CY-induced cardiotoxicity identified in this study
may help to prevent adverse cardiac events during treatment by avoiding the disruption of
Ca2+ regulatory mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diseases12050085/s1. Figure S1: Protocol for measuring blood
levels of cyclophosphamide (CY) and its metabolites in C57BL/6J mice and the effect of CY adminis-
tration; Figure S2: Pharmacokinetics of high-dose cyclophosphamide (CY) in C57BL/6J mice.
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Abbreviation Full term or phrase
Actβ actin beta
Akt protein kinase B
AldoCY aldocyclophosphamide
ALDH1 aldehyde dehydrogenase 1
AUC area under the concentration-time curve
CEPM o-carboxyethyl-phosphoramide mustard
CY cyclophosphamide
CYP cytochrome P-450
Ct cycle time
DAVID Database for Annotation, Visualization, and Integrated Discovery
EDTA ethylenediaminetetraacetic acid
GO gene ontology
GSK-3β glycogen synthase kinase 3β
HE haematoxylin-Eosin
HCL hierarchical clustering
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4-HCY 4-hydroxy-cyclophosphamide
HSCT hematopoietic stem cell transplantation
i.p. Intraperitoneally
KEGG Kyoto Encyclopedia of Genes and Genomes
LC/MS/MS liquid chromatography/tandem mass spectrometry
NAC N-acetylcysteine
NS normal saline
p38MAPK P38 mitogen-activated protein kinase
PI3K Phosphoinositide 3-kinase
PM phosphoramide mustard
RT-PCR reverse transcription PCR
TnC troponin C
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