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Abstract: This paper reviews the dynamics of a single isotropic and homogeneous scalar field φ(t) in
the context of cosmological models. A non-standard approach to the solution of the Einstein–Klein–
Gordon equations is described which uses the scalar field as the evolution parameter for cosmic
dynamics. General conclusions about the qualitative behaviour of the solutions can be drawn, and
examples of how to obtain explicit solutions for some cosmological models of interest are given. For
arbitrary potentials, analytical results can be obtained from the slow-roll approximation by using a
series expansion for the Hubble parameter H[φ], from which a quantitative estimate for the number
of e-folds of expansion is obtained. This approach is illustrated with the examples of quadratic
potentials and hilltop models, with special consideration of Higgs-type potentials. The GUT-scale
is shown to come out of such a model quite naturally. Finally, it is discussed how to find scalar
potentials giving rise to a predetermined scalar-field behaviour and the associated evolution of the
scale factor.
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1. Introduction and motivation

Observations of variable stars, such as type Ia supernovae, and the distribution of
galaxies in the universe, as well as the detailed maps of the Cosmic Microwave Background
(CMB) made by the successive COBE, WMAP and PLANCK missions, have provided
impressive amounts of data which allow us to trace the evolution of the universe over
the last 13.8 billion years, back to a time at which the universe was more than 1000 times
smaller in all directions [1–3]. What those studies have taught us is that for most of that
past, the rate of cosmic expansion was determined by the density of massive matter in the
universe. About one-seventh of that matter is of the baryonic type, mostly hydrogen and
helium. The rest is of a different, unknown, but electrically neutral type; it is generally
referred to as dark matter.

Surprisingly, however, since a little more than four billion years ago, the rate of cosmic
expansion has become dominated by another source of energy density, which is not a kind
of massive matter [4,5]. In view of its unknown nature, and as it makes its presence known
exclusively via the accelerated rate of expansion of the universe, it is referred to as dark
energy. In the context of General Relativity (GR), it can be parametrized by a cosmological
constant. But, as there is presently no information on the evolution of dark energy from
earlier times, it is impossible to say if it has always been really constant, or whether the dark
energy density evolves itself over cosmological times. Another possible scenario would
be for the cosmic expansion to be driven in part by one or more cosmic scalar fields, the
energy of which can vary during the evolution of the universe. Such scenarios have been
widely discussed, e.g., in the context of cosmic quintessence models [6,7].

Another epoch of accelerating expansion of the universe is thought to have taken place
in a very early phase to explain the present homogeneity and isotropy of the cosmos, and
in particular of the CMB, in which fluctuations are smaller than one part in 104. This era
of cosmic inflation must have smoothed out any inhomogeneities in the distribution of
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matter and radiation in the part of the universe within our cosmic horizon [8–12]. Its origin
is likewise to be traced to some source of cosmic vacuum energy for which a scalar field,
referred to as the inflaton field, may have been responsible.

As the discovery of the Higgs particle has made clear, scalar fields also play an
important role in particle physics, where the Brout–Englert–Higgs (BEH) field is responsible
for the masses of weak vector bosons and charged leptons, and contributes to those of
quarks. The mechanism behind the BEH effect is the non-zero vacuum expectation value
(vev) acquired by the scalar field, which couples to particle fields with no mass to begin
with. The vev of the scalar field is, however, temperature-dependent, and can therefore
change over the life time of the universe. This suggests there may have been a period in
the very early universe at extremely high temperature during which symmetry was not
yet broken and leptons and vector bosons were all massless. Such a scenario then creates
the problem, that the energy density of the BEH field at very early times would have been
hugely different from the present (in which it contributes virtually nothing to the cosmic
energy density). Presumably at that time, this energy density would have contributed to
a very fast expansion of the universe. Indeed, models in which the standard-model BEH
field is the source of inflation have been studied by various authors [13–18].

These considerations arising from both cosmology and particle physics make it de-
sirable to develop a good understanding of the joint evolution of scalar fields and the
expansion rate of the universe. There is, in fact, already a large literature on the subject; for
an introduction, see, e.g., refs. [19,20] and references therein. In the following, we explore a
non-standard approach to this topic based on earlier work [21–23]. This approach is useful
in various contexts, not only to solve the equations of motion, but, for example, also to find
the potential and the scale factor necessary to produce a certain prescribed evolution of the
scalar field.

2. Modelling Cosmological Scalar Fields

We do not know how many fundamental scalar fields might contribute to the cosmic
expansion. But, we can assume the combined potential of the scalars to form a landscape
in which there is an effective potential with a well-defined minimum; if there would
be a flat region near the minimum, this would give rise to massless or nearly massless
(pseudo) Goldstone bosons, which we exclude. We also assume that any potential sym-
metries between the scalar fields are broken near the minimum. This implies that the
effective scalar field fluctuates in a single direction in the scalar landscape. This assumption
greatly facilitates our analysis. Another simplifying assumption, based on well-established
observational evidence, is that the universe is taken to be spatially flat.

The resulting cosmological model is that of a single homogeneous scalar field φ(t) in a
homogeneous and isotropic universe, of which the scale factor a(t) evolves as determined
by the Hubble parameter H(t) = ȧ/a. The dynamics of these parameters is described by
the Klein–Gordon equation in a homogeneous and isotropic space-time:

φ̈ + 3H φ̇ + V′ = 0, (1)

for the scalar field with potential V[φ], combined with the Einstein equation

1
2

φ̇2 + V =
3
κ2 H2, (2)

where κ =
√

8πG is the Planck length (in natural units with c = h̄ = 1). For periods
of time in which the scalar field changes monotonically—e.g., during the period of an
oscillation between two extreme values—the evolution of the Hubble parameter can be
linked to that of the scalar field by considering it as an implicit function of time in terms of
its dependence on the scalar field: H(t) = H[φ(t)]. Such a point of view turns out to be
remarkably fruitful [21–23]. First, note that

Ḣ = H′ φ̇, (3)
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where the prime denotes differentiation with respect to the field φ. Differentiation of
Equation (2) with respect to time with use of the KG equation then implies

6
κ2 HḢ = φ̇

(
φ̈ + V′) = −3H φ̇2. (4)

Therefore, either the universe is static and flat and H = φ̇ = 0, or

Ḣ = −κ2

2
φ̇2, κ2 φ̇ = −2H′. (5)

It follows that Equation (2) can be cast in a form determining H[φ]:

3κ2H2 − 2H′ 2 = κ4V. (6)

The points where this description can break down are critical points φc, where the evolution
of the scalar field stops: φ̇c = 0; at these points, H′

c = 0 and κ2Vc = 3H2
c . Such points are

classified as follows:
(a) End points of evolution occurring when

κ4 φ̈c = 4H′′
c H′

c = 0; (7)

end points can be stable (in a minimum) or unstable (at a maximum or saddle point).
(b) Turning points, where

κ4 φ̈c = 4H′′
c H′

c ≡ 4α ̸= 0. (8)

As in both cases H′
c = 0, in case (a), the second derivative of the Hubble parameter must be

finite: |H′′
c | < ∞. In case (b), this quantity must diverge:

H′′
c ∝

1
H′

c
→ ∞. (9)

As an example, consider the case of a quadratic potential [23]

V[φ] = ε +
m2

2
φ2. (10)

Then, the critical points are (φc, Hc) related by

3H2
c −

κ2m2

2
φ2

c = κ2ε. (11)

Equation (11) defines a hyperbola, the shape of which is determined by the sign of the
vacuum energy ε (Figure 1). For ε > 0 and positive H, there is a single branch with
a minimum Hmin > 0 at φ = 0. This minimum represents an endpoint of evolution
corresponding to a de Sitter universe with a positive cosmological constant; for ε = 0, the
hyperbola degenerates into the asymptotic straight lines, and the end point of evolution
becomes Minkowski space with H = 0. Finally, for ε < 0, the critical curve is hyperbola
with two branches, allowing the field to evolve from an expanding regime in which H > 0
to the contracting regime H < 0; the universe will then start to coalesce as soon as H crosses
into negative values and total collapse becomes inevitable.

Example: quadratic potentials

V = ε + m2

2 φ2 turning points: 3H2 − m2

2 φ2 = ε

Note:                 is the vacuum energy densityV0 = ε

H

ε > 0 ε = 0 ε < 0

φ

0

Figure 1. Critical points of H[φ] for scalar field with quadratic potential. Adapted from [23].
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These scenarios are illustrated in Figure 2, showing some numerical solutions of
Equation (6) for the case of the quadratic potential (10) with ε > 0 (Figure 2a) and ε < 0
(Figure 2b), respectively.

H

𝝋

H

𝝋

(a) (b)

Figure 2. Evolution curves H[φ] for a quadratic potential with positive (a) and negative (b) vac-
uum energy. Adapted from [23].

3. An Exact Solution: Exponential Potentials

In some cases, Equation (6) can be solved exactly in analytical form. As a first step, it
is convenient to renormalize the scalar field by

u(t) =

√
3
2

φ(t), (12)

with the result that, upon switching the functional dependence of V and H, we obtain

H2 − H2
u =

V
3

. (13)

For the case of non-negative definite potentials V[φ], the square root of this equation can
be found by defining the function K[u] implicitly by

H =

√
V
3

cosh K. (14)

The function K then satisfies the differential equation [22]

Ku +
Vu

2V
ctgh K = ±1. (15)

As the left-hand side of this equation is odd in K, the two roots are related by K → −K; this
results in the same expression for H. Therefore, we can restrict ourselves without loss of
generality to the positive sign on the right-hand side.

A particularly simple example arises for exponential potentials [24]

V[u] = V0e2λu, V0 > 0. (16)

for which
Ku + λ ctgh K = 1. (17)

For the special cases λ = ±1, the implicit solution u[K] is

4(u − u0) = 2K − λe2λK, (18)

The solutions vanishing at u = 0, i.e., K(0) = 0, have been sketched in Figure 3.
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Figure 3. K[u] for the exponential potential (16) with λ = +1 (a) and λ = −1 (b).

For general values of λ ̸= ±1, the implicit solution u[K] of Equation (17) is(
1 − λ2

)
(u − u0) = K + λ ln

[
(λ − 1)eK + (λ + 1)e−K

]
. (19)

Substitution of this expression into the potential yield:

V[u(K)] = V0eλu0 eλK/(1−λ2)
[
(λ − 1)eK + (λ + 1)e−K

]λ2/(1−λ2)
. (20)

Together with the Expression (14), this determines the Hubble parameter as a function of K.
Combining this with Equations (18) and (19), we obtain a full set of parametrized solutions
(u[K], H[K]).

4. Slow-Roll Approximation

For many scalar potentials, it is not possible to obtain exact solutions of Equation (6)
in analytical form. Nevertheless, it is still possible to determine to what extent a certain
potential can give rise to periods of accelerated expansion. Indeed, in such periods, the
Hubble parameter is supposedly nearly constant, a condition leading to (quasi-)exponential
expansion. The condition for changes in the Hubble parameter to be small compared to its
value is given in terms of the dimensionless parameter ϵ by the inequality

ϵ ≡ H′

κH
< 1. (21)

Taking into account Equation (6), this implies

H2 < κ2V ≤ 3H2, (22)

where equality in the second domain limit is reached for critical values φc such that H′
c = 0.

The domain of values φ where these inequalities hold is commonly referred to as the
slow-roll region. For the case of the quadratic potential (10), the corresponding regime is
sketched in Figure 4.



Universe 2024, 10, 197 6 of 12

H

𝜑

κ2V = 3H2

κ2V = H2

Figure 4. The slow-roll regime for the quadratic potential (10).

The condition (21) is satisfied at or near critical points φc, where H′
c = 0. This happens

trivially at an end point of evolution provided Vc = ε > 0, as

Hc = κ

√
ε

3
. (23)

Such a scenario can account for late exponential expansion.
The condition (21) is also satisfied near turning points, where H′′

c diverges. In this
case, Equation (8) implies that near the critical point

H′ 2[φ] = 2α(φ − φc) +O[(φ − φc)
2]. (24)

As explained in [22] this naturally leads to an expansion of H′[φ] near a turning point in
powers of

√
|φ − φc|. Therefore, we define a dimensionless field variable ξ by

φ = φc ±
1

2κ
ξ2, (25)

where the plus sign holds for a left turning point (where φ ≥ φc), and the minus sign for a
right turning point (where φ ≤ φc). Now, expanding

H′ =
κ

ξ
Hξ = α1ξ + α2ξ2 + α3ξ3 + . . .

κH = α0 +
α1

3
ξ3 +

α2

4
ξ4 +

α3

5
ξ5 + . . . ,

(26)

Equation (6) then implies the identity

κ4V[φ] = 3α2
0 − 2α2

1ξ2 + 2α1(α0 − 2α2)ξ
3 +

1
2

(
3α0α2 − 4α2

2 − 8α1α3

)
ξ4 + . . . (27)

By substitution of (25) into the potential V[φ] and comparison of powers of ξ on both sides
of the equation the coefficients αi can be determined.

It is then possible to establish the domain ∆ξ of ξ-values where the inequality (22) is
satisfied. This allows the computation of the number of N-folds of expansion created in the
neighbourhood of a turning point:

N =
∫ 2

1
Hdt = −κ2

2

∫ 2

1

H
H′ dφ = −1

2

∫
∆ξ

H
Hξ

ξ2dξ. (28)
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Adding the branch descending from higher values of H and the one descending to lower
values of H, we then arrive at the first approximation

N ≃
∣∣∣∣α0

α1
∆ξ

∣∣∣∣, (29)

where ∆ξ is the range over which the inequality (22) is satisfied.
To obtain a large number of e-folds from the combined left-moving and right-moving

branches, it is therefore necessary that

|∆ξ| ≫
∣∣∣∣α1

α0

∣∣∣∣ = ∣∣∣∣ 1
2H

d3H
dξ3

∣∣∣∣
c
. (30)

5. Quadratic Potentials

As a typical example, consider the quadratic potential (10); substitution of the expan-
sion (25) then results in

V[ξ] = Vc ±
m2

2κ
φc ξ2 +

m2

8κ2 ξ4, (31)

where
Vc = ε +

m
2

φ2
c . (32)

The evolution has a stable end point at φ = 0 if either ε > 0 (ending in a de Sitter universe)
or ε = 0 (ending in a Minkowski universe). To determine what happens at turning points,
compare (31) with (27) to establish that

α2
0 =

κ4

3
Vc = κ2H2

c , α2
1 =

κ3m2

4
|φc|,

α2 =
α0

2
=

κHc

2
, α3 =

2α2
0 − κ2m2

32α1
= ±2κ(H2

c − m2)

16m
√

κ|φc|
, . . .

(33)

The sign of α3 is fixed by the sign of α1, which is determined by which branch of H is
considered. For a left turning point, the inequality (22) implies

2α0α1

3
ξ3 + ... < 2α2

0 − 2α2
1ξ2 − 4α1α3ξ4 ≤ 2α2

0 + 2α0α1ξ3 +
α2

0
2

ξ4 + . . . , (34)

To this order in ξ, the left inequality can be rewritten

2α2
0 > 4α1α3ξ2

[(
ξ +

α0

12α3

)2
−

α2
0

144α2
3
+

α1

2α3

]
≥ ξ2

(
2α2

1 −
α2

0α1

36α3

)
.

In the limit Hc > m, this reduces to ξ2 < 9α2
0/7α2

1, such that

∆ξ ≃
∣∣∣∣α0

α1

∣∣∣∣. (35)

For the number of e-folds, we then have

N =
α2

0
α2

1
=

4H2
c

κm2|φc|
=

2
3

κ|φc|
(

1 +
2ε

m2 φ2
c

)
. (36)

This does not become large for scalar values at or below the Planck scale |κφc| ≤ 1, unless
|κφc| ≪ κ2ε/m2, when the evolution is already very close to the stable minimum of the
potential, the eventual cosmological constant.
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6. Hilltop Inflation

In a class of models of accelerated expansion which naturally give rise to large numbers
of e-folds, the scalar field evolution starts at a maximum in the potential, a scenario known
as hilltop inflation [25–27]. A simple example is the Higgs potential

V = ε − µ2

2
φ2 +

λ

4
φ4. (37)

Figure 5 shows the curve of critical points for a potential which has its true minimum
at the Minkowski limit Vmin = 0; this happens if

ε =
µ4

4λ
. (38)

The figure includes parts of a numerical solution of the evolution H[φ] which comes close
to the local maximum at φ = 0. The local maximum itself is an end point in the sense of
Equation (7), but an unstable end point, as the field will roll down as result of an arbitrary
tiny fluctuation. For definiteness, we consider the scenario shown in Figure 5, where
the scalar field starts at a small positive field value φc, and therefore, in the slow-roll
approximation, it is parametrized as

φ = φc +
1

2κ
ξ2.

In the neighbourhood of the local maximum, in the regime φ ≪ µ/
√

λ, Equation (37)
reduces to that for the inverted quadratic potential corresponding to m2 = −µ2 and λ = 0.
It then follows that the expansions (26) applies to

α0 = κ2

√
Vc

3
, α1 = −κµ

2
√

κφc,

α2 =
α0

2
, α3 = − κµ

16
√

κφc

(
1 +

2κ2Vc

3µ2

)
,

(39)

where Vc ≃ ε. Therefore, to this approximation,∣∣∣∣α0

α1

∣∣∣∣ = 2κ

µ

√
ε

3κφc
, (40)

and the applicable range of ξ-values is

ξ2 ≲
2κε

3µ2 φc
. (41)

The number of e-folds is then also estimated to be

N ≃ βκε

µ2 φc
, (42)

where β ≃ 1. Within the limit φc → 0, the number of e-folds N can become arbitrarily large.
For potentials which have an absolute Minkowski minimum, satisfying Equation (38),
this becomes

N ≃ βκµ2

4λφc
. (43)

A similar result was derived along a different route in ref. [27].
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H

𝜑0 μ

λ

−μ

λ

Figure 5. Critical curve for the Higgs potential. The local maximum at φ = 0 is an unstable end point.
Adapted from [23].

A question this scenario raises is how the scalar field happens to arrive at the max-
imum of the potential. One possibility is that it was caught in a local minimum of the
potential before symmetry breaking, which, after a phase transition turned into a local max-
imum. However, another possibility is that it arrived at the maximum by direct dynamical
evolution; remarkably, there is a simple analytical solution of the cosmological scalar field
equations for Higgs-type potentials which leads to the unstable final state at the maximum
of the potential [21,23]. This solution describes exponential roll-down

φ(t) = φ0e−ωt. (44)

For large times t → ∞, the scalar field (44) tends indeed to φ = φ̇ = φ̈ = 0, implying that it
ends at an end point of evolution. It follows from Equation (5) that

H′ =
κ2ω

2
φ, H = h +

κ2ω

4
φ2, (45)

where h is a constant. The corresponding potential is found directly from Equation (6) and
takes the form (37) with

ε =
3h2

κ2 , µ2 = ω2 − 3ωh, λ =
3κ2ω2

4
. (46)

The present cosmological energy density κ4Vmin = 3κ2H2
today ∼ 10−120 requires that the

Minkowski limit (38) is realized to great accuracy; this observation imposes the relations

ω = 6h, φ2
min =

µ2

λ
=

2
3κ2 . (47)

Given the scalar field (44) and the Hubble parameter (45), the evolution of the scale factor
during this exponential decay phase can be straightforwardly computed to be [21]

a(t) = a(0)eht+ 1
8 κ2 φ2

0(1−e−2ωt). (48)

An interesting feature of this solution is that, in addition to eventual exponential expansion
with a Hubble constant h, it also describes an early phase of super-exponential expansion
during a time τ = 1/2ω, which leads to an additional number of e-folds determined by the
initial scalar amplitude:

∆N =
1
8

κ2 φ2
0. (49)
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It follows that the the initial value of the Hubble parameter is

H0 = h(1 + 12∆N). (50)

This corresponds to the Planck energy if

3κ2H2
0 = 3κ2h2(1 + 12∆N)2 = 1 ⇒ h =

1√
3 κ(1 + 12∆N)

. (51)

In the standard scenario, the number of e-folds during inflation is required to be ∆N ≥ 60;
as in natural units κ = τP, which is Planck time, this implies

h ≤ 1
830 τP

, or ω ≤ 1
140 τP

, (52)

fixing the time in which the scalar field rolls down to the unstable maximum at φ = 0.
How long it can stay there before rolling down to the minimal value (47) depends on
the characteristics of the scalar fluctuations; using the results (43) and (46), the relation
between the additional N-folds and the deviation φc from the exact maximum of the
potential becomes

Nadd =
β

6κφc
. (53)

The scalar fluctuations χ = φ− φmin near the minimum of the potential describe Higgs-type
particles; their properties follow from the potential

V[χ] = 18h2

(
χ2 + κ

√
3
2

χ3 +
3κ2

8
χ4

)
, (54)

which implies that for ∆N = 60 the mass of these Higgs particles in terms of the Planck
mass MP = 1/κ is

m2
χ = 36h2 =

1
12(∆N)2 ∼ 2 × 10−5 M2

P, (55)

In standard units, the Higgs mass mχ then is of the order of the GUT scale 1016 GeV/c2.
Note that we obtain this number without any input or extrapolation of standard model
particle physics. Interestingly, the same energy range for hilltop models was found based
on a completely independent comparison with the data of Planck, BICEP/Keck Array, and
baryon acoustic oscillations in ref. [28].

7. Discussion

In this overview of isotropic and homogeneous cosmic scalar-field dynamics, we
have shown how to solve the combined Einstein–Klein–Gordon field equations by using
the field itself as a time variable. Considerable qualitative information is obtained from
such a formulation, and in some interesting cases, the evolution of the field and the scale
factor can be solved for exactly, without making use of approximations. Even when exact
analytical solutions are difficult to obtain, the standard approximation procedure of slow-
roll approximation can be used in analytical form by performing series expansion (26) to
obtain expressions for the Hubble parameter and the number of e-folds in terms of the
parameters of the potential. This was shown explicitly for the case of quadratic potentials,
and in the scenario of hilltop inflation models. In the latter case, we also obtained the
relation (53) between the number of e-folds and the deviation φc from the true (unstable)
maximum of the potential.

In the analysis of cosmic scalar evolution presented here, the standard slow-roll
parameters can be expressed (up to a factor of 2) as

ϵ =
H′

κH
, η =

H′′

κ2H
. (56)
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Thus, they have a direct interpretation in terms of the relative slope and curvature of the Hubble
parameter as a function of φ; these quantities determine where quasi-exponential expansion is
likely to occur. However, in our considerations we have not explicitly used a constraint on the η
parameter, as the series expansion (26) allows for direct estimation of the number of e-folds N
given in (29). A discussion of the classification of inflationary models based explicitly on the
interplay between the slow-roll parameters can be found in [29].

Finally, as was pointed out before in ref. [21], the descent of the scalar field from Planck-
scale values to the local maximum of a Higgs-type potential includes a phase of super-
exponential expansion which by itself can be sufficient to explain 60 e-folds of inflation. In
this scenario, the Higgs field naturally gives rise to GUT-scale symmetry breaking.

Another advantage of our approach using the scalar field as the evolution param-
eter for the cosmic expansion is that one can perform reverse engineering of the po-
tential. Namely, given the evolution of the scalar field φ(t), integration of the second
Equation (5) allows us to determine the Hubble parameter H[φ]; substitution of this result
into Equation (6) then directly gives the potential V[φ] for which φ(t) is the solution of
Equation (1). An example of this procedure is the construction of the Higgs-type model (37)
from the exponential decay of a scalar field; other examples can be found in ref. [23].

All of our analyses were performed in the context of canonical single-scalar field
theories and their classical dynamics. An approach to multi-field dynamics was developed
for example in [30], and non-linear scalar models were introduced in the context of k-
essence dark energy in [31]. A general discussion of non-linear cosmological scalar field
theories can be found in [32]. The UV-completion of cosmological field theories and its
impact on predictions for inflation has been studied in [33].
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30. Nibbelink, S.G.Ġ.; van Tent, B.J.W. Scalar perturbations during multiple-field slow-roll inflation. Class. Quantum Grav. 2002, 19, 613.

[CrossRef]
31. Armendáriz-Picón, C.; Damour, T.; Mukhanov, V. k-Inflation. Phys. Lett. B 1999, 458, 209–218. [CrossRef]
32. van Holten, J.W.; Kerner, R. Time-reparametrization invariance and Hamilton-Jacobi approach to the cosmological σ-model.

Fortschr. Phys. 2014, 62, 543. [CrossRef]
33. Burgess, C.P.; Patil, A.P.; Trott, M. On the Predictiveness of Single-Field Inflationary Models. J. High Energy Phys. 2014, 1406, 010.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1103/PhysRevLett.89.201301
https://doi.org/10.1142/S0217751X13501327
https://doi.org/10.1016/0370-2693(87)91011-2
https://doi.org/10.1088/1475-7516/2005/07/010
https://doi.org/10.1088/1475-7516/2019/09/030
https://doi.org/10.1016/j.physletb.2020.135688
https://doi.org/10.1140/epjp/s13360-023-04512-1
https://doi.org/10.1088/1475-7516/2014/01/007
https://doi.org/10.1088/0264-9381/19/4/302
https://doi.org/10.1016/S0370-2693(99)00603-6
https://doi.org/10.1002/prop.201400008
https://doi.org/10.1007/JHEP06(2014)010

	Introduction and motivation 
	Modelling Cosmological Scalar Fields 
	An Exact Solution: Exponential Potentials 
	Slow-Roll Approximation 
	Quadratic Potentials 
	Hilltop Inflation 
	Discussion 
	References

