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Abstract: Vegetation encroachment in power line corridors remains a major challenge for modern
energy-dependent societies, as it can cause power outages and lead to significant financial losses.
Unmanned Aerial Vehicles (UAVs) have emerged as a promising solution for monitoring infras-
tructure, owing to their ability to acquire high-resolution overhead images of these areas quickly
and affordably. However, accurate segmentation of the vegetation encroachment in this imagery
is a challenging task, due to the complexity of the scene and the high pixel imbalance between
the power lines, the vegetation and the background classes. In this paper, we propose a deep
learning-based approach to tackle this problem caused by the original and different geometry of the
objects. Specifically, we use DeepLabV3, U-Net and a modified version of the U-Net architecture
with VGG-16 weights to train two separate models. One of them segments the dominant classes,
the vegetation from the background, achieving an IoU of 0.77. The other one segments power line
corridors from the background, obtaining an IoU of 0.64. Finally, ensembling both models into one
creates an “encroachment” zone, where power lines and vegetation are intersected. We train our
models using the Vegetation Encroachment in Power Line Corridors dataset (VEPL), which includes
RGB orthomosaics and multi-label masks for segmentation. Experimental results demonstrate that
our approach outperforms individual networks and original prominent architectures when applied
to this specific problem. This approach has the potential to significantly improve the efficiency and
accuracy of vegetation encroachment monitoring using UAV, thus helping to ensure the reliability
and sustainability of power supply.

Keywords: deep learning; vegetation encroachment monitoring; semantic segmentation; power line
corridors; UAV; GeoAI

1. Introduction

Vegetation encroachment is a common situation in power line corridors, causing
flashovers in transmission and distribution overhead lines. Overgrown trees near transmis-
sion lines can disrupt power circuits, generating short circuits and tripping circuit breakers,
which may result in power outages. These disruptions lead to economic losses for utility
companies and widespread blackouts for consumers, especially impacting businesses heav-
ily reliant on electricity these days. It is crucial for electric utility companies to monitor
and manage vegetation encroachment near transmission lines to ensure continuous power
supply and prevent damage to conductors, in alignment with electricity regulations [1].
In 2003, in the United States and Canada there was a power outage that affected close to
50 million users (11% of the population of both countries). Similar incidents also occurred
in Italy and Switzerland during the same year, affecting more than 60 million users. In
tropical countries like Malaysia, where approximately 66% of the country is covered with
forest, vegetation encroachment is the third biggest cause of electricity supply interruption,

ISPRS Int. J. Geo-Inf. 2023, 12, 454. https://doi.org/10.3390/ijgi12110454 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12110454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-9988-4624
https://orcid.org/0000-0002-9069-0732
https://doi.org/10.3390/ijgi12110454
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12110454?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2023, 12, 454 2 of 15

representing about 18% of total failures in power cuts [1]. In other studies such as in [2],
the authors account for the monetary losses in United States companies due to vegetation
encroachment, and they calculated that a 30 min outage in a medium company can cost up
to USD 16,500, reaching up to USD 94,000 for an 8 h suspension.

Despite the importance of monitoring vegetation encroachment in transmission lines,
the most used technique is human-based field trips, known to be a time-consuming task
and logistically intensive due to the long journeys and harsh natural conditions that must
be faced. Consequently, this technique suffers from poor scalability, as reported in [2–5].
To overcome these limitations, refs. [2–6] proposed applying deep learning combined
with Unmanned Aerial Vehicle (UAV) images of transmission lines. Furthermore, optical
imagery captured by UAVs are easy to collect, analyze and store. However, there is a lack
of UAV-based datasets that can be used to train neural networks (NNs), and specifically for
the purpose of segmenting vegetation encroachment in infrastructure. This limitation was
first addressed in the Vegetation Encroachment in Power Line Corridors (VEPL) dataset, a
collection of UAV images of vegetation encroachment in power line corridors acquired in
Colombia, South America [6]. This dataset includes three folders of paired image-masks:
the original imagery, geometric-augmented imagery and one with spectral augmentation.
The images are RGB, and the multi-class masks have three classes that represent the
vegetation, the power lines and the background. Some of the challenges imposed by this
dataset are:

• Class imbalance at pixel level between the background, the vegetation and the power
line classes [7].

• The vegetation class can incorporate an extensive variety of trees and shrubbery, with
different colors, shapes and heights.

• In some cases, power lines overlap vegetation when modeled in two dimensions,
making semantic segmentation inaccurate.

According to [8], semantic segmentation is the classification of images at the pixel level,
which makes the class imbalance become an inherent problem. In [9], it is mentioned that
this task faces a tension between semantics and location: global information resolves the
“what”, while local information resolves the “where”. To test their hypothesis, those authors
used a Fully Convolutional Network pre-trained with different classification networks
like AlexNet and VGGNet. In [10], the authors developed one of the most widely used
state-of-the-art algorithms in semantic segmentation, called the DeepLab. It is a Deep
Convolutional Network that includes the atrous convolution, upsampled filters for dense
feature extraction that use extended spatial pyramid pooling (ASPPP). ASPP enhances
the network’s ability to capture multi-scale features from the input image by utilizing
dilated convolutions at different rates. ASPP is particularly effective in capturing context at
various scales, which is crucial for accurately segmenting objects of different sizes. Authors
in [11] proposed the USPP, a CNN framework introduced to generate segmentation on
high-resolution remote sensing images. The USPP is a novel model that showcases the
effectiveness of integrating the encoder–decoder and spatial pyramid pooling module
for segmentation purposes. This pooling method encodes objects and image context at
multiple scales. Also, some solutions are developed for mobile devices, like MobileNet [12],
that used segmentation decoder Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP).
Authors in [9] presented a module with dilated convolutions to systematically aggregate
multi-scale contextual information without losing resolution for Road Extraction over aerial
images. This network is built with residual units, addressing the issue of class imbalance
on a similar architecture to the U-Net.

Different authors have faced high imbalanced classes in remote sensing. In [13],
authors proposed using a pre-trained encoder as backbone for generating faster and more
precise predictions, showing that transfer learning is a useful technique for remote sensing
imbalance classes, like road extraction from satellite images. In [14], authors also dealt with
class imbalance when using semantic segmentation and remote sensing for mapping land
cover in urban areas, and they made use of customized loss functions and combined CNN
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architectures to obtain the best overall performance. In a survey developed by [15], multiple
solutions for improving segmentation in remote sensing were described. One of the most
used was fusion-based strategies, so when the input data had a different structure or
geometry, a separate network was applied to handle each data type, and fusion happened at
the classification stage. Also, the importance of custom loss functions to handle imbalanced
datasets is highlighted. Lastly, different authors found out that the use of Transfer Learning
helps to tackle the scarcity of data and models to gain more prediction power.

In this paper, the semantic segmentation of a highly imbalanced classes problem,
exhibited by the vegetation encroachment in power lines, is tackled by the combination of
a pre-trained Vgg-16, U-Net, and DeepLab3 networks, with the customized Tversky loss
function, which is coined as the VEPL-Net [16]. Employed architectures have previously
shown good performance, low complexity, computational efficiency and good results with
UAV-based imagery [15]. The Tversky loss function, based on the Tversky index, has
demonstrated its ability to achieve a better trade-off between precision and recall in convo-
lutional deep neural networks (CNNs) [17–23]. The objective of this study is to propose
an alternative approach that helps to automatically segment vegetation encroachment in
power lines using UAV images.

The rest of the paper is organized as follows. In Section 2, we describe the VEPL
dataset and our methodology for semantic segmentation on this dataset. The details of
the VEPL-Net architecture and the pre-trained weights used are presented, followed by
the ensemble composed of two separate neural networks for addressing the multi-class
segmentation, as well as the data augmentation techniques used, the description of the loss
function and the training methodology.

In Section 3, the experiment results, the performance evaluation and an analysis of the
VEPL-Net are provided. In Section 4, future research in this field is presented. Finally, the
contributions of this study are summarized.

2. Materials and Methods

Semantic segmentation for vegetation encroachment in power lines still has multiple
unsolved challenges, including dataset unavailability and highly imbalanced classes. This
section describes the materials and methodology employed to carry out the study.

2.1. VEPL Dataset

The VEPL dataset comprises orthomosaics that have been tessellated to generate pairs
of images and masks, representing three distinct classes: vegetation, power lines and
background. This dataset was specifically developed for the semantic segmentation of
vegetation encroachment in power lines, offering a significant advantage in training Deep
Learning models for monitoring several kilometers in less time, and at lower cost compared
to the conventional field trips approach [6].

The VEPL dataset was acquired through autonomous drone flights along a secondary
road located in Envigado, Colombia, South America. The dataset covers approximately
2.4 km of roads, resulting in a total of 532 pairs of image-mask chunks. This number was
expanded to 3724 chunks using geometric augmentation, and to 3192 image-mask pairs
using spectral augmentation [6]. Figure 1 shows an example of the VEPL dataset.

Geometric augmentation involves altering the geometric properties of images to ensure
that neural networks can effectively handle changes in object position and orientation. This
encompasses random rotations, grid distortions, horizontal flips, scale shifts and elastic
deformations. Spectral augmentation aims to enhance model robustness against variations
in lighting and color within images. The employed techniques were Random Brightness
and Contrast, Hue Saturation Changes, Gaussian Blur Filter, Gamma Correction and
CLAHE (Contrast Limited Adaptive Histogram Equalization). Figure 2 shows examples of
the geometric and spectral augmentation in the VEPL dataset [6].
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label mask with vegetation class (green), power line class (gray) and background class (black). 
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Figure 1. The VEPL dataset. (a) RGB tessellated image, with a size of 256 × 256 pixels. (b) Multi-label
mask with vegetation class (green), power line class (gray) and background class (black).
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Figure 2. Geometric and spectral augmentation in the VEPL dataset. (a) Example of an RGB image,
with a size of 256 × 256 pixels. (b) Corresponding multi-label mask with vegetation class (green),
power line class (gray) and background class (black). (c) RGB image with geometric data augmenta-
tion applied (RandomRotate90). (d) RGB image with spectral data augmentation applied (CLAHE,
Apply Contrast Limited Adaptive Histogram Equalization). Adapted and modified from [6].

Despite executing imbalance checks and data augmentation, the VEPL dataset still
presents a high imbalance between classes, with the power line class being particularly
scarce due to its geometry (linear) compared to vegetation and background classes (poly-
gons). The VEPL dataset is freely available in Zenodo at https://doi.org/10.5281/zenodo.
7800234 (accessed on 1 August 2023).

https://doi.org/10.5281/zenodo.7800234
https://doi.org/10.5281/zenodo.7800234
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2.2. Deep Learning Architectures

The selection of an appropriate architecture is crucial for semantic segmentation. In this
section, we delve into two prominent deep learning architectures tailored for that purpose.
The first architecture explored is the U-Net, which represents one of the pioneering solutions
for addressing semantic segmentation. The other one is that proposed in DeepLab [10].
After that, the key aspects of the VEPL Net are explained.

2.2.1. U-Net

The U-Net architecture was originally proposed in 2015 in [24], and originally the
research was focused on biomedical image segmentation. It consists of an encoder and
decoder path, where the encoder, or contracting part, is a convolutional neural network
(CNN) that captures context, and the decoder, the expanding part, enables the precise
location of features. The typical use of a CNN is the classification task, but in many
challenges of deep learning, the desired output should include a pixel-localization of
each class [24]. In the VEPL-Net, classification and localization are mandatory due to the
necessity of identifying and locating the vegetation and the power line pixels. The encoder
in the U-Net involves applying two consecutive 3 × 3 convolutions, each followed by a
rectified linear unit (ReLU) activation function, and a 2 × 2 max pooling operation with
a stride of 2. This downsampling process doubles the number of feature channels. On
the other hand, the decoder step includes an upsampling operation on the feature map,
followed by a 2 × 2 convolution that reduces the number of feature channels by half.
The resulting feature map is then concatenated with the corresponding cropped feature
map from the contracting path. Subsequently, two 3 × 3 convolutions are applied, each
followed by a ReLU activation. The cropping step is necessary to account for the loss of
border pixels that occurs during each convolution. Finally, a 1 × 1 convolutional layer
is employed to map each 64-component feature vector to the desired number of classes.
Altogether, the network consists of a total of 23 convolutional layers [24]. Figure 3 presents
the U-Net architecture.
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Multiple implementations of a U-Net-like backbone are conducted when dealing
with satellite imagery. In [17], the authors proposed ResUNet-a, which combines a novel
loss function based on the Dice loss function for the task of semantic segmentation of
high-resolution aerial images. ResUNet incorporates a UNet encoder/decoder backbone
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with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-
tasking inference. Additionally, in [18], a novel end-to-end change detection method is
proposed based on the UNet++ architecture for semantic segmentation. This approach
leverages an effective encoder–decoder structure to generate high-accuracy change maps
from co-registered image pairs. The fusion of multiple side outputs at different semantic
levels produces a final change map with superior accuracy, outperforming other state-
of-the-art methods on very high-resolution satellite image datasets. Finally, in [19], the
authors proposed RCNN-UNet, an end-to-end deep learning model for road information
extraction from aerial images. This model mitigates propagation errors, leverages spatial
context and low-level features and employs multi-task learning for road detection and
centerline extraction.

2.2.2. DeepLab

In [10], the authors emphasize the effectiveness of atrous convolution, which involves
convolution with upsampled filters. This technique allows the explicit control of the res-
olution at which features are computed within Deep Convolutional Neural Networks
(DCNNs). Atrous convolution enables the incorporation of larger context without increas-
ing the number of parameters or computational complexity. The authors also propose
atrous spatial pyramid pooling (ASPP) to achieve robust object segmentation at multiple
scales. ASPP applies filters with varying sampling rates and effective fields-of-view to
the incoming convolutional feature layers, thereby capturing objects and image context
at different scales. Third, the authors enhance the localization of object boundaries by
combining methods from DCNNs and probabilistic graphical models. While the common
combination of max-pooling and downsampling layers in DCNNs provides invariance, it
often compromises localization accuracy. To address this issue, they integrate the responses
from the final DCNN layer with a fully connected Conditional Random Field (CRF). This
fusion approach demonstrated through qualitative and quantitative analysis a significant
improvement of the localization performance.

2.2.3. Transfer Learning

Data dependence is one of the most cited problems in deep learning, and at the
same time, data collection is a complex and expensive task, which makes it extremely
difficult to build a large-scale, high-quality annotated dataset [25]. Transfer learning is a
valuable technique for addressing the challenge of limited training data. It aims to leverage
knowledge from a source domain to a target domain, overcoming the assumption that
training and test data must be independent and identically distributed. This approach
has proven highly beneficial for domains with insufficient training data, enabling notable
improvements in model performance [25]. The authors in [20] have used VGG-16 and
inception to incorporate accurate U-Net models for image segmentation, specifically as
encoders. Additionally, the authors in [26] use transfer learning capabilities of FCNs in
various satellite imagery datasets, retrieving information on small-scale urban structures
even at decametric geospatial resolution. In other studies, such as in [27], VGG16 is used
without the top layer as the encoder for crack detection in pavements and bridges. Similarly,
in [28], the authors implement transfer learning between different crop types, reducing
training times up to 80%.

2.3. Loss Function

The loss function can deeply affect the learning process of a model, and the right
loss function selection is key to account for the imbalance problems that are frequent in
semantic segmentation. For classification models, the most used loss function is the Cross
Entropy loss, and for the regression models, the L1 and L2 are the most common, whereas
for semantic segmentation authors lean on the Categorical Cross Entropy loss and Dice
similarity [29]. In semantic segmentation, the usual technique combines loss functions
and weighted schemas, trying to handle the imbalance of the minor class and the high
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presence of the background pixels, penalizing the dominant and giving more attention to
the minority class [29].

The Focal Loss is one of the recent solutions for class imbalance when conducting
semantic segmentation; it reshapes the cross entropy loss such that it down-weights the
loss to well-classified examples, reducing the relative loss for well-classified pixels and
putting more focus on hard, misclassified ones [29,30]. The authors in [29] performed a
review on the loss functions of existing architectures for semantic segmentation, including
some like multimodal logistic loss in the FCN. DeepLab authors use as a loss function
the sum of cross-entropy terms for each spatial position in the CNN output map. PSPNet
implemented two loss functions, one for the main branch using cross-entropy loss to train
the final classifier and another one after the fourth stage, both with a weighted balancing.
Finally, the Gradient Difference Loss was used in SegmPred, which is designed to sharpen
results by penalizing high-frequency mismatches such as errors along the object boundaries.
One of these functions is known as Tversky loss [16], which is specifically designed for
image segmentation in medical imaging applications, particularly for segmenting lesions.
In such cases, the number of voxels representing lesions is often significantly lower than
the number of voxels representing non-lesions. The authors of the study suggested a
generalized loss function based on the Tversky index, which achieved a more optimal
balance between precision and recall during the training of 3D fully convolutional deep
neural networks.

2.4. Training Strategy

We initially attempted to train the network using all three classes of the VEPL dataset.
It was challenging to accurately identify the power lines due to their linear geometry, which
resulted in a relatively small number of pixels compared to the other classes. Consequently,
we then adopted the following strategy:

• All three classes must be present in each image-mask pair. Therefore, we decided to
create two datasets based on the VEPL dataset. One dataset contained the vegetation
and background classes, while the other contained the power line class. This approach
transformed the problem from a multi-class to a binary classification problem.

• We made use of a custom loss function for training, specifically the Tversky loss
function. This yielded better results compared to traditional loss functions since it
provided more emphasis on the minority classes. Both the vegetation and power line
classes have a lower presence than the background class.

• We employed the U-Net and DeepLab architectures, considering pre-trained weights
to enhance the neural network’s generalization capabilities.

• The evaluation metrics were specific for semantic segmentation tasks.

3. Results and Discussion

Three distinct neural network architectures were explored: U-Net [24], U-Net with
a VGG-16 encoder [20,24,27] and DeepLab [10]. Each architecture introduced unique
attributes for semantic segmentation. The VEPL dataset was used with and without
augmentation. By modifying the training dataset composition, the loss function and the
neural network architecture, up to 36 different neural networks were trained in total—18
for the vegetation-background dataset and 18 for the power line-background dataset. The
following are the variations chosen:

• Dataset composition: augmentations encompassed geometric and spectral transforma-
tions, thereby introducing comprehensive diversity into the training process.

• Neural network architecture: U-Net, U-Net with VGG-16 encoder and DeepLab.
• Loss function: Tversky loss and binary cross-entropy loss.

The results are presented in two subsections. The first presents the results obtained
from all the trained neural networks, with a focus on the best solution for each dataset. The
performance of all 36 trained neural networks and evaluations of their accuracy, among



ISPRS Int. J. Geo-Inf. 2023, 12, 454 8 of 15

other metrics related to semantic segmentation, are presented. Additionally, comparative
results obtained using different datasets, augmentation techniques, neural network archi-
tectures and loss functions are highlighted. This analysis provides a comprehensive under-
standing of the effectiveness of various configurations in addressing the segmentation task.

The second one demonstrates the implementation of VEPL-Net, a strategy that com-
bines the best solution for the power lines and the vegetation classes and identifies the
vegetation encroachment. Quantitative metrics to demonstrate the effectiveness of VEPL-
Net in addressing this specific problem are highlighted.

3.1. Performance Evaluation of Trained Neural Networks for Semantic Segmentation

All neural networks were trained using a GPU NVIDIA T4(×2) in Kaggle notebooks.
In Tables 1 and 2, we present the results of training and validation accuracy for the power
line and vegetation classes.

Table 1. Maximum training accuracy for all neural networks.

Train Accuracy

Class Data Trained
DeepLab Unet Unet + vgg Encoder

BCE * Tversky BCE * Tversky BCE * Tversky

Power Line
Without augmentation - - 0.820 0.674 0.689 0.511

Geometric augmentation 0.976 0.969 0.968 0.820 0.969 0.861
Spectral augmentation 0.946 0.906 0.965 0.749 0.972 0.975

Vegetation
Without augmentation - - 0.850 0.801 0.876 0.833

Geometric augmentation 0.950 0.907 0.879 0.850 0.897 0.858
Spectral augmentation 0.987 0.955 0.846 0.770 0.911 0.835

* BCE—Binary cross-entropy.

Table 2. Maximum validation accuracy for all neural networks.

Validation Accuracy

Class Data Trained
DeepLab Unet Unet + vgg Encoder

BCE * Tversky BCE * Tversky BCE * Tversky

Power Line
Without augmentation - - 0.914 0.776 0.738 0.616

Geometric augmentation 0.981 0.977 0.981 0.945 0.981 0.948
Spectral augmentation 0.968 0.938 0.982 0.890 0.982 0.981

Vegetation
Without augmentation - - 0.861 0.841 0.905 0.867

Geometric augmentation 0.879 0.902 0.873 0.832 0.872 0.880
Spectral augmentation 0.874 0.873 0.833 0.799 0.882 0.858

* BCE—Binary cross-entropy.

As can be seen in Tables 1 and 2, the use of augmentation leads to better performances
in both the training and validation datasets. For the original dataset, without augmentation,
DeepLab does not have results due to the low number of examples and the complexity
of the task. For the vegetation class, it obtained a better performance in the dataset with
geometric augmentation, showing consistency in both the training and validation sets.
For the geometric augmentation the best architecture was the U-Net with the VGG-16
encoder, and the best loss function was Tversky, obtaining a good performance and similar
results in both training and validation and showing no over or underfitting. For the power
line class, the best dataset is the one that has geometric augmentation, but in this case
with the DeepLab architecture. The results of the intersection over union (IoU), a popular
metric for semantic segmentation [31], are included. mIoU is the average value of the
intersection of the prediction and ground truth divided by their union, applied to the
whole dataset [32].When it comes to semantic segmentation, it is generally preferable to
use Intersection over Union as an evaluation metric rather than for accuracy. IoU is a more
appropriate metric for semantic segmentation because it accounts for spatial accuracy and
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object localization, providing a better evaluation of the model’s performance. Tables 3 and 4
present the results of the training and validation datasets using IoU for both classes. A better
performance is obtained for the vegetation class using spectral augmentation, but with a
little overfitting for some configurations. On the other hand, an overall equal performance
is obtained for geometric augmentation in both the training and validation datasets. IoU
has a drastic descensus for the power line class when compared to the accuracy metric; for
this reason, the use of IoU is suggested for semantic segmentation. The power line class
obtained better results for both augmentation methods when using DeepLab and the U-Net
with the VGG-16 encoder.

Table 3. Maximum IoU values for the training dataset, all neural networks.

Train IoU

Class Data Trained
DeepLab Unet Unet + vgg Encoder

BCE Tversky BCE Tversky BCE Tversky

Power Line
Without augmentation - - 0.054 0.061 0.040 0.059

Geometric augmentation 0.310 0.450 0.069 0.107 0.077 0.129
Spectral augmentation 0.062 0.175 0.060 0.090 0.083 0.506

Vegetation
Without augmentation - - 0.605 0.597 0.619 0.562

Geometric augmentation 0.842 0.805 0.681 0.718 0.712 0.743
Spectral augmentation 0.950 0.890 0.621 0.654 0.730 0.723

Table 4. Maximum IoU values for the validation dataset, all neural networks.

Val IoU

Class Data Trained
DeepLab Unet Unet + vgg Encoder

BCE * Tversky BCE * Tversky BCE * Tversky

Power Line
Without augmentation - - 0.046 0.060 0.035 0.050

Geometric augmentation 0.140 0.221 0.024 0.065 0.029 0.073
Spectral augmentation 0.025 0.070 0.025 0.055 0.028 0.235

Vegetation
Without augmentation - - 0.754 0.680 0.816 0.649

Geometric augmentation 0.764 0.824 0.716 0.768 0.719 0.779
Spectral augmentation 0.815 0.795 0.666 0.754 0.758 0.800

* BCE—Binary cross-entropy.

Then all models were evaluated using the IoU over the original test dataset to select the
best combination of augmentation, architecture and loss function for both classes. Table 5
shows the results.

Table 5. IoU for all models in the test dataset.

IoU Metric

Class Data Trained
DeepLab Unet Unet + vgg Encoder

BCE * Tversky BCE * Tversky BCE * Tversky

Power Line
Without augmentation - - 0.504 0.427 0.344 0.295

Geometric augmentation 0.593 0.639 0.515 0.490 0.575 0.523
Spectral augmentation 0.514 0.548 0.517 0.494 0.534 0.625

Vegetation
Without augmentation - - 0.687 0.624 0.740 0.318

Geometric augmentation 0.759 0.726 0.733 0.632 0.752 0.698
Spectral augmentation 0.737 0.759 0.717 0.607 0.771 0.656

* BCE—Binary cross-entropy.

Data augmentation gave the model a better performance in IoU for both classes, and
in general the use of Tversky loss [16] is more important for the power line class due to its
high imbalance. For the vegetation class, the use of binary cross-entropy or Tversky loss
does not have a significant impact. The best models for both classes were:
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• Vegetation class: model trained with spectral augmentation dataset using U-Net with
VGG-16 encoder and binary cross-entropy loss, obtaining up to 0.77 in IoU.

• Power line class: model trained with geometric augmentation dataset using DeepLab
and Tversky loss, obtaining up to 0.64 in IoU.

The following Figure 4 show the prediction capacity of both models for predicting
their respective class.
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3.2. VEPL-Net: A Fusion of Neural Networks for Enhanced Segmentation of Vegetation
Enchroachment in Power Lines

The best performing neural networks for both classes according to previous results
were chosen. The workflow for the predictions is shown in Figure 5.



ISPRS Int. J. Geo-Inf. 2023, 12, 454 11 of 15ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 5. Proposed workflow for VEPL-Net. 

The proposed workflow takes an image as input to predict vegetation invasion on 
power lines. Utilizing the best architecture obtained for each class, separate predictions 
are made for each class. Subsequently, intersection is performed between the two predic-
tion masks. The final step generates an alert indicating the areas where vegetation inva-
sion occurs. As mentioned, the advantage of this approach lies in the ability to generate 
more accurate predictions for each class, considering their significant geometric varia-
tions. Figure 6 shows multiple examples of input images and the final output with predic-
tions and warning of vegetation encroachment. 

  

Figure 5. Proposed workflow for VEPL-Net.

The proposed workflow takes an image as input to predict vegetation invasion on
power lines. Utilizing the best architecture obtained for each class, separate predictions are
made for each class. Subsequently, intersection is performed between the two prediction
masks. The final step generates an alert indicating the areas where vegetation invasion
occurs. As mentioned, the advantage of this approach lies in the ability to generate
more accurate predictions for each class, considering their significant geometric variations.
Figure 6 shows multiple examples of input images and the final output with predictions
and warning of vegetation encroachment.

The obtained predictions show a good performance of the model in segmenting both
classes, in particular the power line class, despite its high imbalance, which also leads
to a good prediction of vegetation encroachment. This study deals with the semantic
segmentation of vegetation encroachment in power line corridors using deep learning. A
customized network architecture and loss function called VEPL-Net is proposed. In the
obtained results, data augmentation plays a crucial role in enhancing the performance
of the model for vegetation and power line classes. For the vegetation class, the model
trained with the spectral augmentation dataset, employing a U-Net with VGG-16 encoder
and binary cross-entropy loss, and achieved the highest IoU of 0.77. This result suggests
that utilizing spectral augmentation helps in capturing the variability in vegetation types,
leading to more accurate segmentation. On the other hand, the power line class benefits
significantly from the use of the Tversky loss function, the geometric augmentation and the
DeepLab modules, obtaining an IoU of up to 0.64. The Tversky loss effectively addresses
the class imbalance issue, resulting in an improved segmentation performance for power
line corridors. Similar studies, like that developed by [33], used UAV and transformers to
detect zones of vegetation encroachment, and the prediction for the zone of encroachment
(mixed both power lines and vegetation) obtained a Jaccard index of 0.87. Others studies
like [34] combined UAVs and deep learning, but in this case to detect transmission towers,
reaching an accuracy of 98.6% for a DenseNet. Transformers were shown to be more
effective in tackling the problem when a huge amount of training images was available or
when the computing power was not a limitation, like in the case of this current research.

These findings indicate that different strategies are needed to optimize the segmenta-
tion models for each class separately, showing the effectiveness of the proposed VEPL-Net
architecture and the significance of the penalizing loss function.
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Figure 6. Examples of input images and the final output mask with predictions and warning of
vegetation encroachment.
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4. Conclusions

This work proposes the VEPL-NET as an alternative to automatically monitoring
vegetation encroachment in power line corridors with the integration of deep learning
techniques and UAV imagery.

The VEPL-Net is an effective approach, demonstrating its ability to handle data
imbalance resulting when the target classes come from objects of a different geometry. This
was possible due to the integration of an appropriate loss function and pre-trained weights
coming from prominent segmentation architectures like the U-Net and DeepLab.

In the vegetation class, the application of spectral augmentation alongside a U-Net with
VGG-16 encoder and binary cross-entropy loss achieved an IoU score of 0.77. Meanwhile,
the power lines class reaped significant benefits from the Tversky loss function, which
effectively addressed the pixel-level class imbalance inherent in this category. The use of a
geometric augmentation dataset in conjunction with DeepLab and the Tversky loss led to
an IoU of up to 0.64.

Experiments validate the effectiveness of the proposed VEPL-Net architecture and
strategies but also emphasize the necessity of individualized approaches for addressing the
complexities inherent in power line corridor monitoring. The synergy between machine
learning techniques and UAVs has unlocked new possibilities for efficient, accurate and
cost-effective monitoring, which holds the potential to benefit regions globally facing
similar challenges.

Further research and refinement of the proposed method hold immense promise.
The ongoing development of advanced neural network architectures, coupled with the
continuous evolution of UAV technology, open doors to advancements in power line
corridor monitoring, enhancing power supply reliability, reducing economic losses and
achieving a sustainable energy infrastructure.
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