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Abstract: Torin1, a selective kinase inhibitor targeting the mammalian target of rapamycin (mTOR),
remains widely used in autophagy research due to its potent autophagy-inducing abilities, regardless
of its unspecific properties. Recognizing the impact of mTOR inhibition on metabolism, our objective
was to develop a reliable and thorough untargeted metabolomics workflow to study torin1-induced
metabolic changes in mouse embryonic fibroblast (MEF) cells. Crucially, our quality assurance and
quality control (QA/QC) protocols were designed to increase confidence in the reported findings
by reducing the likelihood of false positives, including a validation experiment replicating all ex-
perimental steps from sample preparation to data analysis. This study investigated the metabolic
fingerprint of torin1 exposure by using liquid chromatography—high resolution mass spectrometry
(LC-HRMS)-based untargeted metabolomics platforms. Our workflow identified 67 altered metabo-
lites after torin1 exposure, combining univariate and multivariate statistics and the implementation
of a validation experiment. In particular, intracellular ceramides, diglycerides, phosphatidylcholines,
phosphatidylethanolamines, glutathione, and 5′-methylthioadenosine were downregulated. Lyso-
phosphatidylcholines, lyso-phosphatidylethanolamines, glycerophosphocholine, triglycerides, ino-
sine, and hypoxanthine were upregulated. Further biochemical pathway analyses provided deeper
insights into the reported changes. Ultimately, our study provides a valuable workflow that can be
implemented for future investigations into the effects of other compounds, including more specific
autophagy modulators.

Keywords: high-resolution mass spectrometry; mTOR; autophagy; metabolism; lipids

1. Introduction

Untargeted metabolomics is the discovery-based study of endogenous small molecules
(<1500 Da) and provides comprehensive information about the biochemical profile of a bio-
logical system at a given time [1–3]. Since changes in the metabolome are highly correlated
with phenotypic alterations, metabolomics can provide valuable insights into physiological
and pathological processes, as well as identify potential diagnostic biomarkers, potential
pharmacotherapeutic targets, and mechanisms of action [4]. Torin1 is a strong and selective
ATP-competitive inhibitor of the mammalian target of rapamycin (mTOR) that can effec-
tively block mTORC1 and mTORC2 phosphorylation [5,6]. mTOR is a serine/threonine
kinase that functions as the catalytic subunit of mTORC1 and mTORC2 complexes. mTOR
complexes consist of multiple subunits, in which mTOR interacts with different binding
partners that confer complex-specific functions and coordinately, promote cell growth,
proliferation, and survival [7]. This inhibition mimics cellular starvation by regulating
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different signals, such as the unc-51-like kinase 1 (ULK1) complex, thereby upregulat-
ing macro-autophagy [8]. mTOR is a major regulatory protein that is involved in many
signaling pathways and controls processes other than autophagy (e.g., protein synthesis
and regulation of the actin cytoskeleton) [7,9]. Torin1 is increasingly used in autophagy
research due to its potency to induce autophagy, despite its unspecific properties [10].
Torin1 is intended for research purposes and has been used both in vitro and in vivo.
Liu et al. discovered that torin1 has a short half-life and low oral bioavailability in mice
but displays pharmacodynamic inhibition of both mTORC1 and mTORC2 outputs in the
lung and liver [6]. Other studies have explored torin1-induced metabolic changes using
a (flux) targeted metabolomics method [11,12]. Additionally, Hosios et al. investigated
intracellular lipid rearrangements induced by torin1, with a particular focus on lysosomal
dependency [13].

Our goal in conducting this study was to develop a reliable and thorough untargeted
metabolomics workflow with the application of torin1 exposure in mouse embryonic fibrob-
last (MEF) cells. Crucially, our quality assurance and quality control (QA/QC) protocols
were designed to increase confidence in the reported findings by reducing the likelihood of
false positives. This included the implementation of a validation experiment that replicated
the original experiment, starting from sample preparation to data analysis. Additionally,
only features selected using a combination of univariate and multivariate statistics from
both independent experiments were further annotated, and manual verification was done
to ensure the correct fold changes and identification [14,15]. To detect this wide range
of metabolites, comprehensive sample preparation combined with highly sensitive and
specific analytical methods using complementary techniques is often required [16]. In
this study, the effects of torin1 exposure on cell metabolism were investigated using liq-
uid chromatography-high-resolution mass spectrometry (LC-HRMS)-based untargeted
metabolomics platforms. These analytical platforms combine hydrophilic interaction liq-
uid chromatography (HILIC)-HRMS and reversed-phase liquid chromatography (RPLC)-
HRMS combined with electrospray ionization in positive and negative modes (ESI (+) and
ESI (−)) [17–19]. Two HILIC methods were used in the metabolomics platform to separate
polar metabolites such as organic acids, amino acids, and sugars from the polar sample
fraction. The apolar sample fraction was analyzed by the lipidomics platform, which uses
RPLC to cover a variety of lipid classes. Overall, the metabolic and lipidomic signatures
could be elucidated by comparing the relative difference in signal intensity between biolog-
ical control samples and biological samples exposed to torin1. This approach helps clarify
the molecular mechanisms underlying the complex metabolic process of mTOR inhibition,
providing a useful workflow that can be implemented for future investigations into the
effects of other compounds, including more specific autophagy modulators.

2. Materials and Methods
2.1. Materials and Chemicals

MEFs were exposed to torin1 (475991, Merk Millipore, Burlington, MA, USA) and stau-
rosporine (81590, Cayman Chemical, Ann Arbor, MI, USA), which had been pre-dissolved
in dimethylsulfoxide (DMSO). MEF cells were seeded in Permanox 1-well Lab-Tek chamber
slides from Nunc, Thermo Scientific (Rochester, New York, NY, USA) in Dulbecco’s Modified
Eagle Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) supplemented with 10% Fetal
Bovine Serum (FBS) and 1% Penicillin-Streptomycin (Life Technologies, Carlsbad, CA, USA).
Internal standards (IS) for hippuric acid-(phenyl-13C6), L-lysine-13C6−15N2, leucine-5,5,5-
D3, D-glucose-13C6, glyceryl tri-(palmitate-1-13C), and cholic acid-2,2,4,4-D4 were purchased
from Sigma-Aldrich (St. Louis, MI, USA). Caffeine-13C3 was acquired from Cerilliant Cor-
poration (Round Rock, TX, USA), 18:1-D7 lyso-phosphatidylethanolamine (LPE), 18:1-D7
lyso-phosphatidylcholine (LPC) from Avanti Polar Lipids (Birmingham, UK), octanoyl-L-
carnitine-(N-methyl-D3), ceramide [d18:1/18:1-(9Z)-13C18] and L-phenylalanine-13C9−15N
from Cambridge Isotope Laboratories (Andover, MA, USA). Additional materials and chemi-
cals are described in Supplementary Materials Section S1.
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2.2. Cell Line Generation, Treatment, Viability, and Western Blot Analysis

MEFs were generated according to the protocol by Xu (2005) through timed preg-
nancy in C57BL/6J mice [20]. A detailed protocol is written in Supplementary Materials
Section S2.1. The cells were cultured at 37 ◦C, 5% CO2, and saturated humidity in DMEM
supplemented with 10% FBS and 1% Penicillin-Streptomycin. The same clone was used
for all exposure experiments. Cell viability was evaluated using the Incucyte® Cytotox
Red Dye (Sartorius Cat. No. 4632) to assess xenobiotic-induced cytotoxicity, following
established guidelines (see Supplementary Materials Section S2.2) [21]. The concentration
of torin1 in this study was selected based on previous experiments in MEFs [22]. On
day 1, MEFs were exposed to 1 µM torin1 (i.e., exposure group, N = 12), 0.1% DMSO
(i.e., vehicle control, N = 12), and 100 nM staurosporine (i.e., positive control, N = 12) in
250 nM Cytotox Red Dye-containing media. Images were taken every two hours over
20 h, capturing phase contrast and fluorescence at 631 nm in 4 random well positions.
Cytotox Red dye-positive cells were quantified using a binary mask. Additionally, cell
confluency was tracked for 66 h during the metabolomics exposure using phase-contrast
images and the Incucyte® live-cell analysis system. A western blot analysis served as a
positive control to determine whether torin1 had any effect in our experimental set-up,
specifically targeting the autophagic markers LC3 and SQSTM1 (p62). MEFs were exposed
to 1 µM torin1 or 0.1% DMSO for 18 h with and without the addition of 100 nM bafilomycin
A1, which inhibits lysosomal degradation and autophagosome-lysosome fusion, during
the final 3 h of treatment [23]. Cells were collected in ice-cold PBS and lysed in RIPA
buffer (1% Nonidet P-40, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholic acid, 1mM EDTA,
50 mM Tris-HCl, pH 7.5) with complete protease and Phospho-STOP inhibitor mixtures for
20 min on ice and cleared by centrifugation for 15 min at 20,817 rcf. Protein concentration
in the cell lysate was quantified by Pierce BCA protein assay kit and equally loaded on a
NuPAGE™ 12% Bis-Tris gel. Proteins were blotted on a nitrocellulose membrane, and total
protein staining was performed after transfer with No-Stain™ Protein Labeling Reagent
kit. Blocking was performed with 5% milk powder in 1X PBS/0.5% Tween-20. Membranes
were probed with primary antibodies targeting LC3 and SQSTM1 (p62) proteins serving
as markers for autophagy induction, along with the loading control β-actin [24,25]. Mem-
branes were developed using Pierce ECL Plus Western Blotting Substrate and imaged with
an Amersham 600 Imager.

2.3. Exposure Parameters, Sample Collection, and Sample Preparation

MEF cells were seeded at a density of 75,000 cells in collagen-coated Permanox 1-well
Lab-Tek chamber slides. MEFs were maintained at standard culture conditions to settle
and reach confluency. After two days, they were exposed to 1 µM torin1 (N = 16) or 0.1%
DMSO (negative control, N = 16) for 18 h. In addition, four chamber slides containing the
culture medium without cells were prepared as extraction blanks. Extraction of metabolites
from MEF cells was based on previously described methods [17,26]. A detailed protocol
for intracellular MEF cell extract preparation is presented in Supplementary Materials
Section S3.1. In short, cells were snap-frozen using liquid nitrogen and scraped from the
carrier with 600 µL quenching solution of 80% MeOH and 20% 10 mM CH3COONH4 (v/v)
in H2O at −80 ◦C. Two chamber slides were combined in one liquid-liquid extraction (LLE)
vial with MeOH/H2O/CHCl3 (3/2/2, v/v/v). Each sample group had eight replicates. A
mixture of 12 internal standards, including 6 polar and 6 apolar compounds, was added
before extraction. Subsequently, the extraction mixture was vortexed for 60 s, equilibrated
for 10 min at 4 ◦C, centrifuged at 2200× g for 7 min at room temperature, and again
equilibrated for 10 min at 4 ◦C. Polar and apolar fractions were transferred and divided
into two subfractions before the evaporation step, in order to analyze each subfraction
using a different polarity during LC-HRMS acquisitions. Extracts were dried under a N2
stream and reconstituted for analysis. Polar and apolar samples were reconstituted using
60 µL of MeCN/H2O (65/35, v/v) and IPA/MeOH (35/65, v/v), respectively. To separate
polar metabolites, two HILIC methods were used on the metabolomics platform. The
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lipidomics platform, which employs RPLC to analyze a wide range of lipid classes, was
used to examine the apolar fraction. Figure 1 provides a graphical representation of the
preparation of MEF extracts.
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Figure 1. Graphical representation of the MEF cell extract preparation. Cells were exposed
to 1 µM torin1 or 0.1% DMSO for 18 h. Liquid-liquid extraction was performed using 3/2/2,
MeOH/H2O/CHCl3 (v/v/v), generating polar and apolar fractions. Each fraction was divided in
two for analysis in ESI (+) and ESI (−) modes. ESI, electrospray ionization; HILIC, hydrophilic
interaction liquid chromatography; RPLC, reversed phase liquid chromatography.

A dilution series was used to evaluate the number of cells needed during sample
preparation and the instrumental response of the LC-HRMS system in terms of achieving a
balance between sensitivity and detector saturation. A detailed protocol for the optimiza-
tion of the dilution factor for intracellular MEF cell extracts is included in Supplementary
Materials Section S3.2. The appropriate dilution factor was chosen based on the dilution
level that enables the instrument to detect most compounds within the linear dynamic
range to balance the high and low intensities of metabolites in a sample [27]. In addition,
equal volumes from each sample extract (excluding extraction blanks) were combined to
generate a separate pooled quality control (QC) sample for each analytical platform and
ionization mode. The pooled QC samples were applied to condition the analytical system,
acquire MS/MS data, and perform precision measurements over six repeated injections at
predefined intervals [28]. To ensure reliable data, a validation experiment was performed,
which consisted of an identical replication of the initial experiment from sample preparation
to data analysis.

2.4. Instrumental Analysis

The data acquisition platforms were previously optimized for both polar and apolar
fractions [18,19]. Details on the LC and quadrupole time-of-flight (QToF) parameters can be
found in Supplementary Materials Table S1 The polar fraction was analysed on an Agilent
1290 Infinity UPLC system coupled to an Agilent 6530 QToF-HRMS with an Agilent Jet
Stream ESI source. In ESI (+), an iHILIC-Fusion column (100 × 2.1 mm, 1.8 µm, zwitterionic,
charge modulated amide, silica-based, HILICON AB, Sweden) was used with H2O/MeOH
(9/1, v/v) containing 10 mM NH4COOH and 0.1% (v/v) HCOOH as mobile phase A
(MPA) and MeCN as mobile phase B (MPB). In ESI (−), an iHILIC-Fusion(P) column
(100 × 2.1 mm, 5 µm, zwitterionic, charge-modulated amide, polymer-based, HILICON
AB) was used with 2 mM CH3COONH4 and 2 mM (NH4)2CO3 in H2O as MPA and
MeCN/MeOH (9/1, v/v) as MPB.

The analysis of the apolar fraction was performed on an Agilent 1290 Infinity II LC
system coupled to an Agilent 6560 drift tube-ion mobility (DTIM)-QtoF-HRMS using
Agilent Dual Jet Stream ESI source. In both ESI (+) and ESI (−) modes, an ACQUITY UPLC
PREMIER BEH C18 column (150 × 2.1 mm, 1.7 µm, Waters Corporation, Massachusetts,
USA) was used with 5 mM CH3COONH4 in H2O/MeCN (7/3, v/v) as MPA and 5 mM
CH3COONH4 in H2O/MeCN/IPA (2/10/88, v/v/v) as MPB. In the ESI (+) mode, 0.1%
(v/v) CH3COOH was added to the aqueous fraction of MPA and MPB. During the entire run,
a calibrant solution containing purine (m/z 121.0508 and m/z 119.0363 in ESI (+) and ESI (−),
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respectively) and hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine (m/z 922.0097 and
m/z 966.0007 in ESI (+) and ESI (−), respectively) was constantly infused with an additional
isocratic pump to calibrate the mass axis. Samples were randomized, and full scan (MS1)
data were acquired in profile mode using 2 GHz extended dynamic range. A pooled
QC sample was injected six times at regular intervals [28]. Data-dependent acquisition
(DDA) was obtained by injection of the QC pooled sample during system conditioning.
DDA with iterative exclusion was also acquired for the lipidomics fractions. During the
validation experiment, a target list was used for DDA acquisitions originating from the
selected interesting features of the first exposure experiment.

2.5. Data Analysis

The raw LC-HRMS data files, stored in the Agilent .d format, were converted to
.mzML format using MSConvert [29]. Subsequently, these files were processed in MS-DIAL
(v. 4.9) [30]. The specific parameters utilized in MS-DIAL are outlined in Supplemen-
tary Materials Table S2 The resulting data matrix was imported into MS-FLO for further
deisotoping and duplicate removal [31]. The relative standard deviation (RSD) of the
intensity for each feature was plotted for each sample group to assess data quality. Next,
drift correction was applied using the cubic spline method in Notame R-package [32]. To
guarantee high-quality features, several filtration steps were implemented. Blank sub-
traction was performed for features with a maximum intensity < 10 times the average
extraction blank intensity. Additionally, a feature had to be present in at least 75% of any
sample group, and only features with an RSD < 30% on feature intensity in the exposed
group were kept. Missing values were imputed by using a random forest (RF), and in-
tensity values were log-transformed [32]. For data normalization, the median intensity
of the QC pooled samples was used as a reference for probabilistic quotient normal-
ization (PQN). Subsequently, a Pareto scaling was performed [32–39]. Outlier samples
were removed based on the number of features in a sample when compared to other
samples from the same group, the principal component analysis (PCA) plots [40], and devi-
ations in the detection of IS. The predefined requirements for IS deviation included a peak
height above 5000 counts and without saturation, mass error <10 ppm, retention time (RT)
deviation < 0.5 min for HILIC, and <0.2 min for RPLC.

Both univariate and multivariate statistics were used independently to select discrimi-
native features for further annotation. The Shapiro-Wilk test was performed (before data
pretreatment) to check for normality, utilizing the intensity values for each feature sepa-
rately. Depending on the significance (p < 0.05) of the Shapiro-Wilk test, a Mann-Whitney
U-test or a student-T-test was performed, including a correction for multiple testing [41,42].
Features with p < 0.05 and a fold change (FC) > 5 or <0.2 compared to the control group
were considered significant. This relatively high threshold for FC was used to keep only the
most distinctive metabolites selected by univariate statistics. Our goal in using such strict
criteria was to ensure the reproducibility and reliability of our findings. This approach
minimizes the likelihood of false positives, improving the validity of our results. Moreover,
these stringent selections provide a robust foundation for identifying potential biomarkers
that can serve as diagnostic indicators in clinical applications and in vivo experiments,
where stringent criteria are often necessary. Additionally, multivariate statistics were per-
formed to take associations into consideration within the broader network. This can help
in the biological interpretation during the biochemical pathway analysis of the selected
interesting features. Multivariate statistics included a partial least squares-discriminant
analysis (PLS-DA) with 7-fold cross-validation and a binary RF classifier [43]. The PLS-DA
model was evaluated by a permutation test of the y-variable (n = 1000) and by the R2 and
Q2 values of the model, while the RF model was evaluated by the area under the curve
(AUC). Interesting features for further annotation were selected based on their variable
importance in projection (VIP) value for the PLS-DA model and their mean decrease in
accuracy for the RF model. Features selected by the univariate and/or multivariate models
were only kept when they were confirmed in a second identical experiment, starting from
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sample collection to data analysis, to validate and increase the reliability of the results. In
addition, boxplots based on the intensity of the features in each group were created for
each selected feature and manually evaluated to decrease the number of false positives.

2.6. Annotation of Metabolites

A tandem mass spectral library (MS/MS) search was performed to annotate metabolites
in both polar and apolar fractions [44]. First, the All Public MS/MS library (v. 15) and
modified LipidBlast library were used in MS-DIAL (v. 4.9) [30]. Next, MassBank of North
America [45] and the NIST library (v. 17) with MS Search (v. 2.3, National Institute of
Standards and Technology, Gaithersburg, MD, USA) [46] were used for MS/MS spectra
matching. For the lipid fractions, the rule-based fragmentation tools LipidMatch [47] and
LipidHunter [48] were also used. The annotation confidence was improved through manual
evaluation of matched MS/MS spectra, utilizing an in-house library (available in MassBankEU
10.5281/zenodo.8308157) for a higher level of confidence if the standard was available, and
rule-based fragmentation for manual evaluation of annotated lipids [49–51]. All structures
were reported according to the annotation confidence system of Schymanski et al. [52] The
features that could be annotated with a confidence level (CL) of 3 or higher were reported.

3. Results and Discussion
3.1. Cell Viability and Western Blot Analysis

Torin1 xenobiotic-induced cytotoxicity was evaluated in MEF. Torin1 was compared
to vehicle control (0.1% DMSO) and staurosporine, a known cytotoxic compound. The
increase in fluorescent emission at 631 nm was used to quantify the reduction in cell
viability, which is proportional to the amount of Incucyte® Cytotox Red Dye bound to the
DNA of compromised cells. Figure 2A shows the normalized fold changes (FC) in the
average red object count per well ± standard error (SE) for all exposure groups at a given
time point. Figure 2B shows the percentage of cell confluency during the metabolomics
exposure experiment. Exposure to 1 µM torin1 for 18 h showed preserved cell viability
with a cell confluency of 97% and a FC increase of 0.2 compared to DMSO. In contrast,
exposure to 100 nM staurosporine resulted in decreased cellular viability, as shown by
the drop in cell confluency to 85% and the increased FC of 0.8. The western blot analysis
(Supplementary Materials Figure S1) served as a positive control and confirmed that torin1
had an effect in our experimental set-up, including the activation of autophagic activity.
Together, these results indicate that exposure to 1 µM torin1 for 18 h is appropriate for
our metabolic studies, as it has a negligible effect on cell growth and a valid effect on the
western blot analysis when compared to the vehicle control.
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Figure 2. Evaluation of time-dependent cell viability in MEF of torin1 with Incucyte® Cytotox Red
Dye: (A) normalized fold change in the average red object count per well ± standard error every two
hours. MEF were exposed to 0.1% (v/v) DMSO (i.e., vehicle control, n = 12), 100 nM staurosporine
(i.e., positive control, n = 12), and 1 µM torin1 (i.e., exposure treatment, n = 12); (B) cell confluency
plot over time with exposure of the cells during the last 18 h (dashed grey line).
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3.2. Data Quality Management

After data acquisition with LC-HRMS, the extracted ion chromatograms (EIC) of IS
were manually checked to detect outlier samples, and the RSD of the molecular features was
calculated per group. For LC-HRMS-based untargeted metabolomics, RSD values ≤ 30%
are generally accepted [53,54]. The median RSD (mRSD) of pooled QC samples was
calculated to evaluate the analytical precision of the dataset. The QC samples of the polar
ESI (−) fraction had the highest mRSD (22%). All other platforms had mRSD < 16% for
the QC samples. These values indicate a reliable analytical platform [54]. Supplementary
Materials Table S3. provides a summary of all mRSD values for each polarity and treatment
group. The higher mRSD for the biological sample group compared to the QC samples can
be explained by biological and sample preparation variations. For example, in the apolar
ESI (+) fraction, the mRSD increased from 9% to 24%. Similarly, the polar ESI (+) mRSD
increased from 13% to 28%. First, a PCA was performed to obtain an indication of the
correlations between the variables before using PLS-DA RF [55]. Figure 3 (batch 1) and
Supplementary Materials Figure S5 (batch 2) highlights similarities and differences between
and within a sample group. PC1 and/or PC2 show a clear separation between the sample
groups, indicating high inter-group variability due to the strong metabolic impact of torin1
exposure. The clustering of QC samples demonstrates the repeatability of the instrument
and implies that the observed separation between groups is an inherent characteristic
of the sample itself [56]. Less clustering of the QC samples in the metabolomics ESI (−)
method suggests that this platform was less stable and introduced more analytical variation
compared to the other platforms.
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Figure 3. Principal component analysis plots of exposed MEF analyzed in different ionization modes
(ESI (+) and ESI (−)) of the first experiment (batch 1). The lipidomics plots refer to the apolar sample
fraction, and the metabolomics plots refer to the polar sample fraction. There is a clear distinction
between the control group (red) and the sample group exposed to torin1 (light blue), indicating
high inter-group variability due to the strong metabolic impact of torin1 exposure. The clustering of
quality control (QC) samples (dark blue) indicates limited analytical variation.
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Next, PLS-DA and RF models were built to select interesting features for further
annotation. As PLS-DA is prone to overfitting, the chemometric model was validated by
7-fold cross-validation and permutation of the y-variable (n permutations = 1000). The
PLS-DA model was evaluated by R2, Q2, R2PERM, and Q2PERM parameters, and the RF
model by AUC (Table 1). The evaluation parameters R2 (≥0.977) and Q2 (≥0.923) showed
high values and low values for R2PERM (≤0.002) and Q2PERM (≤0.002). The AUC for the
RF model evaluation was equal to one for all platforms. Based on the generated evaluation
parameters, all models were considered reliable for selecting interesting features.

Table 1. Evaluation parameters of multivariate statistical models. The PLS-DA model was evaluated
by R2, Q2, R2

PER, and Q2
PER, which were calculated after 1000 random permutations. The random

forest classification model was evaluated by the area under the curve (AUC).

Polar ESI (+) Polar ESI (−) Apolar ESI (+) Apolar ESI (−)

Batch 1

PLS-DA

R2 0.999 0.998 0.998 0.989
Q2 0.991 0.933 0.977 0.979

R2
PERM 0.002 0.001 0.001 0.002

Q2
PERM 0.002 0.001 0.001 0.002

RF AUC 1 1 1 1

Batch 2

PLS-DA

R2 0.995 0.992 0.984 0.977
Q2 0.978 0.923 0.976 0.962

R2
PERM 0.002 0.001 0.001 0.001

Q2
PERM 0.002 0.001 0.001 0.001

RF AUC 1 1 1 1

3.3. Metabolic Fingerprint of Torin1 Exposure in MEF Cells

The features selected by the univariate and/or multivariate statistics were kept for
annotation after they were validated through a second complete independent replicate
of the experiment, starting from the sample collection to the analysis. Supplementary
Materials Table S4 lists the annotated metabolites along with their observed retention time,
m/z, ionization species, annotation level, and the software used for MS/MS matching.
Following statistical analysis, a total of 84 features could be annotated. These features in-
cluded multiple ionization species of single metabolites, resulting in a total of 67 annotated
metabolites. Of these 67 metabolites, 13% were polar metabolites, and 87% were lipids.
Various databases and software tools were used to increase the annotation coverage. For
polar metabolites, an in-house library, the All Public MS/MS library (v. 15) in MS-DIAL,
NIST (v. 17), and MoNa were used. The in-house library could confirm four of the five polar
metabolites with a confidence level of 1. Glycerophosphocholine (GPC) could be annotated
with a confidence level of 2a by NIST and MoNa. To annotate the apolar fraction, the All
Public MS/MS library (v. 15) and the modified LipidBlast library in MS-DIAL, LipidMatch,
and LipidHunter were used. MS-DIAL covered 76% of the annotated lipids but resulted
in more false positives and more CL 3-annotated lipids (27%) than LipidMatch. The latter
covered 53% of all annotated lipids, with 97% of these having CL 2a. LipidHunter had the
least amount of lipids covered, with only 20% coverage.

A heatmap of the normalized fold changes and a Sankey diagram to categorize each
metabolite visualizes the effects of torin1 exposure on each individual annotated metabolite
(Figure 4). In the polar fraction, inosine and hypoxanthine were strongly upregulated in
the exposed group. GPC was also upregulated, but 5′-methylthioadenosine (MTA) and
glutathione (GSH) were downregulated as a result of torin1 exposure. In the apolar fraction,
ceramides (Cer) with d18:2 and d16:1 backbones were downregulated. All diacylglycerols
(DG) were downregulated, with DG 18:1_24:1 having the largest negative fold change.
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Lyso-phosphatidylcholines (LPC), lyso-phosphatidylethanolamine (LPE), and ether-LPEs
were all upregulated, with LPC having the largest fold change of any of the lipids. The
majority of intracellular phosphatidylcholines (PC) were downregulated, except for PC
16:0_20:4, PC 16:0_22:5, and PC 18:0_18:1, which showed a slight upregulation. Phos-
phatidylethanolamines (PEs) were reduced during exposure, but ether-PEs, all triglycerides
(TGs), and ether-TGs were more abundant in the treated MEFs.
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Figure 4. Heatmap of the annotated metabolites with their normalized fold changes to show the
intracellular metabolic effect of torin1 exposure in MEF cells. A Sankey diagram was combined to
assign classes according to the LIPID MAPS classification system [57]. FC: fold change, Cer: ceramide,
DG: diglyceride, LPC: lysophosphatidylcholine, LPE: lysophosphatidylethanolamine, LPE-O: alkyl
ether lyso-phosphatidylethanolamine, PC: phosphatidylcholine, PE: phosphatidylethanolamine,
PE-O: alkyl ether phosphatidylethanolamine, PE-P: alkenyl ether phosphatidylethanolamine, TG:
triglyceride, TG-O: alkyl ether triglyceride.

3.4. Metabolic Pathway Analysis

To gain better insights into the functional roles of metabolites in cellular processes, a
metabolic pathway analysis was performed. First, a more general approach was used to
identify and evaluate the relationships between the annotated altered lipid species during
torin1 exposure. Supplementary Materials Figure S7 shows the network built using the lipid
network explorer (LINEX2), which visualizes fatty acid and lipid class metabolisms [58].
Next, KEGG was used to explore key disrupted metabolic pathways, as shown in Figure 5,
showcasing interactions between these pathways [9].
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Figure 5. Metabolic pathways that are involved during torin1 exposure in MEF. Blue names and
arrows indicate downregulation; red names and arrows indicate upregulation. The numbers that
indicate different reactions are discussed in detail in Section 3.4. Cer: ceramide, DG: diglyceride, FA:
fatty acid side chain, GPC: glycerophosphocholine, GSH: glutathione, GSSG: glutathione disulfide,
LPC: lysophosphatidylcholine, LPE: lysophosphatidylethanolamine, MTA: 5′-methylthioadenosine,
PC: phosphatidylcholine, PE: phosphatidylethanolamine, SM: sphingomyelin, Sph: sphingosine,
TG: triglyceride.

The metabolism of glycerophospholipids was disturbed after exposure to torin1.
The majority of intracellular PCs showed a downregulation, except for PC 16:0_20:4, PC
16:0_22:5, and PC 18:0_18:1, which showed a slight upregulation. Upregulation was ob-
served for LPCs and GPC. These findings suggest that the catabolism of PCs was enhanced
during torin1 exposure due to the hydrolysis of the fatty acid side chains from down-
regulated PC species by phospholipase A1/A2 (PLA1/2) to form the upregulated LPC
species (Figure 5 reaction 1). Further hydrolysis of LPCs by lysophospholipase I (LYPLA1)
produced a second fatty acid and a glycerophosphodiester headgroup, resulting in the
upregulation of the synthesis of GPC (Figure 5, reaction 2) [9].

An alternative explanation is that the decrease in PCs may be the result of their
consumption in the synthesis of TGs, while the increase in LPC levels may be a result of
increased cellular uptake from the extracellular part to compensate for the reduced levels
of PCs. The catabolism of PE was also enhanced during torin1 exposure. The upregulated
LPE species can be produced by the hydrolysis of the fatty acid side chains from the
decreased PE species, catalyzed by PLA2 (Figure 5, reaction 3). Additionally, a reduction
in PE levels may contribute to the downregulation of PC, as phosphatidylethanolamine
N-methyltransferase (PEMT) converts PE into PC (Figure 5, reaction 4) [9]. The decreased
availability of PE could result in a decrease in the formation of PCs.
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The metabolism of glycerolipids was also disturbed by the exposure to torin1. All
annotated diacylglycerols were downregulated, with DG 18:1_24:1 showing the highest
negative normalized fold change. Triglycerides and ether-triglycerides were all upreg-
ulated. In Figure 5, reaction 5 shows the final step of TG biosynthesis from DG and a
fatty acyl-CoA, which is catalyzed by diacylglycerol acyltransferase 1 and 2 (DGAT1 and
DGAT2) [9]. The increased biosynthesis of TG out of DG can explain these results. Through
transferase reactions, the glycerolipid metabolism is also linked to the glycerophospholipid
metabolism pathways [9]. A decreased conversion into PC and PE can result from a de-
creased availability of DG, and vice versa. Another hypothesis is that the fatty acids that
become available from increased phospholipid catabolism are stored for energy as TGs,
increasing intracellular TG levels [13].

Ether lipids are a type of glycerophospho- and glycerolipids formed in the peroxisome.
They are characterized by the presence of an ether bond in which an alkyl or alkenyl
chain is attached to the sn-1 position of the glycerol backbone, as opposed to an ester
bond. Ether lipids play important roles in various biological functions, including regulating
the fluidity and dynamics of cell membranes, acting as antioxidants, participating in
intracellular signaling, immunomodulation, and impacting cholesterol metabolism [59,60].
The intracellular levels of alkyl ether LPE, PE, TG, and alkenyl PE are all elevated by torin1
exposure. It is known that in certain pathologies there is an association with ether lipids that
is either decreased or increased [61]. As the understanding of their role in pathophysiology
is still largely unknown, the mechanism or function of the intracellular increase of these
lipids remains unclear.

Ceramides are important sphingolipids that act as a central point in the sphingolipid
metabolism. Ceramides can undergo anabolic reactions to produce sphingomyelin and dif-
ferent glycosphingolipids or catabolic reactions that generate sphingosine and sphingosine-
1-phosphate [9]. Sphingolipids are increasingly being recognized as having regulatory roles
at different stages of the autophagic process. On the other hand, autophagy is being recog-
nized for regulating ceramide levels [62]. Elevated ceramide levels have been implicated
as a pathogenic factor in many pathophysiological processes, including neurodegenera-
tion [63,64], obesity [65], and diabetes [66]. It has been observed that mTORC2 controls
de novo sphingolipid synthesis in yeast by regulating the activity of ceramide synthase
through Ypk2 [67]. Guri et al. showed later that hepatic mTORC2 promotes sphingolipid
synthesis in a cancer mouse model [68]. In our study, inhibition of mTORC1 and mTORC2
by torin1 leads to a decrease in all annotated ceramides, building further on the implications
of sphingolipid metabolism downregulation and its link to mTOR inhibition.

Inosine and hypoxanthine are both metabolites in the purine metabolic pathway that
were upregulated in the torin1-exposed MEF cells. Purine nucleoside phosphorylase (PNP),
a transferase enzyme, catalyzes the reaction between inosine and hypoxanthine in the
purine salvage pathway. Hypoxanthine can be converted to the inosine monophosphate
(IMP) nucleotide by hypoxanthine phosphoribosyltransferase (HPRT) or further broken
down to uric acid [9]. In a targeted metabolic flux experiment, Ben-Sahra et al. found that
mTORC1 promotes de novo synthesis of purine nucleotides [12]. So a possible explanation
for our results of increased intracellular levels due to mTOR inhibition is that the cells com-
pensate by increasing the uptake of hypoxanthine and inosine to form purine nucleotides
such as IMP. This requires further investigation to confirm our hypothesis.

5′-Methylthioadenosine (MTA) is an intermediate in the methionine salvage pathway
that regenerates methionine from S-adenosylmethionine (SAM)-dependent polyamine biosyn-
thesis [69]. So, MTA downregulation can affect methionine and S-adenosylmethionine (SAM)
metabolism, which is linked to mTORC1 [70]. Here, we demonstrate that torin1 treatment
results in a decrease in MTA, indicating the stimulating role of mTOR in the synthesis of SAM.

Glutathione, a thiol-containing metabolite, is essential for antioxidant defense, intracel-
lular signaling, and redox homeostasis maintenance [71]. There has been growing evidence
in the past years that ROS can regulate autophagy in starvation-induced autophagy by
altering the redox state, with GSH having a significant impact on the intracellular redox
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state [72,73]. The decreased levels of GSH after starvation could be linked to the initiation
of autophagy [74]. Torin1 exposure in our study caused an intracellular decrease of GSH in
MEF cells, altering the redox state. Previous research reported the involvement of mTORC1
in glutathione synthesis, where mTORC1 signaling regulates the abundance of total cellular
glutathione in both reduced and oxidized forms [11]. The decreased GSH levels imply
that ROS will be elevated by torin1. Exploring the direct measurement of ROS species or
lipid peroxidation would be interesting to assess oxidative stress in future investigations to
enhance our understanding of the mechanisms involved.

4. Conclusions

Torin1 exposure to MEF resulted in a unique metabolic fingerprint of the intracel-
lular metabolome using an untargeted metabolomics approach. Our research includes
a comprehensive study that optimized MEF cell extract preparation, assessed cell viabil-
ity, performed western blot analysis, and implemented various QA/QC steps within the
LC-HRMS workflow, including a validation experiment to ensure high-quality data and
increased confidence in the reported findings by reducing the likelihood of false positives.
Ultimately, 84 features selected after filtering and a combination of univariate and multi-
variate statistics from both independent experiments were further annotated and manually
inspected to ensure correct fold changes and identification. These features included multi-
ple ionization species of one specific metabolite, resulting in a total of 67 annotated unique
metabolites. In particular, torin1 exposure induced changes in lipid metabolism, including
the glycerophospholipid, glycerolipid, and sphingolipid pathways. Changes were also
observed in the purine, methionine, and glutathione metabolisms. Further biochemical
pathway analyses provided deeper insights into the reported changes. To expand our
understanding of the effects of torin1, we propose the integration of additional method-
ologies such as using multiple timepoints and heavy isotope tracing experiments. These
approaches would provide insights into the kinetic and flux dynamics of torin1 metabolism,
enabling a more comprehensive understanding of its impact on the metabolism. Addition-
ally, our results can serve as a valuable starting point for future research, including in vivo
investigations exploring the effects of torin1 on lipid profiles, blood glucose levels, insulin
levels, and tissue-specific responses. Overall, a reliable and comprehensive untargeted
metabolomics workflow with its application to torin1 exposure in MEF cells is presented
and can be implemented in future investigations into the effects of other compounds,
including more specific autophagy modulators.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo14050248/s1, Additional experimental details on
intracellular MEF cell extract preparation, optimization of the dilution factor for intracellular MEF
cell extracts. Figure S1: Western blot analysis, Figure S2: Dilution series, Figure S3: Dilution ex-
periment; total detected features, Figure S4: Dilution experiment; mean intensity plot, Figure S5:
PCA plots batch 2, Figure S6: Scatter plot, Figure S7: LINEX lipidomics network title; Table S1: Data
acquisition parameters, Table S2: MS-DIAL parameters, Table S3: mRSD (%), Table S4: Annotated
metabolites [75,76].
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