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Abstract: The origin and evolution of supermassive black holes (SMBHs) in our universe have
sparked controversy. In this study, we explore the hypothesis that some of these black holes may
have seeded from the direct collapse of dark energy domains with density significantly higher than
the surrounding regions. The mechanism of the origin of such domains relies on the inflationary
evolution of a scalar field acting in D dimensions, which is associated with the cosmological constant
in our four-dimensional spacetime manifold. Inner space quantum fluctuations of the field during
inflation are responsible for the spatial variations of the dark energy density in our space. This
finding holds particular significance, especially considering recent evidence from pulsar timing array
observations, which supports the existence of a stochastic gravitational wave background consisting
of SMBH mergers.

Keywords: primordial black hole; supermassive black hole; cosmological constant; dark energy; extra
dimensions; inflation

1. Introduction

Primordial black holes (PBHs) have been extensively studied over the decades [1–10]
and offer a scenario with the potential to leave distinct imprints on cosmic history.
Depending on the ratio of their abundance relative to the overall dark matter (DM),
fPBH = ΩPBH/ΩDM, the range of possible PBH masses MPBH spans a wide spectrum,
including PBHs of small masses [9] which have undergone scrutiny through various ob-
servations (for comprehensive reviews, refer to [8,10]). Additionally, since PBHs formed
during the early stages of the Universe, they have the capacity to develop bound binaries
via multiple mechanisms [8,11,12]. As these binaries become close, they emit gravitational
waves (GWs) continuously until a final dramatic burst occurs at the point of their ultimate
merger. Notably, for black holes of stellar mass, such mergers have already been detected
by ground-based interferometers [13,14]. Moreover, it is plausible that several of these
observed mergers might be attributed to the coalescence of PBHs [15–20].

PBHs with masses exceeding 102M⊙ hold particular significance due to their impact
on the growth of massive objects during the evolution of the early Universe. Notably, it is
well-established that galactic nuclei host supermassive black holes (SMBHs) with masses
surpassing 106 M⊙ [21–23]. It has been theorized that PBHs could be their progenitors,
achieving such masses through processes like merging, accretion [24–29], or the direct
collapse of primordial fluctuations [30,31]. In the latter scenario, SPBHs are constrained
to constitute less than O(0.1%) of dark matter (DM). As they have been present since the
dawn of the matter-dominated era, they can serve as cosmic seeds, enhancing galaxy
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formation [32,33]. Furthermore, different observations have provided evidence for the
existence of intermediate-mass black holes (IMBHs) with masses ranging from 104 M⊙ to
106 M⊙ [34]. Additionally, a subdominant fraction of dark matter may consist of immensely
massive PBHs, exceeding 1012 M⊙ [35], capable of traversing the intergalactic medium.

SMBHs may be responsible for the generation of early galaxies reported by JWST [36].
They can bind in binary systems which leads to late time merging and radiation of gravita-
tional waves in the nHz frequency range that are detectable by pulsar timing array (PTA)
experiments [37–43]. The results from the PTA observations have been extensively analyzed
and interpreted in numerous studies, including recent ones such as [44–113] and earlier
analyses such as [114–126], which are related to the previously published NANOGrav
signal evidence [127]. These interpretations and effects may independently explain the PTA
gravitational wave signal. They can also be considered in combination with the modeling
of gravitational waves originating from supermassive black hole binaries (SMBHBs).

In this paper, we propose and validate a mechanism for the formation of PBHs based
on the generation of specially varying cosmological constants, which may be generic
for theories with compact extra dimensions. Considering extra dimensions allows us to
examine fluctuations of fields within the internal space during inflation in addition to
fluctuations of ordinary scalar fields. However, the fate of these field fluctuations differs
significantly from those associated with conventional four-dimensional scalar fields. While
conventional field fluctuations transform their energy density into radiation during the
FRW stage through decay into other particle-like species, the energy density associated
with scalar fields within the internal space remains unchanged, effectively stored within
the scalar field itself, manifesting as a cosmological constant. Fluctuations of the scalar
field within the internal space manifest as spatial variations of the local Λ term. Domains
containing an extraordinarily high cosmological constant may collapse into PBHs. After the
end of inflation, the horizon expands and the particle energy density decreases, approaching
its present-day value. Simultaneously, the energy density associated with the Λ term, being
dependent on the Hubble parameter, also decreases over time, converging to its present-day
value, which equals the dark energy density. There must exist a moment in time when both
the energy density of matter and the energy density associated with the Λ term are equal.
Evidently, since the value of Λ varies across space coordinates, this equality primarily
arises within the densest regions, implying the existence of a density contrast close to
unity in domains with high values of Λ. Once such a domain becomes encompassed by
the cosmological horizon, it may evolve into a PBH. We assert that PBHs formed through
the proposed mechanism are cosmologically feasible candidates for seeding SMBHs and
explaining the observed IMBHs.

The flexible metrics characterizing extra dimensions constitute a continuous set of
static classical solutions derived from the generalized Einstein igat [128,129], and they
share fixed Lagrangian parameters. This approach, distinct from the brane world model,
renders the extra dimensions invisible due to their small size. However, unlike Kaluza–
Klein geometries, these dimensions exhibit inhomogeneity. The concept of such geometries
was initially introduced in [130] with further discussion in [131]. Subsequent research, as
presented in [132], applied a top-down approach to elucidate observed physical laws. It
demonstrated that incorporating quantum corrections to initial parameters established at
high energies eases the renormalization procedure.

Investigating the evolution of extra field distributions leading to a static state is a
crucial endeavor. This aspect has been explored in previous works such as [133]. The
outcomes reveal that the resultant metric and field distribution are contingent upon both
model parameters and initial conditions. Notably, the extra-dimensional stationary field
distributions evolve in tandem with the energy density across distinct volumes below the
horizon, which are replicated during inflation. This particular aspect forms the focal point
of our investigation.

Furthermore, our current investigation is grounded in nonlinear f (R) gravity, as
extensively discussed in reviews such as [134,135]. This framework holds significant
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potential for diverse cosmological implications, with one notably remarkable consequence
being the emergence of dark matter [136]. Several viable f (R) models in 4D space aligning
with observational constraints have been proposed in works such as [128,129,137–139].

This paper is structured as follows: In Section 2, we provide a concise overview of the
mathematical setup employed in the extra-dimensional framework under consideration.
Section 3 is dedicated to exploring the distinct behaviors of fluctuations in our space
compared to those in extra dimensions. Section 4 is focused on deriving the conditions
essential for the formation of PBHs and estimating their mass spectrum. The conclusions of
our study are summarized in Section 5.

2. Static Field Distribution in Internal Space

The primary objective of this section is to revisit the foundational concepts of extra-
dimensional frameworks that give rise to a continuum set of static metric distributions.
This issue has been elaborated in our previous papers [133], and we refer the reader to
them for details.

Consider f (R) gravity with a minimally coupled scalar field ζ in a D = 4 + n-
dimensional manifold MD = M4 × Mn:

S =
mD−2

D
2

∫
MD

dDX
√
|gD|

(
f (R) + ∂Mζ ∂Mζ − 2V(ζ)

)
, (1)

where gD ≡ DetgMN ; M, N = 1, D; XA = (xµ, ya); the coordinate set xµ, µ = 1, 2, 3, 4
describes the four-dimensional space M4, and the set ya, a = 5, 6, . . . , n describes the n-
dimensional manifold Mn, which is assumed to be a closed manifold without boundary;
f (R) is a function of the D-dimensional Ricci scalar R; and mD is the D-dimensional Planck
mass. Below, we will work in the units mD = 1. Note that the main results of this work
hold even for the simplest form of the potential V.

V(ζ) =
1
2

m2ζ2. (2)

The metric is postulated to have the form

ds2 = e2γ(u)
[
dt2 − e2Ht(dv2 + v2dΩ2

2)
]
− du2 − r(u)2dΩ2

n−1. (3)

Such a metric ansatz has been extensively studied within the realm of linear
gravity [140–143], particularly in addressing the hierarchy problem [133,144–146]. Our
approach is based on the concept of compact extra dimensions. A preliminary investigation
suggests that their scale could be as small as 10−28 cm or even smaller. This implies that
the extra dimensions remain invisible to our instruments, and our rulers and clocks do not
measure intervals of space and time at a specific value of u. Instead, all metric functions,
such as the function eγ(u), should be averaged over the extra space. The way to achieve
this is discussed in [133] and briefly presented below.

The equations of motion, see [128,129], represented by

−1
2

δN
M f (R) +

(
RN

M +∇M∇N − δN
M□

)
fR = −TN

M, (4)

fR = d f /dR, TN
M = (∂Mζ)(∂Nζ)− 1

2
(∂Cζ)(∂Cζ)δN

M + V(ζ)δN
M,

possess a continuum set of solutions just as the differential equations do. We choose those
solutions that exhibit homogeneity in the spatial coordinates x and inhomogeneity in the
internal coordinates y. We consider only those solutions that refer to the compact extra
space. This means that the metric function r(u) must have two zeros. This condition is
fulfilled at the coordinates umin and umax, i.e., r(umin) = r(umax) = 0, which is the result of
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numerical calculations. These coordinate values depend on additional conditions which
are different in different space domains.

The parameterization of these solutions is determined by additional conditions, such
as r′(y = 0), r(y = 0), γ(y = 0), γ′(y = 0), ζ(y = 0), and ζ ′(y = 0), which are essential for
solving the second-order differential equations.

After integration over the extra-dimensional coordinates, the action (1) reduces to the
effective action [130]

S =
m2

P
2

∫
mP

d4x
√
|g4|

(
ae f f R2

4 + R4 + ce f f

)
. (5)

The term ce f f represents the cosmological constant Λ:

Λ = −1
2

ce f f , (6)

assuming the scalar function ζ is homogeneous in a 3-dimensional space under horizon.
This value varies in different space regions due to the fluctuations at the inflationary stage.
We are interested in those space domains where the effective parameter Λ is considerably
large as compared to values in the surrounding space. Here, g4 is the determinant of the
4D metric:

ds2
4 = g4,µνdxµdxν = dt2 − e2Htδijdxidxj . (7)

The effective parameters are expressed as follows

m2
P = Vn−1

∫ umax

umin

fR(Rn) e2γ rn−1 du,

ae f f =
Vn−1

2m2
P

∫ umax

umin

fRR(Rn) e4γ rn−1 du, (8)

ce f f [ζ] =
Vn−1

m2
P

∫ umax

umin

(
f (Rn)− ζ(u)′2 − m2ζ(u)2

)
e4γ rn−1 du ,

where Vn−1 =
∫

dn−1x
√
|gn−1| =

2πn/2

Γ(n/2)
is the volume of n − 1-dim sphere.

The right-hand side of Equation (8) is expressed in units where mD = 1. This relation
allows us to articulate the D-dimensional Planck mass in terms of the four-dimensional
Planck mass mP. In this context, we assume that the functions γ(u), r(u), ζ(u), R(u)
constitute a specific solution to the system (4), with details available in [130] for a specific
value of the Hubble parameter H. Figure 1 illustrates some examples of static distributions.
This approximation remains valid during the inflationary period and at the present time,
particularly when the Hubble parameter remains nearly constant.

Our comprehension of the specific value of the energy density, denoted as
ρΛ = Λm2

P/(8π) = −ce f f m2
P/(16π), is quite limited. Observational constraints provide

an upper limit of approximately 10−123m2
P at the present time. Understanding this density

during inflation is even more uncertain, with the sanity bound being ρΛ(H ≃ 10−6mP) ≪
H2 ≃ 10−12m2

P, implying its negligible impact on the inflation rate. Post-inflation, consider-
ing the variation in the Hubble parameter becomes crucial, and establishing a connection
between ρΛ and this parameter remains elusive. Multiple factors contribute to the com-
plexity of this issue, including quantum corrections, the influence of other fields, and the
effects of averaging after the horizon crossing. Furthermore, obtaining an accurate solution
to the dynamic equations during the reheating stage appears challenging. The subsequent
section is dedicated to a detailed discussion of these aspects.
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(a) (b) (c)
Figure 1. Solution of (4) for the following parameters n = 3, f (R) = 300R2 + R + 0.002, H = 0,
V(ζ) = 0.01 ζ2/2 and boundary conditions r(0) = 50, γ(0) = 0, r′(0) = γ′(0) = R′(0) = 0,
umax = umin ≃ 43.178, (a) R(0) ≃ 0.00396, ζ(0) = −2 × 10−5, ζ ′(0) = 6 × 10−8, (b) R(0) ≃ 0.00395,
ζ(0) = 2 × 10−5, ζ ′(0) = 1.5 × 10−6, (c) R(0) ≃ 0.00396, ζ(0) = −2 × 10−6, ζ ′(0) = 2 × 10−6. The
parameter u is expressed in D-dimensional Planck units.

Clearly, both the extra dimensions and the scalar field experience fluctuations in
the D-dimensional space. Quantum fluctuations during inflation are expected to induce
significant deviations from their initial values (distributions), especially during the later
stages of inflation when scales much smaller than those relevant for CMB observations exit
the inflating Hubble patches. Specifically, fluctuations in the parameter ce f f during inflation
can lead to spatial variations in the cosmological constant. The cosmological effects of these
variations are the primary focus of investigation in the subsequent sections of the paper.
These fluctuations may be substantial, giving rise to domains where the density of dark
energy is significantly higher compared to the surrounding regions. Such domains could
persist for an extended duration, provided gravity exerts a strong influence.

3. Inflationary Field Dynamics in Extra Space

The evolution of the Universe is significantly influenced by field fluctuations dur-
ing inflation. Following the completion of inflation, the rapid decrease of the Hubble
parameter induces vigorous damped fluctuations of the field, ultimately converging asymp-
totically to one of the minima of its potential. These inhomogeneities, influenced by
gravitational effects, give rise to a large-scale structure after the conclusion of the radiation-
dominated stage.

We consider the presence of extra spatial dimensions, allowing for fluctuations in
fields within this inner space. The destiny of these field fluctuations differs fundamentally
from those inherent to the usual, four-dimensional scalar fields described above. This
distinction arises from the fact that stationary distributions of fields constitute a set of
measured continuum, as established in the early study [130].

Similar to the situation with usual fields, during the FRW epoch, the asymptotic
distribution of the fields in the inner space undergoes variations in causally disconnected
regions due to random fluctuations during inflation. However, a significant distinction
arises: while the energy density of usual fields is transformed into radiation at the FRW
stage through the decay of the fields into other particle-like species, the energy density
associated with the scalar fields in the inner space remains in its initial form, being stored
in the scalar field. Therefore, the evolution of the energy density of the fields in the inner
space is still governed by the Hubble parameter, resulting in a slower decrease compared to
the energy density stored in particle-like species generated from the decay of typical scalar
fields, which could exist during the inflationary epoch. To distinguish between these two
kinds of energy densities, we use the notation ρ for the energy stored in the ordinary fields
fluctuating in the observable three-dimensional space, which is eventually converted into
particle-like species, and ρΛ for the energy remaining stored in the scalar field exhibiting
inhomogeneities in the inner space. By choosing the model parameters such that ρ ≫ ρΛ,
we ensure that the impact of the field distribution in the inner space on the expansion rate,
as well as on the rate of horizon growth, can be safely neglected.
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After the end of inflation, the horizon expands and the particle energy density ρ
decreases, approaching its present-day value ρ(t0). Simultaneously, ρΛ, being dependent
on the Hubble parameter, also decreases over time, converging to the present-day value
ρΛ(t0), which equals the dark energy density. Since ρΛ(t0) > ρ(t0), there must exist a
moment in time, denoted by t∗, when both densities are equal, ρ(t∗) = ρΛ(t∗). Evidently,
since the value ρΛ(t∗) varies across space coordinates, this equality primarily arises within
the densest regions, implying a density contrast δρ/ρ ≃ 1.

4. Formation of PBHs Induced by Inhomogeneous Cosmological Constants

As indicated in the preceding section, our setup involves the total energy density,
which comprises the 4D energy density ρ, represented either by a scalar field or particle-like
species created after the conversion of this field into radiation at the reheating stage, and
ρΛ, associated with the energy density emerging from the scalar field distribution in the
inner space. During the inflationary stage and for some period afterward, the Universe
was dominated by the 4D energy density, such that ρ ≫ ρΛ, while at the present time,
ρ ≲ ρΛobs , where the current observable value of the dark energy density is given by
ρΛobs ∼ 10−123m4

Pl. Therefore, at some moment t∗ during the evolution of the Universe,
both types of energy density become equal, resulting in

ρ(t∗) = ρΛ(t∗) . (9)

If the equality condition (9) occurs within a causally connected domain, it implies that the
density contrast, expressed in this particular case as

δρ

ρ
(t∗) ≈

ρΛ(t∗)
ρ(t∗) + ρΛobs(t∗)

, (10)

exceeds unity.
Let us consider a scenario in which fluctuations of scalar fields in the internal space

during inflation lead to the formation of a domain with size R(tend), determined at the end
of inflationary epoch tend, filled with a cosmological constant Λ1 that exceeds its observable
average value Λobs. After the inflationary period, during the FRW epoch, the domain of
size R(tend) undergoes simple conformal stretching due to the expansion of the Universe

R(t) =
a(t)

a(tend)
R(tend), (11)

where a(t) is the scale factor. It is evident that at a time t1 ≳ t∗, ensuring δρ
ρ(t∗)

> 1,
the domain reaches a radius of R(t1) as described by Equation (11), acquiring the mass
M1. Subsequently, it becomes encompassed by a Hubble radius H−1(t1) = H1, thereby
becoming detached from the cosmological expansion and initiating collapse. Within about
a Hubble time, it will convert into a black hole (BH) of mass MPBH = ξM1. Below, we
assume that almost the entirety of the energy contained in the domain is deposited into the
BH, so that ξ ≃ 1.

Since the interior of such a domain can exert repulsive gravity due to its substantial
energy dominance within the encompassing Hubble horizon, it may maintain a negative
pressure, particularly if the density contrast δρ

ρ(t1)
exceeds a threshold of around 10. In

such a scenario, the domain enters the Hubble radius at t1 ≫ t∗ and starts expanding
faster than the background, eventually reaching the inflationary vacuum and potentially
developing a wormhole to a baby universe. Such a wormhole would appear as a BH in
the FRW Universe. In this paper, we focus on the regime with the most plausible collapse
rather than expansion, where t1 ≈ t∗, and thus, the size of the domain filled with Λ1 is
close to the Hubble radius at the moment when local dominance of the cosmological term
occurs, i.e., when the condition δρ

ρ(t∗)
≈ 1 is reached.
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If the cosmological constant Λ1 substantially exceeds its universe-averaged value
Λobs, then the component ρΛobs(t∗) can be neglected in (10). Therefore, the conditions for
reaching a density contrast (10) exceeding unity can be described as

ρΛ1 ≡ Λ1

8πG
≳ ρ(t1) ≡

3H2
1

8πG
, (12)

where G stands for the Newtonian constant, H1 denotes the Hubble rate at t1, and the Λ
term is measured in units of the Planck mass squire.

Thus, an overdense object with a size given by

l1 = H−1
1 =

√
3

Λ1
(13)

is formed, with its mass as measured by a distant observer being expressed as

M1 ≃ 4πρΛ1

3H3
1

=
2
√

3√
Λ1G

. (14)

This mass is determined by the localized value of the cosmological constant Λ1 within a spe-
cific domain, which surpasses its universe-average value outside the domain. The validity
of Equation (14) in the case of an overdense domain emerging due to fluctuations in extra
dimensions is rigorously proven in Appendix A. Thus, it appears that the Schwarzschild
radius of the above object, given by

RS = 2GM1 = 4

√
3

Λ1
, (15)

exceeds the size of the Λ1 overdense domain given by Equation (13). Hence, assuming that
the spherical shape of the domain is not significantly disturbed, it will be converted into a
BH. To account for the population of unevaporated black holes, it is instructive to express
the mass of such Λ-term-induced PBHs (ΛPBHs) in units of solar masses:

MΛPBH =
3.4 × 10−38√

Λ/m2
Pl

M⊙. (16)

If we consider that the growth of supermassive black holes (SMBHs) observed today
originated from seed black holes, then this process must have commenced in the early
Universe, approximately 3 million years after the Big Bang, with seeds heavier than 102 M⊙.
Additionally, there is evidence of the existence of intermediate-mass black holes (IMBHs)
with masses ranging from 102 M⊙ up to about 106 M⊙. Thus, attributing the seeding objects
with masses from 102 M⊙ to 106 M⊙ to ΛPBHs implies that they appeared as a result of the
collapse of domains containing Λ-terms spanning the range

Λ1 ≃ 10−78m2
Pl ÷ 10−86m2

Pl . (17)

In the subsequent analysis, we examine the comparability of the spectrum of the population
of ΛPBHs with the constraints on the abundance of PBHs within the considered mass range.

A domain of radius R ≈ H−1
inf , filled with Λ ̸= Λobs, that emerges at the time moment

tΛ, during inflation with a total duration tinf, when the Universe is yet to inflate over
∆NΛ = Hinf(tinf − tΛ) = Ninf − NΛ e-folds, undergoes stretching during expansion as

R(∆NΛ) ≈ H−1
inf e∆NΛ . (18)
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The number of domains created in a comoving volume dV within an e-fold interval dNΛ is
determined by

dN = ΓΛH3
infe

3NΛ dVdNΛ, (19)

where ΓΛ represents the formation rate of domains with Λ per Hubble time-space volume
H−4

inf . By expressing NΛ from (18), we can derive the number distribution of domains with
respect to their physical radius R as

dN = ΓΛ
e3NΛ dV

R4 dR. (20)

Therefore, the number density in the physical inflationary volume dVinf = e3NΛ dV is

dn
dR

=
dN

dRdVinf
=

ΓΛ

R4 . (21)

In the context of the setup discussed in this section, where domains of high-density contrast
and obeying the condition (12) are considered, the distribution (21) covers a range of
scales from Rmin ≃ H−1

inf to Rmax ≡ R(∆NΛ1) ≈ H−1
inf e(Ninf−NΛ1

), where NΛ1 represents the
number of e-folds when the probability of the appearance of at least one domain with Λ1
becomes significant. This probability becomes notable over the course of the progression
of inflation, which lasts for a sufficient number of Ninf e-folds necessary to address the
horizon and flatness problems.

It is worth noting that if inflation were to occur above the TeV scale, the comoving
Hubble scale at the end of inflation would be less than one astronomical unit. Consequently,
a causally connected patch could encompass our entire observable Universe today, which
has a size of about 30 Gpc, if there were more than 40 e-folds of inflation. Similarly, if
inflation occurred at the GUT scale (≃1016 GeV), then it would require more than 60 e-folds.
The upper bound on the value of the Hubble scale during slow-roll inflation provided by
Planck [147] is

Hinf = 6 × 1013 GeV . (22)

The mass distribution of black holes formed during the collapse of domains with
values of Λ deviating from Λobs is determined by the size distribution (21), scaled with
respect to the expansion of the Universe (11). This distribution can be expressed as

dn = ΓΛ
dR

t3/2
eq R5/2

, (23)

at the equality time teq = 51kyr. A convenient characteristic of this distribution, which
facilitates comparison of the PBH yield with constraints on their abundance in different
mass ranges (see, for instance, Figure 18 in [10]), is the mass density of PBHs per logarithmic
mass interval, expressed in units of the total density of the Universe:

dΩPBH

d ln MPBH
=

1
ρeq

dn
d ln MPBH

MPBH, (24)

where ρeq = m2
Pl/(6πt2

eq) represents the matter density at the time of equality. Using (23),
we can obtain

dn
d ln MPBH

=
(4π)1/2ΓΛ

3
√

3t3/2
eq

ρ1/2
Λ M−1/2

PBH , (25)

where ρΛ is the energy density contained in the domain filled with Λ term which reads as

ρΛ =
Λm2

Pl
8π

. (26)
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where we recall that Λ is expressed in units of m2
Pl. Thus, (24) can be expanded as

dΩPBH

d ln MPBH
=

√
6πΓΛ

(
Λ

m2
Pl

)1/2

t1/2
eq M1/2

PBH ≈ 2.5 × 1066ΓΛ

(
Λ

m2
Pl

)1/2(
MPBH

M⊙

)1/2
. (27)

For those values of Λ within the domains of inhomogeneities, as indicated in (17), the rate
ΓΛ can be approximated as (a detailed derivation is provided in Appendix B):

ΓΛ ≃ QΛ , (28)

where

Q =
8π2

3
m2

P
H4

inf
. (29)

Substituting this into expression (27) and using relations (16), (28) and (29), we finally obtain

dΩPBH

d ln MPBH
≈ 2.6 × 10−26

(
Hinf
mPl

)−4(MPBH

M⊙

)−1
. (30)

Comparing distribution (30) with the model

ΩPBH ∼ 109β

(
MPBH

M⊙

)−1/2
(31)

used in [10] to quote the constraints on the density fraction β deposited in PBHs at the
moment of their formation, we arrive at the following condition

Hinf
mPl

≃ 6 × 10−9β−1/4
(

MPBH

M⊙

)−1/8
. (32)

Condition (32) is useful for assessing the consistency of ΛPBH formation with cos-
mological constraints on the abundance of PBHs across different mass ranges. By analyz-
ing the combined constraints on β for a monochromatic mass function, as presented in
Figure 18 of [10], we can verify the consistency of considering ΛPBHs as candidates for
seeding SMBHs and IMBHs, taking into account the CMB constraints on the inflation scale.
For the seeding masses MΛPBH ≈ 102 M⊙, the abundance is constrained to the level of
β ≈ 10−14 [10], which is saturated at the inflation energy scale Hinf ≃ 10−5mPl. At this
level of precision, this can be considered as the saturation point, ensuring that it does not
exceed the CMB Planck limit (22). Similar estimates of the inflation scale can be obtained
for IMBHs in the mass range 102 M⊙ ≤ MΛPBH ≤ 5 × 105 M⊙, where β ≈ 10−15 [10].
For IMBH with masses MΛPBH ≈ 106 M⊙, the energy scale Hinf ≃ 10−7mPl saturates the
constraint β ≈ 10−7 [10]. Similarly, the constraint β ≈ 3 × 10−7 [10] imposed for the mass
scale MΛPBH ≈ 1010 M⊙, which is typically relevant for currently observed biggest SMBHs,
is saturated at the inflation scale Hinf ≃ 10−7mPl. Therefore, it can be concluded that
ΛPBHs are cosmologically consistent for serving as seeds for SMBHs as well as explaining
the observed IMBHs.

Additionally, ΛPBHs with masses as low as MΛPBH ≈ 10−2 M⊙ remain compatible
with the constraint β ≃ 10−11 [10] imposed by the upper CMB inflation scale limit (22).
This scenario corresponds to Λ1 ≃ 10−76m2

Pl, where the formation mechanism of ΛPBHs
would generate about 10 times the mass of the Jupiter PBHs. Such PBHs could potentially
account for a component of DM.

5. Concluding Remarks

It is theorized that the large-scale structure of the Universe was shaped by quantum
fluctuations of scalar fields and/or metrics during inflation. These fluctuations, scaled
exponentially with conserved amplitude, gave rise to primordial inhomogeneities, cul-
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minating in the formation of the cosmic web that represents the Universe’s structure. In
theories involving extra dimensions, fluctuations of fields within these dimensions can also
be considered. However, the fate of these field fluctuations differs significantly from those
associated with conventional four-dimensional scalar fields.

While conventional field fluctuations transform their energy density into radiation
during the FRW stage through decay into other particle-like species, the energy density
associated with scalar fields within the internal space remains unchanged, effectively stored
within the scalar field itself, manifesting as a cosmological constant. Fluctuations of the
scalar field within the internal space manifest as spatial variations of the local Λ term.
Domains containing an extraordinarily high cosmological constant may collapse into PBHs.

Upon investigating the mass distribution of such ΛPBHs, we find that it may satisfy
existing cosmological constraints on the abundance of PBHs without conflicting with
the upper bound on the inflation energy scale inferred from CMB measurements, within
the mass range from 10−2 M⊙ up to 1010 M⊙. Of particular interest is the possibility
of associating ΛPBHs with masses of 102 M⊙ with seeds or supermassive black holes
(SMBHs) and associating those with masses spanning the range from 102 M⊙ to 106 M⊙
with intermediate-mass black holes (IMBHs). The lightest ΛPBHs of masses 10−2 M⊙ can
potentially contribute to the dark matter budget of the Universe.

The inevitable clustering of PBHs formed by the connected mechanism, driven by
inflationary dynamics, leads to the formation of a Swiss cheese-like special structure of
domains filled with high values of the Λ term. This clustering may impact the characteristics
of the observable spectrum of gravitational waves in the nanohertz frequency band, which
are believed to be a signal from SMBHBs [148].
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Appendix A. Justification of Formula (14) for Mass Measurement by a Distant Observer

Here, we explore the conditions under which Equation (14) can be reliably used. We
consider a three-dimensional space of volume Λ1 > Λ0. Our objective is to estimate
the mass of such a region as observed by a distant observer. For our estimation, we
make several assumptions: the field distribution varies slowly, allowing us to neglect
its time dependence; we operate far below the inflationary scale, implying that the term
aR2 is negligible; the domain with the higher energy density has approximately spherical
geometry; and the amount of ordinary matter is negligible.

We set the four-dimensional effective action Equation (5) as

S4 =
m2

P
2

∫
dtdvdθdφ

√
|g4| [aR2 + R − 2Λ(v] (A1)

and assume that the D dimensional metric depends on the radial coordinate v, leading to
the interval in the form

ds2 = A(v)dt2 − 1
B(v)

dv2 − v2dΩ2
2, (A2)
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which evolves the action (A1) into the following expression

S4 =
m2

P
2

∫
dtdvdθdφ

√
|g4| [R − 2Λ(v)] , (A3)

where the term aR2 is neglected. Now, the situation is essentially simplified, allowing for
the analytical evaluation of the mass using the nontrivial equations of the theory

B′

v
+

B
v2 − 1

v2 + Λ = 0, (A4)

B
v

A′

A
+

B
v2 − 1

v2 + Λ = 0, (A5)

B
2

A′′

A
− B

4
A′2

A2 +
B′

4
A′

A
+

B
2v

A′

A
+

B′

2v
+ Λ = 0. (A6)

Subtracting the first two equations yields

B(v) = A(v) , (A7)

so that Equations (A4) and (A5) are reduced to a single equation

A′

v
+

A
v2 − 1

v2 + Λ = 0, (A8)

with the solution
A(v) =

1
v

∫ v

0

(
1 − Λ(v)v2

)
dv − 2C1

v
. (A9)

We assume that the value of Λ remains constant within the sphere of radius l∗, denoted as
Λ(l∗) = Λ1. Therefore, inside the sphere, (A9) is converted into the expression

A(v)|v≤l∗ = 1 − Λ1l2
∗

3
− 2C1

l∗
. (A10)

Since, in our setup, there is no point-like mass producing the singularity in the center,
C1 = 0, and hence, we obtain the well-known de Sitter metric. For a distant observer in the
Minkowski space we assume Λ(v) = 0 everywhere outside the sphere of radius l∗ so that
one can derive

A(v)|v>l∗ = A(v)|v≤l∗ +
1
v

∫ v

l∗
dv = 1 − Λ1l3

∗
3v

. (A11)

Thus, the mass of the domain filled with Λ1 reads 2M∞ = Λ1l3
∗m2

P/3 and finally can be
expressed as

M∞ =
4πρΛl3

∗
3

(A12)

providing the definition Λ1 = 8πρΛ/m2
P. Note that taking into account (A7), (A10) and

(A11), Equation (A6) becomes an identity.

Appendix B. Probability of Domain Formation with Specific Energy Density
during Inflation

To estimate the volume fraction dP(Λ) filled with a specific value of the energy density
ρΛ = Λm2

P/8π, we need to relate the field fluctuations in the extra dimensions during the
inflationary stage to the parameter Λ. Following the approach outlined in [149], we consider
the extra metric as the background one, allowing the parameter ceff to vary together with
the scalar field ζ. The scalar field fluctuates intensively during inflation.
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Therefore, our first approximation is to assume a pure de Sitter metric, such that the
function ζ(x, y) is governed by the equation

ζ ′′ +

(
4γ′ + (n − 1)

r′

r

)
ζ ′ − Vζ = 0. (A13)

This equation, one of Equation set (4), has an asymptote of ζ1(u) in a chosen 3D volume un-
der the horizon. The surrounding 3D space is characterized by another static configuration
ζ0(u) ̸= ζ1(u).

The parameter value ceff[ζ0] expressed by the last equation in Equation (8), is assumed
to be small in order to avoid disrupting the dynamics of the inflationary stage. Additionally,
it is assumed to tend to a post-inflationary value of 10−123m2

P. Therefore, the quantity

ceff[ζ1] ̸= 0, (A14)

is responsible for the excess energy density.
The scalar field action (1) can be reduced to the standard form

Sscalar =
1
2

∫
d4x

√
g4

∫
dny

√
gn[(∂ϕ)2 − m2ϕ2] (A15)

by using the substitution
ϕ = m

D−2
2 ζ . (A16)

Exact calculation of the probability for a specific fluctuation ζ1(u) is quite difficult.
For estimation purposes, we can use an approximation in the spirit of the Kaluza–Klein
approach, where the scalar field is represented in the form

ϕ1(x, y) = ϕ0(y) + δϕ(x, y), δϕ(x, y) = ∑
a

ϕ(a)(x)Ya(y), (A17)

with the standard normalization

1 =
∫

dny
√

gnYa(y)2, (A18)

where ϕ0(y) is an initial static classical part of the scalar field for which ceff = 0, and the
difference δϕ(x, y) is decomposed into a series of orthogonal normalized functions Ya. Here,
for convenience, we use the dimensionalities [ζ] = 1, [ϕ] = m1+n/2, [Ya] = mn/2 → [ϕ(a)] =
m and neglect the internal n-dimensional metric variation.

Substituting (A17) into (A15), we obtain the action in the form

S = ∑
a

1
2

∫
d4x

√
g4[∂µϕ(a)∂µϕ(a) − µ2

aϕ(a)2] + S[ζ0], µ2
a = m2 + λa , (A19)

at the inflationary stage, where the term S[ζ0] tends to zero at the present time by definition.
The discrete set of eigenvalues λa, a = 0,±1,±2 . . . depends on the specific form of the
extra space metric. Assuming that ϕ(a) represents long-wave fluctuations that freeze at the
inflationary stage, i.e., ϕ(a) = const, we obtain the relation between the Lambda term and
the scalar field fluctuation under the horizon stems from the equalities

−2Λ ≡ ceff[ζ(u)] = −∑a µ2
aϕ(a)2

m2
P

, (A20)

as follows from (5) and (A19).



Universe 2024, 10, 166 13 of 18

The excitation amplitudes ϕ(a) act as independent free fields with an initial amplitude
equal to ϕ0(u) [149]. The probability of finding a set of functions ϕ(a)

dP({ϕa}) ≃
[
∏

a
dϕ(a) ·

√
qa/π

]
exp

[
−∑

a
qaϕ(a)2

]
, qa =

4π2

3
µ2

a
H4 . (A21)

According to (A20),

∑
a

qaϕ(a)2 =
4π2

3
H−4 ∑

a
µ2

aϕ(a)2 =
8π2

3
m2

P
H4 Λ (A22)

The final expression for the probability is

dP(Λ) ≃ dΛ · Q exp[−QΛ], Q =
8π2

3
m2

P
H4 , (A23)

where the pre-exponent follows from the normalization. The number of domains with
specific Λ is related to the probability as

dn = e3NdP(Λ). (A24)
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