
Citation: Liu, L.; Deng, J.; Tang, Y. A

Dynamic Management and

Integration Framework for Models in

Landslide Early Warning System.

ISPRS Int. J. Geo-Inf. 2023, 12, 198.

https://doi.org/10.3390/

ijgi12050198

Academic Editors: Wolfgang Kainz,

Pablo Rodríguez-Gonzálvez, Diego

González-Aguilera

Received: 4 April 2023

Revised: 7 May 2023

Accepted: 12 May 2023

Published: 13 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

A Dynamic Management and Integration Framework for
Models in Landslide Early Warning System
Liang Liu 1,2 , Jiqiu Deng 1,2,* and Yu Tang 1,2

1 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring
(Ministry of Education), Central South University, Changsha 410083, China

2 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
* Correspondence: csugis@csu.edu.cn

Abstract: The landslide early warning system (LEWS) relies on various models for data processing,
prediction, forecasting, and warning level discrimination. The potential different programming
implementations and dependencies of these models complicate the deployment and integration
of LEWS. Moreover, the coupling between LEWS and models makes it hard to modify or replace
models rapidly and dynamically according to changes in business requirements (such as updating
the early warning business process, adjusting the model parameters, etc.). This paper proposes a
framework for dynamic management and integration of models in LEWS by using WebAPIs and
Docker to standardize model interfaces and facilitate model deployment, using Kubernetes and Istio
to enable microservice architecture, dynamic scaling, and high availability of models, and using a
model repository management system to manage and orchestrate model-related information and
application processes. The results of applying this framework to a real LEWS demonstrate that
our approach can support efficient deployment, management, and integration of models within
the system. Furthermore, it provides a rapid and feasible implementation method for upgrading,
expanding, and maintaining LEWS in response to changes in business requirements.

Keywords: landslide; early warning; LEWS; model repository

1. Introduction

Landslide disaster investigation, evaluation, monitoring, and early warning aim to
minimize the losses caused by disasters through effective prevention and control measures.
In the widely used landslide risk management system, the monitoring and early warning
are important technologies that complement engineering treatments and are integral parts
of the system [1]. Establishing a landslide early warning system (LEWS) is a cost-effective
approach compared to engineering treatment [2]. Over years of research, various LEWSs,
and related technologies have been implemented in numerous countries and regions [3–10].
Landslide early warning can be classified into regional early warning and individual
early warning [1]. Regional early warning relies on conducting a large-scale geological
survey, acquiring and interpreting remote sensing data, and comprehensive analysis and
evaluation of multiple data [11,12]. However, limited by the cycle, resolution, and accuracy
of data acquisition, the results of regional early warning are not relevant, reliable, effective,
and timely enough, and only a rough warning can be given. Individual early warning
uses monitoring equipment located at the individual landslide mass and its surrounding
area to monitor various landslide-inducing conditions (such as rainfall) and deformation
characteristics (such as surface displacement, and crack size) [3]. The obtained monitoring
data are then transmitted to the remote server where various models in LEWS quickly
process and analyze them, and calculate the warning level, thus triggering an early warning.
In comparison, the individual early warning has better performance in terms of relevance,
reliability, validity, and velocity [13].

ISPRS Int. J. Geo-Inf. 2023, 12, 198. https://doi.org/10.3390/ijgi12050198 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12050198
https://doi.org/10.3390/ijgi12050198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0009-0005-6859-6917
https://orcid.org/0000-0003-0729-1018
https://doi.org/10.3390/ijgi12050198
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12050198?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2023, 12, 198 2 of 17

The LEWS is an intricate system encompassing numerous scientific aspects in its
design, implementation, management, and validation [14]. According to the United Nations
International Strategy for Disaster Reduction (UNISDR 2009) [8], a LEWS should consist
of four procedures: monitoring, analysis and modeling, early warning, and emergency
response. Among them, the prediction and modeling of landslide hazard occurrence and
early warning are vital elements of LEWS [9]. Therefore, various models of these are the
core of LEWS. The advancement of landslide prediction and forecasting technology, along
with the application of computer technology, has allowed geological disaster researchers to
develop numerous models. These models address monitoring data processing, landslide
prediction, forecasting, and early warning (e.g., GM (1, 1) model [15], Saito’s three-stage
deformation model [16], artificial intelligence models [17]) and can be integrated into LEWS
applications. It has significantly improved the application level and intelligence of LEWS.

Developing standardized early warning models is challenging, and deploying them
is complex due to the diversity of programming languages (e.g., Python [12,18], Mat-
lab [19], Java [13]), implementation methods (e.g., scripts, DLLs, functions, interfaces),
and dependency environments. In previous studies, the prediction analysis and modeling
components of LEWS existed as system modules, comprising multiple models, multiple
computing stages, and the connection of all these models and stages. Moreover, due to
the complexity of landslide prediction and forecasting problems, a single model is usually
insufficient for reliable prediction and forecasting. Many relevant models are typically
combined through generic early warning mechanisms to increase the accuracy of forecast-
ing and prediction [20]. The different model implementations resulted in complex model
invocation methods and strong coupling between models and system. Currently, there is
limited research on a common mechanism for combining and connecting models to form
new models, which would include modifying or replacing individual models and adjusting
the connections within the combined models. This means modifying the source code of the
system, which can lead to high costs and reduced system reliability.

The organization and integration of models in LEWS have received little attention
in previous studies. A framework providing easy integration of new models would be
beneficial for updating models in LEWS. Moreover, such a framework would enable free
model selection, combination, and connection, allow user-defined construction of new
models, and replace existing models rapidly and dynamically. Thus, it would have great
significance for the development of LEWS. Therefore, this study focuses on model manage-
ment and integration issues in LEWS, excluding research on data preprocessing, forecasting,
and early warning methods. This study applies cloud-native technologies such as Docker,
microservices, and Kubernetes to the research field of LEWS, proposes a dynamic man-
agement and integration framework for models in LEWS, and conducts research on its
management and integration mechanisms. This framework covers the standardized devel-
opment, deployment procedures, storage management of model information, and custom
application orchestration mechanisms of models in LEWS, and supports the integration
of model applications into LEWS under a unified standard protocol. Its feasibility and
effectiveness are demonstrated by simulating an actual running application scenario in
LEWS. Compared to traditional technical methods, this framework exhibits superior per-
formance in terms of improving the service capability, availability, and scalability of the
models in LEWS.

The paper is organized as follows: Section 2 introduces the related theories and
key technologies of the research, and elaborates on the methodology of the dynamic
management and integration framework for models in LEWS in detail. Section 3 provides
experimental details. Section 4 presents experimental results and discusses them, as well as
related studies and the direction of further exploration. Section 5 summarizes this work
and outlines the potential research directions in the future.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 3 of 17

2. Materials and Methods
2.1. Related Theories and Key Technologies
2.1.1. Models in LEWS

The following types of models are included in LEWS.

• Raw data pre-processing models: the raw monitoring data may have extreme outliers,
data loss, and other anomalies because of the potential uncertainties in the moni-
toring and wireless transmission back to the monitoring data server [21]. Hence,
pre-processing the raw data is essential to ensure the accuracy of subsequent calcu-
lations. Common data pre-processing methods include identifying anomalous data,
supplementing missing values with interpolation, smoothing and fitting data, among
other stages [22].

• Susceptibility assessment models: landslide susceptibility is based on the geological
background environment, with reference to the impact brought by human engineer-
ing activities, and then predicts the probability of landslides occurring in a certain
area [23,24]. The development of landslide susceptibility assessment model methods
has evolved from qualitative analysis [25], to quantitative analysis using mathematical
statistical models, machine learning methods [26–28], and deep learning models [29].

• Displacement prediction models: by employing certain mathematical methods, pre-
dicting the displacement of landslides in a future period using historical monitoring
curves is a necessary prerequisite for achieving time forecasting and early warning
level determination [30]. The main displacement prediction models include gray
model [31], machine learning model [20], etc.

• Time forecasting models: commonly used time forecasting models include
GM (1, 1) [15], Saito model [16], etc. The time forecasting model forecasts the spe-
cific time when the landslide will finally be unstabilized after it enters the accelerated
deformation stage, according to the displacement prediction results. The result is an
important basis for subsequent emergency response [13]. Due to the diversity and
uncertainty of landslide triggers, the determination of landslide damage time is a very
complicated problem.

• Warning level solver models: early warning level solver models are a class of models
that classify the risk of the monitored landslide into different levels based on a series
of parameters derived from displacement prediction models and time forecasting
models. The common criteria for early warning level solver include improved tangent
angle [32], velocity and deformation phase [33], rainfall [9,34], and combination
parameters of several different indicators [10].

• Warning release models: the ultimate goal of early warning is to prevent casualties and
minimize property damage. The early warning release model disseminates warning
information to relevant audiences, which may include professional monitors or people
within the affected area of the disaster [6], through easily received channels according
to the warning level. Early warning release methods include short messaging service
(SMS), portal notifications, emails, etc. [32].

2.1.2. Key Technologies

(1) WebAPIs
WebAPIs serve as interfaces that facilitate communication between distinct systems

over HTTP/HTTPS protocols, without exposing the source code or implementation details
of the service providers [35]. These abstract concepts can be implemented and utilized
across a range of platforms and programming languages, including Java, NET, Python,
and more. WebAPIs provide a flexible and versatile way to create client-oriented services
for diverse applications. The design quality of WebAPIs influences their adoption and
usability among developers.

(2) Docker
Docker is a container engine that enables developers to create and deploy applications

as lightweight and portable images that contain all the necessary dependencies [36]. These

ISPRS Int. J. Geo-Inf. 2023, 12, 198 4 of 17

images can be run as containers on any machine that supports Docker. Containers are
isolated from each other by a sandbox mechanism and have minimal overhead in terms
of creation and destruction. Unlike virtual machines, which emulate hardware and re-
quire a full operating system, containers share the same kernel but only include specific
applications and libraries [37].

Docker provides an official image repository called Docker Hub, where users can store
and retrieve images [38]. Alternatively, users can also set up their private image repositories
using tools such as Registry or Harbor. This can improve the network performance and
security of image management.

(3) Microservices
Microservices are a distributed application solution that decomposes a single appli-

cation into multiple small services that collaborate to deliver value to users. Each service
operates in its process and communicates with others using lightweight mechanisms. Each
service focuses on a specific business domain and can be deployed and scaled indepen-
dently and dynamically [39]. The first generation of microservices frameworks, such as
Spring Cloud and Dubbo, rely on embedded proxies for service registration and discovery.
This introduces coupling between microservices and proxies and makes service gover-
nance invasive to business code. Moreover, these frameworks have limited support for
microservices written in different programming languages [40].

(4) Kubernetes and Istio
Kubernetes (also known as K8s) is a system that automates and manages containerized

applications [41]. It is widely used for deploying microservices [42], but it does not
provide all the functionalities required by microservices. A service mesh can complement
Kubernetes by adding a communication agent to each service instance and handling all
the network interactions of the service [43], such as service discovery and routing. Istio
is a service mesh implementation for Kubernetes that uses a sidecar container approach.
A sidecar container is a container that runs alongside the model service container in the
same pod (Figure 1), sharing its IP, lifecycle, resources, network, and storage. This allows
Istio to implement microservice features in containers without affecting the service code
or language.

c

Model
Container

Sidecar
Container

envoy proxy

Model
Container

Sidecar
Container

envoy proxy

Model
Container

Sidecar
Container

envoy proxy

Pod Pod Pod

K8s Computing Cluster

Worker Node Worker NodeControl Plane Control Plane

kube-apiserver

etcd

kube-scheduler

kube-controller-
manager

kube-apiserver

etcd

kube-scheduler

kube-controller-
manager

Worker Node Worker Node

Worker Node

Worker Node

c

Model
Container

Sidecar
Container

envoy proxy

Pod

Figure 1. Istio service mesh architecture diagram.

2.2. Dynamic Management and Integration Framework for Models in LEWS

We propose a dynamic management and integration framework that deploys standard-
ized and containerized LEWS models as WebAPIs on Kubernetes and Istio for microservices.
LEWS can invoke models and user-defined early warning business processes through the

ISPRS Int. J. Geo-Inf. 2023, 12, 198 5 of 17

interface provided by the model repository management system. Figure 2 shows the
technology roadmap.

Models of different
implementations

Python

Matlab

Java

Linux / Unix /
Windows

Sc
rip

t/
D

LL
/ •

 •
•

Raw data
pre-processing

models

Displacement
prediction

models
Time

forecasting
models

• • •

Model interface
with uniform style

Model
images

Private model
image repository

Highly available
K8s cluster

Pull images

Deploy model microservices using istio

Redis

Relational
database

Running
status

LEWS

Model repository management system

Model lookup
service

Process
invocation

service

Process
orchestration

service

Image
management

service

Model
dictionary

service

Model
registration

service

Cluster
management

service

Model
monitoring

service

Logging
service

Images
information

Push

Models、images、deployment、

cluster、running information

Model
running
results

Model
invocation

request

Cluster
information,

service
discovery

information

Real-time monitoring
data, warning receiver

information, etc.

Results of displacement prediction,
time forecasting, warning level,

and warning release, etc.

Message
queue

Running
status

Figure 2. Technology roadmap.

2.2.1. Standardized Deployment of Models in LEWS

LEWS models (e.g., for monitoring data pre-processing, displacement prediction, time
forecasting, warning level solving, and warning release) are often integrated as scripts,
functions, libraries, or Web services with different languages and platforms. Many models
have more diverse languages and runtimes than the technology stack of LEWS. For example,
LEWS is built using Java Web technology, while some models (e.g., for data pre-processing)
are implemented in Python and accessed through Python scripts. This leads to deep
coupling and low flexibility. We propose an approach that uses Kubernetes and Istio as
the runtime platform for various models, develops them as WebAPIs, and deploys them
in containers.

Specifically, models are developed as WebAPIs using programming languages devel-
opers are familiar with (e.g., Python, Java), and using JavaScript object notation (JSON)
data format for data interaction. WebAPI models have different technologies and deploy-
ment methods, which cause low efficiency and complex dependencies. We use Docker to
package WebAPI models as images and deploy them in containers, build a private image
repository for hosting model images, deploy a Kubernetes cluster with Istio, and use their
microservice capabilities for model deployment, container orchestration, service discovery,
and more.

2.2.2. Unified Management of Models in LEWS

Each model requires a unified management strategy to enable easy discovery, man-
agement, and integration of various models. For example, users can search by model
name to get the interface and parameter information of a Verhulst prediction model. Each
standardized encapsulated model corresponds to a Docker image, and each model has

ISPRS Int. J. Geo-Inf. 2023, 12, 198 6 of 17

different definitions of input and output parameters. After standardized deployment, a
model may run with multiple container instances on different Kubernetes cluster nodes.
We abstract the above model organization rules into an E-R (entity-relationship) data model
(Figure 3).

Model

ID

name

description

type

Nodehostname

deploy

n

m

1 depend 1 Image

CPU

ID

tag
name

namespace
creation time

HTTP
method

internal port

interface path
1

has

n

ParameterID

type

data type

default value

external
service port

environment
variable

mount
directory

environment
variable

mount
directory

memory size

disk size

GPU

ID

ID

name
node name

Figure 3. The conceptual model for managing LEWS models.

Each entity has the following meaning:

• Node: a node in the Kubernetes cluster with attributes such as hostname, IP address,
and resource information.

• Image: a model service image with attributes such as name and tag.
• Parameter: a parameter includes the type (input/output), data type (text, number,

boolean, list, or dictionary), and default values.
• Model: a deployed model instance with attributes such as name, description, model

type, associated image, and node.

Each relationship has the following meaning:

• Depend: a model depends on an image.
• Deploy: a model can be deployed on multiple nodes with external service ports. Each

node can host multiple models.
• Has: an image has input and output parameters of different types.

The design of the database is based on the above data model. The Kubernetes API
from the control plane in Kubernetes and the Registry API from the mirror repository
provide the ability to manipulate Kubernetes objects (Pod, Namespace, Node, etc.) and
image repository objects, respectively. These APIs and the model repository database
enable the unified management of model information.

2.2.3. Early Warning Business Application Process Orchestration

LEWS involves multiple subtasks, sequential constraints, and data transfer. For
example, in the loess landslide warning system in Heifangtai terrace (Figure 4), data are
processed, standard parameters are calculated for the multi-criteria warning model, and
warning information is sent to different receivers based on thresholds and criteria [32].
Inspired based on the workflow of [44], we abstract the model-based application process

ISPRS Int. J. Geo-Inf. 2023, 12, 198 7 of 17

as a directed acyclic graph (DAG). The data structure of the model application process is
defined as shown in Figure 5. In DAG, nodes contain model information such as model
ID, and edges contain IDs of connected nodes and data binding between models. The
user-defined process description is stored in JSON format.

Data processing

Moving average method

Least-squares method

Multiple alert
criteria model

Warning release

SMS

WeChat

Telephone

Alert parameters
and thresholds

Figure 4. Flowchart of real-time early warning system for loess landslide on the Heifangtai ter-
race [32].

Model Ⅰ

Model Ⅱ

Model Ⅳ

Model Ⅲ
Node A

Node B

Node C

Node D

Edge 1

Edge 2

Edge 3

Edge 4

{
"addplicationID":"48D9B144-8912-AAEF-B50E-3908059D9278",
"nodes":[

{
"node_id":“Id of Node A",
"model_id":“Id of Model Ⅰ",
"is_run":false

},
{

"node_id":"Id of Node B",
"model_id":"Id of Model Ⅱ",
"is_run":false

},
],
"edges":[

{
"edge_id":"Id of Edge 1",
"source_model_id":"Id of Model Ⅰ",
"target_model_id":"Id of Model Ⅱ",
"parameters_bind":[

{
"source_output":"Id of the output parameter 1 of Model Ⅰ",
"target_input":"Id of the output parameter 1 of Model Ⅱ"

},
{

"source_output":"Id of the output parameter 2 of Model Ⅰ",
"target_input":"Id of the output parameter 2 of Model Ⅱ"

}
]

},......
]

}

Node{
node_id,
model_id,
is_run

}

Edge{
edge_id,
source_model_id,
target_model_id,
parameters_bind[

parameter{
source_output,
target_input

}
]

}

output parameter 1 of Model Ⅰ
output parameter 2 of Model Ⅰ
output parameter 3 of Model Ⅰ

input parameter 1 of Model Ⅱ
input parameter 2 of Model Ⅱ

input parameter 1 of Model Ⅲ

Figure 5. Data structure definition of early warning business process based on models connection.

2.2.4. Invocation Mechanism for Individual Models and Application Process

In the framework proposed in this paper, the instances of each deployed model (e.g.,
preprocessing, displacement prediction, time forecasting, etc.) are dynamically assigned
resources and access addresses and need service discovery for service lookup. Under
the microservices framework integrated with Kubernetes and Istio, Istio could follow the
service discovery function of Kubernetes [45] and could view the real-time information of
services and pods in Istio, including IP addresses, ports, and other access information and
running status.

To call a specific model, it is essential to first obtain the model instance’s URL. The URL
consists of the deployed node’s IP address, the external service port, and the dependency
image’s interface route. To acquire the IP address and port, use service discovery by pro-
viding the model ID and name. Meanwhile, the interface path and parameter information
can be gathered through a related query.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 8 of 17

We designed an interface that can be used to launch the early warning application
processes. Firstly, by entering the user-defined model application process identifier, the
corresponding application process topology relationship is queried from the database.
Then, the task order relationship of each model is parsed, and the invocation of individual
models is performed sequentially to realize the data interaction between the two models
until the final result is returned.

2.2.5. Integration of Model or Application Process into LEWS

Individual models or user-defined application processes could be integrated into
LEWS with a few steps. The model repository management system stores model informa-
tion, so the model ID sufficed to get the model instance address and parameter definition.
Access is based on the interface, identifier, and input data for application processes. Both
individual models and application processes used the HTTP protocol for easy and quick
integration into LEWS.

2.2.6. Development of Model Repository Management System

In this section, we developed a model repository management system based on the
proposed methodology, with its structure illustrated in Figure 6. The system primarily
consists of the following components: user interface, application services, basic components,
and infrastructure platform.

Model Repository Management System for LEWS

Infrastructure Platform

Docker Image
Repository

Worker Node

Master NodeMaster Node

Worker NodeWorker Node

Master Node

Image ServerStorage Server

Basic Components

Relational
Database

Cache
Service

Message
Queue

Application Services

Model Lookup Service Process Invocation Service Process Orchestration
Service

Image Management
Service Model Dictionary Service Model Registration Service

Cluster Management
ServiceModel Monitoring Service Logging Service

User Interface
Visual Process Application Orchestration Component

model model model

model

model

model

Model Management Component Cluster Management Component

Figure 6. Diagram of the system structure.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 9 of 17

The user interface supports model management, process orchestration, and cluster
management. It could support modifying the number of instances of a model running
through the UI, as well as process orchestration in the form of visualization, and combining
models by dragging and dropping connections to achieve the creation of complex processes
and the binding of parameters.

Application services comprise nine crucial services: model lookup service, process
invocation service, process orchestration service, image management service, model dictio-
nary service, model registration service, model monitoring service, cluster management
service, and logging service. Among them, the logging service stores information such as
the running status of each model, the result of each run, and the computation time spent,
and provides a query interface.

Basic components include RabbitMQ message queue, Redis caching service, Post-
greSQL database, private Docker image repository, etc.

The infrastructure platform includes a highly available Kubernetes cluster, a storage
server, and an image server.

3. Experiments
3.1. Experiments Environment

In the experiments, eight CentOS 7.9 machines were utilized. Six of these machines
(nodes 1–6) composed a highly available Kubernetes 1.25.5 cluster, featuring three manager
nodes and three worker nodes. We deployed Istio 1.16.1 as the model runtime environment
within our model repository management system. All machines were equipped with
Docker 20.10.22 and OpenSSH 7.4.

3.2. Case Study

An operating early warning system in Huaihua City, Hunan Province will be pre-
sented as a case study. The system features functionalities such as a GIS map, monitoring
data processing and analysis, warning mechanisms, and warning information release (as
depicted in Figure 7). It integrates various models, including data pre-processing, pre-
diction, and forecasting algorithms, threshold-based warning level solver models, and
SMS/email release models. This system exemplifies a typical LEWS that necessitates the
collaboration of multiple models. The early warning process based on surface displacement
monitoring data consists of the following steps:

(1) Data pre-processing of surface displacement data (time-displacement curves) using
the Kalman filtering model.

(2) Prediction of surface displacement data for the next 24 h, 48 h, and 72 h, as well as
deformation rate, deformation acceleration, deformation rate increment, improved
tangent angle, deformation phase, etc., using the long short-term memory (LSTM)
model trained based on historical monitoring data.

(3) Utilizing an improved backpropagation (BP) network to forecast the expected desta-
bilization damage times, based on the displacement prediction results.

(4) Warning level determination using a solver model based on time forecasting results.
Generation of warning content and retrieval of warning recipient information based
on the warning level correlation query.

(5) Sending early warning information to the recipient by SMS.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 10 of 17

Figure 7. Home page of Huaihua LEWS.

4. Results and Discussion
4.1. Results
4.1.1. Deployment and Management of Models

In the Huaihua LEWS, the Kalman filter preprocessing model, LSTM displacement
prediction model, and BP neural network time forecasting model were developed using
Python. Meanwhile, the threshold-based warning level solver model and SMS publishing
model were implemented in Java. The models developed in Python were encapsulated
using Flask, a lightweight web application framework in Python. Similarly, the models
implemented in Java were encapsulated using Spring Boot, a Java web framework, and
packaged into a jar package via Maven, a software project management and comprehension
tool. These standardized models were built into Docker images and uploaded to the image
repository. Orchestration files were written to deploy the models in the Kubernetes cluster,
and finally, the model information was added to the model repository management system,
and the model and parameter metadata were enhanced.

4.1.2. Construction of User-Defined Early Warning Business Application Process

Following the original business logic of Huaihua LEWS, a test warning application
process was established in the model repository management system. Next, the appropriate
models were selected from the model list and dragged onto the canvas. Model connections
and parameter correspondences were then set, completing the model application creation
(as shown in Figure 8).

ISPRS Int. J. Geo-Inf. 2023, 12, 198 11 of 17

Display the list of
available models

Display information
about the selected model

Select the edge to display the output parameter definition of the
previous model and the input parameter definition of the next
model, and then set the model parameter binding relationship

Drag and drop models from the model list
to the canvas for process orchestration

Figure 8. Process orchestration page.

4.1.3. Task Execution Test

Within the application process management user interface, the identifier of the previ-
ously established application process was retrieved, and the application process calling
interface was seamlessly integrated into the Huaihua LEWS. Surface displacement monitor-
ing data from two separate landslides, locations, and time frames were employed for early
warning task execution experiments, respectively. The execution outcomes for each model
involved in the application process indicated that each task in the customized application
process operated accurately, including accomplishing data pre-processing (Figure 9), dis-
playing the results of the warning calculation (Figure 10), and conducting the final warning
information release (Figure 11).

(b)

(a)

Figure 9. Pre-processing and prediction task results. (a) Pre-processing and prediction results of
monitoring data of NiutangAo landslide. (b) Pre-processing and prediction results of monitoring
data of Jiangdong Village landslide.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 12 of 17

(b)(a)

Legend
landslide
area

Legend
landslide
area

Figure 10. Map visualization of warning results at different landslide monitoring points. (a) Niutan-
gAo landslide. (b) Jiangdong Village landslide.

Figure 11. Release NiuTangAo landslide warning information through SMS.

4.1.4. Scalability Test

Taking the BP neural network model in the above execution task test experiment as an
example, the number of its instances was set from 1 to 3 through the model management
user interface. By observing the cluster management service user interface (Figure 12
bottom), we could find that the number of pods of the BP neural network model has
changed from 1 to 3, and the two newly scaled instances were successfully scaled and
deployed to node 4 and node 5.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 13 of 17

(a) (b)

Before scaling the
model instance

After scaling the
model instance

Figure 12. Scaling of a model instance.

4.1.5. High Availability Test

During the above execution test, nodes 1 and 4 were directly shut down to simulate a
failure scenario in the cluster. The application process operation changes could be observed
through the cluster management user interface and the model monitoring service user
interface. As shown in Figure 13, the status of nodes 1 and 4 was changed from Ready to
NotReady, but the early warning computation process was still able to run successfully.
After restarting the nodes that were down, the service could be restored in seconds.

Simulate that some
servers are faulty

Figure 13. Illustration of nodes status changes on the nodes list page while executing the test.

ISPRS Int. J. Geo-Inf. 2023, 12, 198 14 of 17

4.2. Discussion

This study presents a framework that unifies model information management and
integrates user-defined model application processes (Figure 8) into existing LEWS. The
framework operates the warning calculation process in a manner consistent with the
original LEWS, sequentially invoking models and accomplishing corresponding tasks
(Figures 9–11). Figure 10 shows how the same customized process applies to two cases
with different warning outcomes. Our framework determines whether to issue a warning
based on different levels in the results. For example, the NiuTangAo landslide reaches
the attention level and triggers SMS notifications to monitors, while the Jiangdong Village
landslide remains at the normal monitoring level and requires no warning release. These
results match the expectations of the case study (Figure 11).

This study aims to standardize the deployment, management, and integration of
various models in LEWS rather than propose a new software architecture to refactor LEWS
completely [39]. The proposed framework minimizes the impact on non-core system
functions such as data management and visualization, and is providing a non-invasive
approach to enhancing the capabilities of the system. We deploy various models in LEWS
by microservice implementation and containerization. This approach standardizes the
model development and deployment process, which facilitates subsequent integration and
application of the models. Although it adds a small amount of workload compared to the
original integration approach, the benefits outweigh the additional effort.

This work establishes a model repository management system that consolidates the
storage and management of model information, image information, and cluster infor-
mation while offering manipulation capabilities. The system supports the formation of
application processes by combining and connecting models (Figure 8). The users can
replace corresponding models on the graphical interface according to changing business
requirements for landslide early warning systems, such as switching from a BP neural
network model to another time forecasting model. The proposed framework provides
individual models or user-defined model application processes to LEWS as interfaces,
which abstract away the details of each model invocation and implementation. Changing
the warning models in the process only requires modifying the process definition, not the
system source code. The framework invokes models in a uniform approach in LEWS, which
facilitates system integration and adapts to dynamic changes in early warning business
and integrated models.

The experimental results show that the method ensures the normal serviceability
of the model. The model is deployed in a distributed and scalable form on a highly
available cluster (Figure 12), which improves the service availability and maintains the
model’s service capability even under partial node failure (Figure 13). This enhances
the stability of the early warning service. Our framework also presents the potential for
achieving high parallelizability of model tasks and supporting high-performance parallel
computation when multiple warning processes are executed simultaneously. This capability
distinguishes it from the original general mode, enabling more efficient and concurrent
task processing.

The proposed framework divides the early warning process in LEWS into separate
models, which are independently developed and deployed as manageable services, effec-
tively decoupling them from the core early warning system. It differs from the monolithic
or modular development approach in terms of dynamic management of models, dynamic
orchestration of the warning process, and integration with the system. However, it also has
a drawback. The smaller the granularity of the independently deployed and dynamically
managed models in the early warning process, correspondingly, the higher the cost of
model operation, maintenance, and inter-model communication, yet this is a common
drawback of cloud-native applications. Nevertheless, if many models exist in LEWS, if
different warning processes need to be defined based on different types of monitoring
data, or if models or warning processes need to be updated frequently. Then it is signifi-

ISPRS Int. J. Geo-Inf. 2023, 12, 198 15 of 17

cantly beneficial to follow the model encapsulation, deployment, and integration strategy
proposed in this paper.

5. Conclusions

In this paper, we present a framework for dynamic management and standardized in-
tegration of models in the landslide early warning system (LEWS) to address the challenges
of updating, replacing, deploying, and integrating various models in LEWS. The frame-
work uses containerization technology for model release and deployment, Kubernetes and
Istio for model microservices governance, a model repository for model base information
management, and a visual drag-and-drop editor for model application process orches-
tration. Models and user-defined processes are encapsulated as standardized WebAPIs
for system integration. We apply the framework to two monitoring points (NiuTangAo
and Jiangdong Village) of the Huaihua LEWS, build a warning calculation process based
on surface displacement data, and perform system integration. The results demonstrate
that this framework optimizes model deployment, unifies the management integration
approach, improves scalability, availability, and scalability of models, and has the prospect
of increasing computational parallelism, which is constructive to promote the upgrade and
development of LEWS.

A natural progression of this work is to develop continuous integration and continuous
deployment (CI/CD) workflows to automate the operation and maintenance during model
development, deployment, and integration in LEWS. We will also explore Kubernetes
scheduling of model computation tasks for real-time landslide warning to achieve efficient
parallelism of massive warning tasks.

Author Contributions: Conceptualization, Jiqiu Deng; Funding acquisition, Jiqiu Deng; Investigation,
Yu Tang; Methodology, Liang Liu; Software, Liang Liu; Validation, Yu Tang; Visualization, Liang Liu;
Writing—original draft, Liang Liu; Writing—review & editing, Jiqiu Deng and Yu Tang. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant Number:
42172330).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank three anonymous peer reviewers for helpful and
constructive reviews of the manuscript’s content, and Mohammad Naser Lessani from the University
of South Carolina for helping to polish the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–231.

[CrossRef]
2. Wicki, A.; Lehmann, P.; Hauck, C.; Seneviratne, S.I.; Waldner, P.; Stähli, M. Assessing the potential of soil moisture measurements

for regional landslide early warning. Landslides 2020, 17, 1881–1896. [CrossRef]
3. Michoud, C.; Bazin, S.; Blikra, L.H.; Derron, M.H.; Jaboyedoff, M. Experiences from site-specific landslide early warning systems.

Nat. Hazards Earth Syst. Sci. 2013, 13, 2659–2673. [CrossRef]
4. Ju, N.; Huang, J.; Huang, R.; He, C.; Li, Y. A Real-time monitoring and early warning system for landslides in Southwest China. J.

Mt. Sci. 2015, 12, 1219–1228. [CrossRef]
5. Liu, Y.; Yin, K.; Chen, L.; Wang, W.; Liu, Y. A community-based disaster risk reduction system in Wanzhou, China. Int. J. Disaster

Risk Reduct. 2016, 19, 379–389. [CrossRef]
6. Piciullo, L.; Calvello, M.; Cepeda, J. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev. 2018,

179, 228–247. [CrossRef]
7. Tao, Z.; Zhang, H.; Zhu, C.; Hao, Z.; Zhang, X.; Hu, X. Design and operation of App-based intelligent landslide monitoring

system: the case of Three Gorges Reservoir Region. Geomat. Nat. Hazards Risk 2019, 10, 1209–1226. [CrossRef]

http://doi.org/10.1007/s10346-018-1068-z
http://dx.doi.org/10.1007/s10346-020-01400-y
http://dx.doi.org/10.5194/nhess-13-2659-2013
http://dx.doi.org/10.1007/s11629-014-3307-7
http://dx.doi.org/10.1016/j.ijdrr.2016.09.009
http://dx.doi.org/10.1016/j.earscirev.2018.02.013
http://dx.doi.org/10.1080/19475705.2019.1568312

ISPRS Int. J. Geo-Inf. 2023, 12, 198 16 of 17

8. Wu, Y.; Niu, R.; Wang, Y.; Chen, T. A fast deploying monitoring and real-time early warning system for the Baige Landslide in
Tibet, China. Sensors 2020, 20, 6619. [CrossRef]

9. Abraham, M.T.; Satyam, N.; Shreyas, N.; Pradhan, B.; Segoni, S.; Abdul Maulud, K.N.; Alamri, A.M. Forecasting landslides using
SIGMA model: A case study from Idukki, India. Geomat. Nat. Hazards Risk 2021, 12, 540–559. [CrossRef]

10. Huang, M.; Weng, H.; Hong, C.; Xu, X.; Tao, Z.; Li, C.; Huang, Y. Novel Intelligent Approach for the Early Warning of Rainfall-Type
Landslides Based on the BRB Model. Int. J. Geomech. 2022, 22, 06022027. [CrossRef]

11. Song, Y.; Fan, W.; Yu, N.; Cao, Y.; Jiang, C.; Chai, X.; Nan, Y. Rainfall Induced Shallow Landslide Temporal Probability Modelling
and Early Warning Research in Mountains Areas: A Case Study of Qin-Ba Mountains, Western China. Remote Sens. 2022, 14, 5952.
[CrossRef]

12. Liu, Y.; Huang, J.; Xiao, R.; Ma, S.; Zhou, P. Research on a Regional Landslide Early-Warning Model Based on Machine
Learning—A Case Study of Fujian Province, China. Forests 2022, 13, 2182. [CrossRef]

13. Huang, H.; Ni, J.; Zhang, Y.; Qian, T.; Shen, D.; Wang, J. Web3DGIS-based system for reservoir landslide monitoring and early
warning. Appl. Sci. 2016, 6, 44. [CrossRef]

14. Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early
warning systems. Earth-Sci. Rev. 2020, 200, 102973. [CrossRef]

15. Huang, C.; Cao, Y.; Zhou, L. Application of optimized GM (1, 1) model based on EMD in landslide deformation prediction.
Comput. Appl. Math. 2021, 40, 1–21. [CrossRef]

16. Wu, S.; Hu, X.; Zheng, W.; Berti, M.; Qiao, Z.; Shen, W. Threshold definition for monitoring Gapa Landslide under large variations
in reservoir level using GNSS. Remote Sens. 2021, 13, 4977. [CrossRef]

17. Niu, H. Smart safety early warning model of landslide geological hazard based on BP neural network. Saf. Sci. 2020, 123, 104572.
[CrossRef]

18. Zhang, D.; Yang, J.; Li, F.; Han, S.; Qin, L.; Li, Q. Landslide Risk Prediction Model Using an Attention-Based Temporal
Convolutional Network Connected to a Recurrent Neural Network. IEEE Access 2022, 10, 37635–37645. [CrossRef]

19. Intrieri, E.; Bardi, F.; Fanti, R.; Gigli, G.; Fidolini, F.; Casagli, N.; Costanzo, S.; Raffo, A.; Di Massa, G.; Capparelli, G.; et al. Big data
managing in a landslide early warning system: Experience from a ground-based interferometric radar application. Nat. Hazards
Earth Syst. Sci. 2017, 17, 1713–1723. [CrossRef]

20. Li, J.; Wang, W.; Han, Z. A variable weight combination model for prediction on landslide displacement using AR model, LSTM
model, and SVM model: A case study of the Xinming landslide in China. Environ. Earth Sci. 2021, 80, 386. [CrossRef]

21. Thirugnanam, H.; Ramesh, M.V.; Rangan, V.P. Enhancing the reliability of landslide early warning systems by machine learning.
Landslides 2020, 17, 2231–2246. [CrossRef]

22. Manconi, A.; Giordan, D. Landslide failure forecast in near-real-time. Geomat. Nat. Hazards Risk 2016, 7, 639–648. [CrossRef]
23. Spinetti, C.; Bisson, M.; Tolomei, C.; Colini, L.; Galvani, A.; Moro, M.; Saroli, M.; Sepe, V. Landslide susceptibility mapping by

remote sensing and geomorphological data: Case studies on the Sorrentina Peninsula (Southern Italy). GISci. Remote Sens. 2019,
56, 940–965. [CrossRef]

24. Palenzuela Baena, J.A.; Scifoni, S.; Marsella, M.; De Astis, G.; Irigaray Fernández, C. Landslide susceptibility mapping on the
islands of Vulcano and Lipari (Aeolian Archipelago, Italy), using a multi-classification approach on conditioning factors and a
modified GIS matrix method for areas lacking in a landslide inventory. Landslides 2019, 16, 969–982. [CrossRef]

25. Thiery, Y.; Maquaire, O.; Fressard, M. Application of expert rules in indirect approaches for landslide susceptibility assessment.
Landslides 2014, 11, 411–424. [CrossRef]

26. Sharma, L.; Patel, N.; Ghose, M.; Debnath, P. Development and application of Shannon’s entropy integrated information value
model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards 2015, 75, 1555–1576.
[CrossRef]

27. Wang, Q.; Wang, Y.; Niu, R.; Peng, L. Integration of information theory, K-means cluster analysis and the logistic regression
model for landslide susceptibility mapping in the Three Gorges Area, China. Remote Sens. 2017, 9, 938. [CrossRef]

28. Huan, Y.; Song, L.; Khan, U.; Zhang, B. Stacking ensemble of machine learning methods for landslide susceptibility mapping in
Zhangjiajie City, Hunan Province, China. Environ. Earth Sci. 2023, 82, 1–18. [CrossRef]

29. Lv, L.; Chen, T.; Dou, J.; Plaza, A. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int. J.
Appl. Earth Obs. Geoinf. 2022, 108, 102713. [CrossRef]

30. Huang, F.; Yin, K.; Zhang, G.; Gui, L.; Yang, B.; Liu, L. Landslide displacement prediction using discrete wavelet transform and
extreme learning machine based on chaos theory. Environ. Earth Sci. 2016, 75, 1–18. [CrossRef]

31. Wang, W.; Li, J.; Qu, X.; Han, Z.; Liu, P. Prediction on landslide displacement using a new combination model: A case study of
Qinglong landslide in China. Nat. Hazards 2019, 96, 1121–1139. [CrossRef]

32. Xu, Q.; Peng, D.; Zhang, S.; Zhu, X.; He, C.; Qi, X.; Zhao, K.; Xiu, D.; Ju, N. Successful implementations of a real-time and
intelligent early warning system for loess landslides on the Heifangtai terrace, China. Eng. Geol. 2020, 278, 105817. [CrossRef]

33. Chen, H.; Li, G.; Fang, R.; Zheng, M. Early warning indicators of landslides based on deep displacements: Applications on
Jinping landslide and Wendong landslide, China. Front. Earth Sci. 2021, 9, 747379. [CrossRef]

34. Piciullo, L.; Gariano, S.L.; Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Guzzetti, F.; Calvello, M. Definition and performance of a
threshold-based regional early warning model for rainfall-induced landslides. Landslides 2017, 14, 995–1008. [CrossRef]

http://dx.doi.org/10.3390/s20226619
http://dx.doi.org/10.1080/19475705.2021.1884610
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0002430
http://dx.doi.org/10.3390/rs14235952
http://dx.doi.org/10.3390/f13122182
http://dx.doi.org/10.3390/app6020044
http://dx.doi.org/10.1016/j.earscirev.2019.102973
http://dx.doi.org/10.1007/s40314-021-01658-5
http://dx.doi.org/10.3390/rs13244977
http://dx.doi.org/10.1016/j.ssci.2019.104572
http://dx.doi.org/10.1109/ACCESS.2022.3165051
http://dx.doi.org/10.5194/nhess-17-1713-2017
http://dx.doi.org/10.1007/s12665-021-09696-2
http://dx.doi.org/10.1007/s10346-020-01453-z
http://dx.doi.org/10.1080/19475705.2014.942388
http://dx.doi.org/10.1080/15481603.2019.1587891
http://dx.doi.org/10.1007/s10346-019-01148-0
http://dx.doi.org/10.1007/s10346-013-0390-8
http://dx.doi.org/10.1007/s11069-014-1378-y
http://dx.doi.org/10.3390/rs9090938
http://dx.doi.org/10.1007/s12665-022-10723-z
http://dx.doi.org/10.1016/j.jag.2022.102713
http://dx.doi.org/10.1007/s12665-016-6133-0
http://dx.doi.org/10.1007/s11069-019-03595-3
http://dx.doi.org/10.1016/j.enggeo.2020.105817
http://dx.doi.org/10.3389/feart.2021.747379
http://dx.doi.org/10.1007/s10346-016-0750-2

ISPRS Int. J. Geo-Inf. 2023, 12, 198 17 of 17

35. Segura, S.; Parejo, J.A.; Troya, J.; Ruiz-Cortés, A. Metamorphic testing of RESTful web APIs. In Proceedings of the 40th
International Conference on Software Engineering, Gothenburg, Sweden 27 May–3 June 2018; p. 882. [CrossRef]

36. Zaragozí, B.M.; Trilles, S.; Navarro-Carrión, J.T. Leveraging container technologies in a giscience project: A perspective from
open reproducible research. ISPRS Int. J. Geo-Inf. 2020, 9, 138. [CrossRef]

37. Wan, X.; Guan, X.; Wang, T.; Bai, G.; Choi, B.Y. Application deployment using Microservice and Docker containers: Framework
and optimization. J. Netw. Comput. Appl. 2018, 119, 97–109. [CrossRef]

38. Zhao, N.; Tarasov, V.; Albahar, H.; Anwar, A.; Rupprecht, L.; Skourtis, D.; Paul, A.K.; Chen, K.; Butt, A.R. Large-scale analysis of
docker images and performance implications for container storage systems. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 918–930.
[CrossRef]

39. Bai, D.; Tang, J.; Lu, G.; Zhu, Z.; Liu, T.; Fang, J. The design and application of landslide monitoring and early warning system
based on microservice architecture. Geomat. Nat. Hazards Risk 2020, 11, 928–948. [CrossRef]

40. Jamshidi, P.; Pahl, C.; Mendonça, N.C.; Lewis, J.; Tilkov, S. Microservices: The journey so far and challenges ahead. IEEE Softw.
2018, 35, 24–35. [CrossRef]

41. Rossi, F.; Cardellini, V.; Presti, F.L.; Nardelli, M. Geo-distributed efficient deployment of containers with Kubernetes. Comput.
Commun. 2020, 159, 161–174. [CrossRef]

42. Zhao, H.; Deng, S.; Liu, Z.; Yin, J.; Dustdar, S. Distributed redundant placement for microservice-based applications at the edge.
IEEE Trans. Serv. Comput. 2020, 15, 1732–1745. [CrossRef]

43. Minna, F.; Massacci, F. SoK: Run-time security for cloud microservices. Are we there yet? Comput. Secur. 2023, 127, 103119.
[CrossRef]

44. Pakdil, M.E.; Çelik, R.N. Serverless geospatial data processing workflow system design. ISPRS Int. J. Geo-Inf. 2021, 11, 20.
[CrossRef]

45. Larsson, L.; Tärneberg, W.; Klein, C.; Elmroth, E.; Kihl, M. Impact of etcd deployment on kubernetes, istio, and application
performance. Softw.-Pract. Exp. 2020, 50, 1986–2007. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSE.2017.2764464
http://dx.doi.org/10.3390/ijgi9030138
http://dx.doi.org/10.1016/j.jnca.2018.07.003
http://dx.doi.org/10.1109/TPDS.2020.3034517
http://dx.doi.org/10.1080/19475705.2020.1766580
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1016/j.comcom.2020.04.061
http://dx.doi.org/10.1109/TSC.2020.3013600
http://dx.doi.org/10.1016/j.cose.2023.103119
http://dx.doi.org/10.3390/ijgi11010020
http://dx.doi.org/10.1002/spe.2885

	Introduction
	Materials and Methods
	Related Theories and Key Technologies
	Models in LEWS
	Key Technologies

	Dynamic Management and Integration Framework for Models in LEWS
	Standardized Deployment of Models in LEWS
	Unified Management of Models in LEWS
	Early Warning Business Application Process Orchestration
	Invocation Mechanism for Individual Models and Application Process
	Integration of Model or Application Process into LEWS
	Development of Model Repository Management System

	Experiments
	Experiments Environment
	Case Study

	Results and Discussion
	Results
	Deployment and Management of Models
	Construction of User-Defined Early Warning Business Application Process
	Task Execution Test
	Scalability Test
	High Availability Test

	Discussion

	Conclusions
	References

