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Abstract: Normalized difference vegetation index (NDVI) time series data, derived from optical
images, play a crucial role for crop mapping and growth monitoring. Nevertheless, optical images
frequently exhibit spatial and temporal discontinuities due to cloudy and rainy weather conditions.
Existing algorithms for reconstructing NDVI time series using multi-source remote sensing data
still face several challenges. In this study, we proposed a novel method, an enhanced gap-filling
and Whittaker smoothing (EGF-WS), to reconstruct NDVI time series (EGF-NDVI) using Google
Earth Engine. In EGF-WS, NDVI calculated from MODIS, Landsat-8, and Sentinel-2 satellites were
combined to generate high-resolution and continuous NDVI time series data. The MODIS NDVI was
employed as reference data to fill missing pixels in the Sentinel–Landsat NDVI (SL-NDVI) using the
gap-filling method. Subsequently, the filled NDVI was smoothed using a Whittaker smoothing filter
to reduce residual noise in the SL-NDVI time series. With reference to the all-round performance
assessment (APA) metrics, the performance of EGF-WS was compared with the conventional gap-
filling and Savitzky–Golay filter approach (GF-SG) in Fusui County of Guangxi Zhuang Autonomous
Region. The experimental results have demonstrated that the EGF-WS can capture more accurate
spatial details compared with GF-SG. Moreover, EGF-NDVI of Fusui County exhibited a low root
mean square error (RMSE) and a high coefficient of determination (R2). In conclusion, EGF-WS holds
significant promise in providing NDVI time series images with a spatial resolution of 10 m and a
temporal resolution of 8 days, thereby benefiting crop mapping, land use change monitoring, and
various ecosystems, among other applications.

Keywords: spatiotemporal fusion; NDVI time series; enhanced gap-filling; Whittaker smoothing;
Google Earth Engine

1. Introduction

The normalized difference vegetation index (NDVI) is one of the most commonly
used vegetation indexes. In particular, it is important for various research areas such
as crop mapping [1,2], vegetation monitoring [3,4], phenology extracting [5,6], drought
monitoring [7,8], and land cover change monitoring [9]. Numerous studies have employed
NDVI time series data derived from MODIS [10], Landsat-8 [11], and Sentinel-2 [12] images,
however, the calculated NDVI time series may display spatial and temporal discontinuities
due to the limitations of clouds and individual sensor constraints [13]. To address this
challenge, numerous researchers have endeavored to employ time series reconstruction
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and fusion techniques involving remote sensing images from multiple sources, thereby
providing valuable data for remote sensing investigations.

Over the past decades, many novel methods have been developed to reconstruct
spatiotemporally continuous NDVI time series data [14]. These methods can be classi-
fied into four types: (1) temporal-based methods [15], (2) frequency-based methods [16],
(3) hybrid methods [17], and (4) multi-source fusion methods [18]. This paper focuses on
temporal-based methods, due to their widespread popularity and well-established meth-
ods in the field. Temporal-based methods can be further subdivided into four categories:
(a) temporal interpolation-replacement methods [19], (b) temporal filter methods [20],
(c) temporal function-fitting methods [21], and (d) temporal deep learning models [22].
Temporal interpolation-replacement methods are the most commonly used reconstruction
approaches among temporal-based methods. Carreiras et al. [19] proposed the maximum
value compositing (MVC) method to mitigate the effect of clouds and cloud shadows on
optical images, where the actual NDVI would be smaller than the real NDVI due to the
presence of clouds and cloud shadows [23]. However, MVC did not fully exploit the tempo-
ral information of optical remote sensing images. Among the temporal filter methods, the
multi-temporal remote sensing images are decomposed into a one-dimensional time signal,
and then the NDVI time series data of each pixel is reconstructed with different filters [20].
For instance, Chen et al. [24] first introduced the Savitzky–Golay (SG) filter into NDVI time
series reconstruction, based on least squares fitting to eliminate the effect of noise in the tar-
get window [25]. In contrast, the SG filter aims to approximates the envelope of the NDVI
time series, rather than simulating the phenological curve of vegetation [14]. Consequently,
the SG filter exhibits poor performance in scenarios with excessive cloud contamination or
during periods of vegetation growth [26]. Furthermore, a priori knowledge is needed to
determine the sliding window size and polynomial order before using the SG filter, which
may limit its performance. The Whittaker smoothing (WS) filter is a special case of B-spline
smoothing [27], which employs a simple algorithm to fit discrete time series datasets. The
WS filter is known for its computational efficiency and ability to balance the fidelity of
the raw data with the smoothness of the fitted curve [28], making it a popular choice in
numerous studies. The temporal function-fitting method employs a specific function to
simulate the vegetation growth patterns for generating smooth time series curves. For in-
stance, the asymmetric Gaussian (AG) function-fitting algorithm is a nonlinear least squares
fitting method based on an asymmetric Gaussian function [21]. This method can accurately
represent seasonal vegetation growth curves and estimate phenological parameters [19].
However, it is essential to identify a series of maximum and minimum values. When the
original NDVI time series contains substantial noise, or the growing season is too short,
extracting these two parameters becomes difficult [29], potentially leading to a loss of detail
concerning vegetation changes. Deep learning has garnered significant attention in the
remote sensing field due to its powerful feature-extraction capability [30]. Zhao et al. [31]
have proposed the genetic algorithm–artificial neural network (GA-ANN) algorithm to
reconstruct NDVI time series. Nevertheless, the need for a large number of training samples
and high computational resources in training the model are disadvantages of temporal
deep learning models. Therefore, the generalization ability of deep learning is limited [22].
In general, time-based methods merely utilize the temporal information of remote sensing
data without fully leveraging the spatial information [14]. While time-based methods may
perform well in reconstructing a small number of missing pixels, their effectiveness in
reconstructing long-term gaps is limited.

Numerous novel spatiotemporal fusion algorithms have been developed to take full
advantage of the temporal and spatial information in remote sensing images [32–34]. To
reconstruct NDVI time series data with high temporal and spatial resolution using MODIS
and Landsat images [35,36], fine pixels are predicted by calculating the neighborhood
information of pixels within the target window. For instance, Gao et al. [37] proposed the
spatial and temporal adaptive reflectance fusion model (STARFM), which fuses Landsat
and MODIS images by leveraging information from similar neighboring pixels for refined
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increment estimation [38]. Subsequently, Zhu et al. [39] introduced an improved version,
ESTARFM, which incorporates additional data pairs on the benchmark date and adopts
a linear hybrid model to enhance the fusion performance in a heterogeneous region [40].
Rao et al. [41] presented a demixing model known as the linear mixed growth model
(LMGM), which decomposes coarse increments into fine increments. Adapting the LMGM
for heterogeneous landscapes, Zhu et al. [42] proposed the flexible spatiotemporal data
fusion (FSDAF) technique, based on unmixing spectral analysis and a thin plate spline
interpolator, and utilizing MODIS and Landsat data. Subsequently, Liu et al. [43] intro-
duced an enhanced version of IFSDAF, followed by the development of FSDAF 2.0 by
Guo et al. [44]. Nonlinear models have also been employed for reconstructing NDVI time
series. Song et al. [45] developed the sparse representation-based spatiotemporal reflectance
fusion model (SPSTFM). In contrast to traditional methods, Liu et al. [46] proposed the
extreme-learning-machine-based spatiotemporal fusion model (ELM-FM), which focuses
on learning a mapping function applied directly to different images rather than utilizing a
complex feature representation followed by a simple mapping. Liu et al. [47] introduced the
spatiotemporal fusion incorporating spectral autocorrelation (FIRST) model to optimally
exploit the valuable spectral autocorrelation present across multiple bands.

However, reconstructing long-term and large-scale NDVI time series data using these
algorithms is challenging. Several of the mentioned algorithms rely on MODIS and Landsat
image pairs to predict accurate NDVI images. Meanwhile, these algorithms demand sub-
stantial computational resources and storage space. To address these issues, Google Earth
Engine (GEE) emerged as an online processing platform, providing a convenient technical
tool for remote sensing data processing [48]. Chen et al. [49] have developed a practical
method to reconstruct high-quality Landsat–MODIS NDVI time series data employing a
gap-filling and Savitzky–Golay filter (GF-SG), using GEE. The GF-SG method reconstructed
NDVI time series with a spatial resolution of 30 m and a temporal resolution of 8 days
by fusing MODIS and Landsat images. Compared with the three previous methods, the
results of the study showed that GF-SG performed better than IFSDAF [43], STAIR [50],
and fill and fit [51]. Hu et al. [52] conducted a comparative analysis of four spatiotemporal
fusion models, namely STARFM, ESTARFM, FSDAF, and GF-SG, in reconstructing NDVI
time series. The results show that the GF-SG method outperforms the other models in
terms of accuracy, as it effectively generates NDVI images and constructs time series data
with high spatial and temporal resolution.

Unfortunately, the NDVI with a spatial resolution of 30 m no longer meets the require-
ments for precision agriculture applications [53]. The Sentinel-2 satellite provides a wealth
of spectral information and a high spatial resolution of 10 m to address this imbalance [54].
Our goal is to utilize image data from diverse satellite sources to reconstruct high-resolution
NDVI time series data, yielding invaluable information for crop mapping and phenology
extracting. In this study, we propose an enhanced gap-filling and Whittaker smoothing
(EGF-WS) method to reconstruct NDVI time series using GEE. High spatial and temporal
resolution NDVI time series were recovered using a gap-filling and Whittaker smoothing
filter by employing three image collections with different spatial and temporal resolutions,
namely MODIS, Landsat-8, and Sentinel-2. With reference to the all-round performance
assessment (APA) metrics [55], the performance of the EGF-WS method was compared
with the GF-SG approach in Fusui County, Guangxi Zhuang Autonomous Region.

The rest of this paper is organized as follows: Section 2 describes in detail the exper-
imental area and data sources. Section 3 describes the EGF-WS method in detail and its
accuracy evaluation method. Quantitative and qualitative perspectives on the accuracy
of the EGF-WS reconstruction of NDVI are analyzed in Section 4. The selection of each
parameter and the advantages and disadvantages of the EGF-WS are discussed in Section 5.
Last, the conclusion is given in Section 6.
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2. Study Area and Data
2.1. Study Area

The study domain, as illustrated in Figure 1, Fusui County is located in the southwest
of Guangxi Zhuang Autonomous Region. The geographical coordinates are 107◦3′–108◦6′ E,
22◦11′–22◦57′ N, covering an area of approximately 2841 km2. It has a subtropical monsoon
climate, with 130–200 days of rainfall annually. The frequent cloudy and rainy weather
in Fusui County poses challenges for obtaining cloud-free optical images. As a result, it
becomes necessary to reconstruct high-quality cloud-free normalized difference vegetation
index (NDVI) images utilizing multi-source remote sensing data fusion techniques for
remote sensing application studies. To assess the performance of the reconstructed NDVI
time series, two regions at distinct locations were chosen in Fusui, shown in Figure 1c,d.
The land cover data was downloaded from https://viewer.esa-worldcover.org/worldcover
(accessed on 6 September 2022) at a spatial resolution of 10 m. The dominant land cover
types in the region include open water, trees, built-up areas, cropland, and barren land.
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2.2. Data
2.2.1. MODIS Image Collection

To obtain NDVI time series data with high temporal resolution, we collected surface
reflectance images from MODIS [56] (“MODIS/061/MOD09A1”) provided by NASA for
the entire year of 2021. Each MOD09A1 image features seven spectral bands, all of which

https://viewer.esa-worldcover.org/worldcover
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have undergone atmospheric correction. These images have a temporal resolution of 8 days
and a spatial resolution of 500 m. Based on image coverage, clouds, and aerosols, a value
was selected for synthesis from all images synthesized over an 8-day period. The B2 and B1
bands of the MOD09A1 were used to calculate the MODIS NDVI. To generate the cloud-
free MODIS NDVI time series data, the “StateQA” band of each image was employed
to identify clouds, cloud shadows, and cirrus masks. We note that there exist different
MODIS image collections in GEE, such as the MOD09Q1, which have the same temporal
resolution (8 days) and a high spatial resolution (250 m). Unfortunately, the MOD09Q1
images have only two spectral bands, but the MOD09A1 images have seven spectral bands.
Consequently, more vegetation indices, such as EVI and LSWI, can be calculated using the
MOD09A1 images. We aim to utilize EGF-WS not only for reconstructing NDVI time series,
but also for reconstructing EVI and LSWI time series. For this reason, the MOD09A1 was
selected as the reference image collection for high temporal resolution NDVI in this study.

2.2.2. Landsat-8 Image Collection

For the medium spatial resolution images, we collected the Landsat-8 [57] surface
reflectance image collection (“LANDSAT/LC08/C02/T1_L2”) via the GEE for the whole
year 2021. These images, having undergone atmospheric corrections, encompass four
visible bands, one near-infrared band, and two short-wave infrared bands. With a 16-day
revisit cycle and a spatial resolution of 30 m, the Landsat-8 satellite offers reliable and
consistent data. To calculate the Landsat NDVI, we used the B5 and B4 bands of the
Landsat-8. Furthermore, we employed the “QA_PIXEL” band to mitigate the impact of
clouds, cloud shadows, and cirrus clouds.

2.2.3. Sentinel-2 Image Collection

In addition, the Sentinel-2 [58] surface reflectance image collection (“COPERNI-
CUS/S2_SR”) provided by ESA for the whole year of 2021 was adopted as the high spatial
resolution image collection. The images in this collection have also been atmospherically
corrected with a revisit period of 5 days and a spatial resolution of 10 m. However, the
revisit period of the Sentinel-2 satellite is 10 days at low latitudes. The B8 and B4 bands of
Sentinel-2 were used to calculate Sentinel NDVI, and the “QA60” band was employed to
remove the effects of clouds, cloud shadows, and cirrus clouds.

The number of all available MODIS, Landsat-8, and Sentinel-2 images in Fusui County
are shown in Figure 2. The numbers of MODIS, Landsat-8, and Sentinel-2 imagery for the
whole year of 2021 are 46, 68, and 438, respectively. The number of cloud-free observations
for each remote sensing image: 1 to 37 for MODIS, 2 to 31 for Landsat-8, and 15 to 115 for
Sentinel-2. This variance demonstrates the poor quality of optical images, with the number
of cloud-free images significantly diminishing in response to inclement weather conditions.
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Figure 2. The number of scenes from MODIS, Landsat-8, and Sentinel-2 over Fusui County in
2021. Spatial distribution of the original images for MODIS (a), Landsat-8 (b), and Sentinel-2 (c).
Spatial distribution of the cloud-free image (obtained by removing clouds using QA) for MODIS (d),
Landsat-8 (e), and Sentinel-2 (f).

3. Methodology

In this study, we proposed the EGF-WS method to reconstruct high spatiotemporal res-
olution NDVI time series. This process involves three main steps, that is, firstly, the MODIS
image collection was preprocessed to generate cloud-free MODIS NDVI as a reference
NDVI time series, providing high temporal resolution NDVI. The Sentinel–Landsat NDVI
(SL-NDVI) time series at 16-day intervals were generated using the maximum synthesis
method. Secondly, a new NDVI time series, Sentinel–Landsat–MODIS NDVI (SLM-NDVI),
was generated using the enhance gap-filling method to fill in the missing values of the SL-
NDVI images, thereby providing NDVI with high spatial resolution. Finally, we smoothed
the SLM-NDVI time- series data by employing the Whittaker smoothing (WS) method to
generate Sentinel–Landsat–MODIS Whittaker smoothing NDVI (SLM-WS-NDVI) time se-
ries with both high temporal and high spatial resolution. The schematic diagram illustrating
the flow of EGF-WS processing is shown in Figure 3.
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3.1. Preprocessing

In this study, we used a preprocessing step to eliminate the presence of cloud contami-
nation in MODIS images. To fill the missing MODIS NDVI pixels, the missing values in
the MODIS NDVI images were calculated using a linear interpolation method, as shown
in Equation (1). We used all available MODIS NDVI pixels within 60 days to calculate the
missing pixel information.

NDVIi = NDVIi−1 +
NDVIi+1 − NDVIi−1

ti+1 − ti−1
(ti − ti−1) (1)

where NDVIi represents the NDVI of DOY i, and NDVIi−1 and NDVIi+1 represent the
NDVI at DOY i − 1 and i + 1, respectively. ti represents the DOY i, and ti−1 and ti+1
represent the DOY i− 1 and DOY i + 1, respectively.

We replaced missing NDVI pixels with 0 when NDVI was unavailable within 30 days.
In this study, the MODIS NDVI was sharpened from 500 m to 10 m using a bicubic interpola-
tion method in order to ensure consistency of resolution between different satellite sensors.
The interpolated time series were smoothed using Whittaker smoothing to reduce residuals
in MODIS images caused by cloud contamination, and linear interpolation was employed
to generate high-quality, cloud-free MODIS NDVI time series, as shown in Figure 4a.

In this study, Landsat-8 NDVI and Sentinel-2 NDVI were combined to generate
SL-NDVI, Figure 4b. First, the preprocessed Landsat-8 image was sharpened to 10 m using
the bicubic interpolation method. Then, Landsat-8 NDVI and Sentinel-2 NDVI data over
16 days were synthesized using the maximum synthesis method (MVC), as indicated in
Equation (2). The MVC was used because the acquisition time between images is different,
and the MVC can effectively eliminate low-value noise.

SL−NDVI = Arcmax(Sentinel_NDVIi
i+16, Landsat_NDVIi

i+16

)
(2)

where Sentinel_NDVIi
i+16 and Landsat_NDVIi

i+16 are all NDVI within 16 days for Sentinel-2
images and Landsat-8 images, respectively.
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3.2. Enhance Gap-Filling

The MODIS NDVI time series data were used as reference data to fill missing NDVI
pixels in SL-NDVI according to the change of time series curve shape. That is, according to
the first theorem of geography, everything is related to everything else, but near things are
more related to each other. In this study, we searched for neighboring MODIS NDVI pixels
(named M_series(xi,yi)) within a window of 200 m × 200 m of each SL-NDVI pixel (named
SL_traget(xi,yi)). Then, the linear correlation coefficients (w(xi,yi)) between M_series(xi,yi)
and SL_traget(xi,yi) were calculated to estimate the reference MODIS NDVI time series
(M_re f erence(x,y)). as shown in Figure 4b, M_re f erence(x,y) was calculated as follows:

M_re f erence(x,y) = ∑n
i=1 w(xi,yi) ×M_series(xi,yi) (3)
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where n is the number of pixels in the search window and different M_series(xi,yi) within
the window have different weights w(xi,yi), this can be expressed as:

w(xi,yi) =
Ri·(x,y)

∑n
i=1 Ri·(x,y)

, where Ri·(x,y) =
cori·(x,y) − cormin·(x,y)

cormax·(x,y) − cormin·(x,y)
(4)

where cori·(x,y) (= 1, 2, ···, n) is the correlation coefficient between the ith pixel and
SL_traget(xi,yi) in the search window; and cormin·(x,y) and cormax·(x,y) are the minimum
and maximum correlation coefficients of all pixels and SL_traget(xi,yi) in the search win-
dow, respectively. Indeed, for each pixel within the window, the higher the similarity, the
higher the correlation coefficient, and the higher its contribution to the generation of the
reference time series.

Since the target window was only 200 m × 200 m, it may be difficult to generate
M_re f erence(x,y) for a few SL_traget(xi,yi). For these pixels, the M_re f erence(x,y) was ob-
tained by calculating the time series average of neighboring pixels within a 200 m × 200 m
window. Then, the SLM-NDVI time series was obtained by modifying the M_re f erence(x,y)
based on least squares linear transfer, as shown in Figure 4c. SLM-NDVI is calculated
as follows:

SLM− NDVI = M_re f erence(x,y) × a(x, y) + a0(x, y) (5)

where SLM− NDVI represents the NDVI time series fused with Sentinel-2, Landsat 8, and
MODIS imagery; and a(x, y) and a0(x, y) are the slope and intercept in the linear transfer
function, respectively.

3.3. Whittaker Smoothing

We combined SLM-NDVI and SL-NDVI to generate the integrated NDVI (Figure 4c).
The integrated NDVI time series may be unsmooth due to cloud contamination and residual
noise after linear interpolation. To cope with this, the Whittaker smoothing algorithm was
employed in this study. Then, the smooth SLM-WS-NDVI time series, namely, EGF-NDVI,
with a 10 m spatial resolution and an 8-day temporal resolution, was constructed, as shown
in Figure 4d. The Whittaker smoothing is a simple and convenient smoothing that performs
optimally with evenly spaced data. For y (integrated NDVI time series) with noise, a
smooth z (EGF-NDVI) was expected to be generated by Whittaker smoothing. Compared
with SG filtering, WS filtering requires only one parameter (κ) to smooth the NDVI time
series. In this experiment, κ = 1 was chosen to smooth the integrated NDVI time series.
The fidelity of y and the roughness of z need to be balanced during the smoothing process,
and the combination Q can be used to represent the fitting effect. Q is calculated as follows:

Q = S + κR (6)

S = ∑
i
(yi − zi)

2 (7)

R = ∑
i
((zi − zi−1)− (zi−1 − zi−2))

2 (8)

where fidelity S is the sum of squares of the difference, R is the roughness of the smoothed
data, κ controls the smoothness; the larger the κ is, the worse the fidelity of the y data and
the smoothing z are, and vice versa.

3.4. Accuracy Metrics

To evaluate the performance of EGF-WS in this study, the all-round performance
assessment (APA) proposed by Zhu et al. [55] was adopted to evaluate the accuracy of EGF-
NDVI. Three metrics, RMSE, AD, and edge were selected to quantitatively evaluate the
accuracy of EGF-NDVI. RMSE represents the error of EGF-NDVI, with values ranging from
0 to 1, with smaller RMSE values indicating lower errors in EGF-NDVI, and higher values
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indicating higher errors. AD represents the average deviation between the reconstructed
NDVI and the reference NDVI, with values ranging from −1 to 1. An AD value closer
to 0 signifies a smaller deviation in the reconstructed NDVI, while a value between −1
and 0 indicates that EGF-NDVI is underestimated, and a value between 0 and 1 implies
overestimation. Edge describes the edge information of the EGF-NDVI, with values ranging
from −1 to 1. An edge value closer to 0 indicates a perfect match of edge features in EGF-
NDVI, while a value between −1 and 0 suggests over-smoothing of edge features, and a
value between 0 and 1 indicates over-sharpening. Three accuracy metrics are calculated
as follows:

RMSE =

√
∑N

i=1(Fi − Ri)
2

N
(9)

AD =
1
N ∑N

i=1(Fi − Ri) (10)

Edge =
∣∣Di,j − Di+1,j+1

∣∣+ ∣∣Di,j+1 − Di+1,j
∣∣ (11)

where Fi is the NDVI of a pixel ith in the EGF-NDVI, Ri is the NDVI of a pixel ith in the
reference image, N is the total number of pixels, and Di,j is the NDVI of the ith row and
jth column.

4. Results

Yang et al. have previously demonstrated that GF-SG outperforms three commonly
used methods (IFSDAF, STAIR, and fill and fit) in reconstructing Landsat NDVI time
series. In this study, to verify the accuracy of our proposed method, we selected GF-SG
as a benchmark and compared it with our approach. Specifically, NDVI time series were
reconstructed using EGF-WS and GF-SG methods, referred to as EGF-NDVI and GF-NDVI,
respectively. These reconstructed time series were then compared with Sentinel-2 NDVI
in Region A and Region B to assess the performance of both methods. Subsequently, we
conducted a comprehensive analysis of the performance of EGF-WS and GF-SG, considering
both quantitative and qualitative perspectives.

4.1. Qualitative Assessment

To verify the feasibility of the reconstruction algorithm and the reasonableness of the
result accuracy, The EGF-NDVI was verified in this study using Sentinel-2 NDVI. Conse-
quently, Sentinel-2 NDVI served as the true NDVI, and EGF-NDVI and GF-NDVI were used
for qualitative evaluation and comparison. The EGF-NDVI and GF-NDVI images were dated
6 December 2021, while the Sentinel-2 NDVI image was dated 10 December 2021.

We evaluated the consistency of the two methods in terms of spatial patterns. Based
on a visual comparison, as shown in Figure 5, the spatial distribution of EGF-NDVI and
GF-NDVI are consistent with those of Sentinel-2 NDVI in Region A. From Figure 5, it is
evident that EGF-NDVI captures the spatial details of the farmland; however, the farmland
boundaries appear blurred in GF-NDVI, with the area marked in red on Figure 5d–f.
The road within the farmland is clearly visible in both Sentinel-2 NDVI and EGF-NDVI;
however, it is not well-represented in GF-NDVI. This discrepancy stems from differences in
spatial resolution between EGF-NDVI and GF-NDVI, which result in variations in spatial
detail within the NDVI outcomes. The spatial resolution of EFG-NDVI is 10 m, consistent
with Sentinel-2 NDVI, and much higher than the 30 m resolution of GF-NDVI. In Region
B, EGF-NDVI displays open water boundaries similar to those of Sentinel-2 NDVI, while
GF-NDVI presents unclear boundaries, present in Figure 5g–i. Regarding buildings near the
open water, building boundaries in EGF-NDVI more closely resemble those in Sentinel-2
NDVI, while GF-NDVI displays blurred boundaries, marked in red in Figure 5g–i. EGF-
NDVI captures building boundary lines and corner points, whereas GF-NDVI exhibits
curved boundary lines and inaccurate corner points.
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Figure 5. Comparison of EGF-NDVI and GF-NDVI. (a) Sentinel-2 NDVI (DOY = 340); (b) EGF-NDVI
(DOY = 344); (c) GF-NDVI (DOY = 344); and (d–f) are the local details of (a–c), respectively. In
region B, (j) Sentinel-2 NDVI (DOY = 340); (k) EGF-NDVI (DOY = 344); (l) GF-NDVI (DOY = 344);
and (g–i) are the local details of (j–l), respectively.

EGF-NDVI offers more precise spatial detail than GF-NDVI due to its 10 m spatial
resolution, compared to GF-NDVI’s 30 m resolution. This allows EGF-NDVI to capture the
boundaries of farmland and buildings more accurately. These findings demonstrate that
the NDVI after EGF-WS reconstruction clearly depicts farmland, open-water-body, and
building boundaries, which is beneficial for extracting these features using NDVI images.

To assess the reasonableness of the NDVI time series accuracy after EGF-WS recon-
struction, considering its practical application, two distinct land cover types were selected
in Region A and Region B: evergreen vegetation in Figure 6a, and agricultural land in
Figure 6b. Subsequently, time series curves were plotted for these land cover types, and the
RMSE of EGF-NDVI and GF-NDVI was calculated in comparison with Sentinel-2 NDVI to
assess their accuracies.
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Figure 6. EGF-NDVI time series curves of different land cover types: (a) is evergreen vegetation; and
(b) is agricultural land, specifically sugarcane.

The NDVI time series curves of evergreen vegetation using EGF-WS and GF-SG are
shown in Figure 6a. As we all know, strong reflection in the near-infrared band and
absorption characteristics in the red band yield NDVI values above 0.5. As shown in
Figure 6a, the NDVI of evergreen vegetation exceeds 0.5. In the study area, evergreen
vegetation remains green year-round, and both EGF-NDVI and GF-NDVI were consistent
with the phenological characteristics of evergreen vegetation. During the DOY 200–300
period, the EGF-NDVI generally outperforms GF-NDVI, accurately reflecting high NDVI
around DOY 170 and maintaining the retrieved NDVI within a reasonable range. Figure 6b
demonstrates the time series curve of sugarcane within agricultural land. Sugarcane,
an annual crop in Fusui, has the highest subsurface soil exposure between January and
March. As shown in Figure 6b, GF-NDVI overestimates NDVI during the DOY 30–60
period before crop emergence, whereas EGF-NDVI captures this decrease more effectively.
Moreover, the EGF-NDVI time series curve closely approximates Sentinel-2 NDVI during
the sugarcane maturation period (between November and December), indicating that
EGF-WS can effectively reconstruct NDVI time series data and there is superior accuracy
with EGF-NDVI.

To illustrate the differences between predicted and actual NDVI in this study, we
present the RMSE values obtained from the reconstructed NDVI using two different meth-
ods, EGF-NDVI and GF-NDVI, in both evergreen vegetation and agricultural land, as
shown in Figure 6. For evergreen vegetation (Figure 6a), the RMSE values of EGF-NDVI
and GF-NDVI are identical at 0.11. This result implies that both methods exhibit equally
well in estimating the NDVI for evergreen vegetation, demonstrating their suitability and
precision for this type of land cover. Conversely, for agricultural land (Figure 6b), the
RMSE values display a significant discrepancy between the two methods. The EGF-NDVI
produces a significantly lower RMSE value of 0.04, while the GF-NDVI results in a higher
RMSE value of 0.10. This observation indicates that the EGF-NDVI surpasses the GF-NDVI
in estimating NDVI for agricultural land, particularly sugarcane fields. The reduced RMSE
value achieved with the EGF-NDVI indicates that it offers more accurate and dependable
NDVI estimations for agricultural land, consequently improving our capacity to monitor
crop growth and identify crop types. This finding supports the potential value of the
EGF-NDVI for agricultural remote sensing applications.



ISPRS Int. J. Geo-Inf. 2023, 12, 214 13 of 21

4.2. Quantitative Assessment

To compare the accuracy of EGF-NDVI and GF-NDVI, we used three metrics, RMSE,
AD, and edge, for quantitative assessment, in accordance with the methods described in
Zhu et al. The accuracy metrics of EGF-NDVI and GF-NDVI were calculated separately,
using Sentinel-2 NDVI as the reference image, and the results are shown in Table 1. The
EGF-NDVI and GF-NDVI images were dated 6 December 2021, while the Sentinel-2 NDVI
image was dated 10 December 2021.

Table 1. All-round performance assessment (APA) metrics (AD, RMSE, EDGE, and LBP) of EGF-
NDVI and GF-NDVI, in regions A and B. The best results are marked in bold.

Test Area Reconstructed NDVI AD RMSE EDGE

Region A EGF-NDVI 3.29 × 10−6 1.03 × 10−5 −0.344
GF-NDVI 5.71 × 10−6 1.34 × 10−5 −0.561

Region B EGF-NDVI 0.72 × 10−6 0.67 × 10−5 −0.010
GF-NDVI 3.79 × 10−6 1.445 × 10−5 −0.5817

The APA performance metrics for EGF-NDVI and GF-NDVI predictions are presented
in Table 1. It can be seen that both EGF-NDVI and GF-NDVI overestimate Sentinel-2
NDVI to different degrees in Region A and Region B. However, the EGF-WS outperforms
GF-SG, and EGF-NDVI has lower AD and RMSE values than GF-NDVI. Moreover, the
AD and RMSE of EGF-NDVI are only 0.72 × 10−6 and 0.67 × 10−5, respectively, while
GF-NDVI exhibits more severe overestimation in Region B (AD = 3.79 × 10−6, RMSE =
1.445 × 10−5), which means that the deviation between EGF-NDVI and Sentinel-2 NDVI is
smaller and the accuracy of EGF-NDVI is higher. Both methods exhibit a certain smoothing
phenomenon in terms of spatial accuracy. The smoothing effect of EGF-NDVI (EDGE =
−0.344) is smaller than that of GF-NDVI (EDGE = −0.561) in Region A, and EGF-NDVI
shows better fidelity (EDGE = −0.01) in Region B. This indicates that the spatial features of
EGF-NDVI are more compatible with those of Sentinel-2 NDVI, and the texture information
is more accurate. This may be attributed to the higher spatial resolution (10 m) of the
reference image compared to GF-NDVI (30 m), further demonstrating that EGF-NDVI has
a higher spatial resolution and richer texture information than GF-NDVI.

To further validate the authenticity of EGF-NDVI, in this paper, the scatter plots
of EGF-NDVI and GF-NDVI images with reference image were calculated, as shown
in Figure 7.

As can be seen in Figure 7, both EGF-NDVI and GF-NDVI show a reasonable agree-
ment with Sentinel-2 NDVI, with generally improved performance from EGF-NDVI, as
indicated by R2 values ranging from 0.915 to 0.926. Similar results were observed in
Region B. This indicates that the performance of EGF-WS surpasses that of GF-SG, and
EGF-NDVI closely resembles Sentinel-2 NDVI, exhibiting a strong correlation in terms of
the experimental results.
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5. Discussion

Optical imagery is subject to spatial and temporal discontinuities, as remote sensing
sensors are influenced by clouds and precipitation. Under such circumstances, Chen
et al. [49] have proposed a GF-SG algorithm to reconstruct the NDVI time series. However,
the spatial resolution of GF-NDVI is limited to 30 m, which is insufficient for the evolving
demands of precision agriculture. In this study, we proposed an EGF-WS algorithm to
reconstruct NDVI time series with a spatial resolution of 10 m and a temporal resolution of
8 days by blending MODIS, Landsat-8, and Sentinel-2 images. To determine the optimal
parameters for the EGF-WS, we explored the effects of different window sizes and Whittaker
smoothing parameter settings on the reconstructed NDVI time series. We also calculated a
series of performance indicators and statistical metrics to evaluate the quality of EGF-NDVI.
Finally, we analyzed the benefits and challenges associated with the EGF-WS approach.

5.1. Parameter Determination of the Window Size

To evaluate the accuracy of NDVI after reconstruction using different search windows
and smoothing windows, the RMSE of EGF-NDVI and Sentinel-2 NDVI were calculated in
step 5, as shown in Figure 8.
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Figure 8 illustrates the accuracy of the reconstructed NDVI with different window
sizes. The larger the search window size, the more pixels are available, which provides
more reference data for calculating the NDVI time series of the target pixel but also requires
more computational resources. In this paper, we examined the impact of different search
window sizes on the accuracy of the reconstructed NDVI. A smaller smoothing window
size results in higher fidelity of the smoothed image and less noise in the EGF-NDVI
time series, and vice versa. As can be seen in Figure 8, the RMSE of the reconstructed
NDVI image decreases as the size of the search window increases. Meanwhile, the size of
the smoothing window also influences the accuracy of EGF-NDVI. A smaller smoothing
window size leads to a reduced RMSE of the EGF-NDVI image. When the smoothing
window is 5, the accuracy of EGF-NDVI is higher. Considering the balance of computation
time and reconstruction accuracy, we chose the optimal parameters with a search window
size of 20 and a smoothing window size of 5.

5.2. Parameter Determination of the Whittaker Smoothing

The Whitaker smoothing filter minimizes noise errors and generates smooth NDVI
time series curves without distortion. The WS filter was chosen to smooth the EGF-NDVI
time series in this paper because it is simple, efficient, and easy to implement. It requires
only one parameter, κ, to smooth and eliminate the noise effects in the original time series
data. Larger κ may distort NDVI time series curves, while smaller κ cannot adequately
suppress noise. For this reason, we experimented with the effect of different κ on the EGF-
NDVI time series to determine the optimal parameters, the results are shown in Figure 9.
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Figure 9. NDVI time series curves after reconstruction with different Whittaker smoothing filter
parameters: (a) is the NDVI time series curves of sugarcane after different parameter reconstruction;
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We calculated the EGF-NDVI time series curves based on different κ within 0–10.
From Figure 9a, differences in κ can decrease the residual noise in the NDVI time series
curves. The NDVI of DOY 233 is below normal due to cloud-detection errors. We observed
that the impact of noise on NDVI diminishes as κ increases. When κ is set to 5, the NDVI
time series curve can be effectively smoothed to remove noise and without overfitting the
NDVI time series. Therefore, κ = 5 was chosen as the best parameter for the Whittaker
smoothing filter in this study.

5.3. Performance Metrics and Statistical Metrics

The performance metrics part is very important for the evaluation of application
results. For this aim, we compare and analyze the performance of two reconstructed NDVI
methods: EGF-NDVI and GF-NDVI in two different geographic regions (Region A and
Region B). Meanwhile, we have calculated additional performance evaluation metrics.
These include Nash–Sutcliffe efficiency (NSE), where NSE values range from -inf to 1.
Higher NSE values, closer to 1, indicate better model performance, while values below
0 indicate poor model performance. In root squared relative error (RSR), the closer the
RSR value is to 0, the better the model performance, while a value close to 1 indicates poor
model performance. In mean absolute error (MAE), the smaller the value of MAE, the
smaller the model prediction error and the better the model performance. In coefficient
of determination (R2), R2 ranges from 0 to 1, where a higher R2 value indicates a stronger
explanatory power of the model and a better fit to the observed data. On the other hand, a
lower R2 value suggests a weaker ability of the model to explain the data and a poorer fit.
The results are shown in Table 2.

Table 2. Performance metrics of EGF-NDVI and GF-NDVI in Regions A and B.

Test Area Reconstructed NDVI NSE RSR MAE R2

Region A EGF-NDVI 0.7277 0.4046 0.0709 0.926
GF-NDVI 0.5246 0.5285 0.0968 0.897

Region B EGF-NDVI 0.5805 0.4564 0.0781 0.915
GF-NDVI 0.233 0.5644 0.1049 0.836
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First, by observing the data in Table 2, we find that the NSE values of EGF-NDVI in
Region A and Region B are 0.7277 and 0.5805, respectively, while the NSE values of GF-NDVI
are 0.5246 and 0.233, respectively. This indicates that the EGF-NDVI method has a better
fit in both regions than the GF-NDVI method. Particularly in Region B, the NSE value of
EGF-NDVI is much higher than that of GF-NDVI, indicating that the predictive performance
of the EGF-NDVI method is more outstanding in this region. Second, we observe the RSR data.
The RSR values of EGF-NDVI in Region A and Region B are 0.4046 and 0.4564, respectively,
while those of GF-NDVI in the two regions are 0.5285 and 0.5644, respectively. A lower RSR
value implies smaller errors, so in both regions, the EGF-NDVI method has smaller errors
than the GF-NDVI method. Next, we focus on the MAE data. The MAE values of EGF-NDVI
in Region A and Region B are 0.0709 and 0.0781, respectively, while those of GF-NDVI are
0.0968 and 0.1049, respectively. This again confirms that the EGF-NDVI method has smaller
errors than the GF-NDVI method in both regions. Finally, we compare the R2 values of the
two methods in both regions. The R2 values of EGF-NDVI in Region A and Region B are 0.926
and 0.915, respectively, while those of GF-NDVI are 0.897 and 0.836, respectively. A higher R2

value indicates a better fit of the model to the data. Therefore, in both regions, the EGF-NDVI
method has a better fit than the GF-NDVI method.

In summary, through a detailed discussion of the table data, we can draw the following
conclusions: in both study regions, the EGF-NDVI method has better fitting performance
and predictive performance than the GF-NDVI method.

Statistical properties can provide insights into the central tendency, dispersion, and
distribution of data. We computed statistical metrics, including measures such as min, max,
mean, median, and coefficient of variation (cv), for Sentinel-2 NDVI, EGF-NDVI, and GF-
NDVI to characterize the statistical properties of the image. The results are shown in Table 3.

Table 3. Statistical metrics of Sentinel NDVI, EGF-NDVI, and GF-NDVI in Regions A and B.

Test Area Reconstructed NDVI Min Max Mean Median CV

Region A
Sentinel NDVI −0.5901 0.9098 0.5240 0.6055 0.4842

EGF-NDVI −0.1466 0.9919 0.5571 0.6133 0.3481

GF-NDVI −4.0850 1.7273 0.5813 0.6413 0.3197

Region B
Sentinel NDVI −0.4833 0.9175 0.5352 0.6290 0.4810

EGF-NDVI −0.0619 0.998 0.5806 0.6289 0.3025
GF-NDVI −0.1918 1.2546 0.5733 0.6174 0.2817

Table 3 presents the reconstructed NDVI values and additional statistics for different
test areas, namely, Region A and Region B. In Region A, the Sentinel NDVI range from
−0.5901 to 0.9098, with a mean of 0.5240 and a median of 0.6055. The CV is relatively high
at 0.4842, indicating a moderate level of variability. For EGF-NDVI, the reconstructed NDVI
values show a narrower range from −0.1466 to 0.9919, with a higher mean of 0.5571 and
median of 0.6133 compared to Sentinel NDVI. The CV is lower at 0.3481, indicating reduced
variability. On the other hand, the GF-NDVI yields a wider range of reconstructed NDVI
values from −4.0850 to 1.7273, with a mean of 0.5813 and median of 0.6413. However, the
CV is the lowest at 0.3197, indicating relatively low variability despite the wider range. In
Region B, similar trends are observed with Sentinel NDVI, EGF-NDVI, and GF-NDVI. The
EGF-NDVI shows the highest mean (0.5806) and median (0.6289) compared to the other
two NDVI, with a relatively low CV of 0.3025. The GF-NDVI method shows the lowest CV
at 0.2817, with a mean of 0.5733 and median of 0.6174.

In summary, in both study regions, the statistical metrics of EGF-NDVI, in comparison
to GF-NDVI, demonstrate a closer resemblance to the true NDVI (Sentinel NDVI), suggest-
ing that the NDVI reconstructed using EGF-WS exhibits distribution patterns and trend
characteristics that are more similar to Sentinel NDVI.
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5.4. Advantages and Limitations of the EGF-WS Method

Compared with the GF-SG algorithm, the NDVI reconstructed by EGF-WS demon-
strates significant improvement in spatial resolution while maintaining the same temporal
resolution. In addition, the EGF-WS method facilitates the convenient reconstruction of
NDVI time series, requiring only the study area’s vector to generate high spatial and
temporal resolution NDVI time series data, thus eliminating the need for cropping and
mosaicking during data processing. Moreover, EGF-WS was implemented in GEE, which
was not limited by local computer hardware and required only a browser to execute the
code. However, EGF-WS is disadvantageous for long time series studies since GEE does
not offer Sentinel 2 images before 2017.

6. Conclusions

In this study, we proposed a method called EGF-WS, which aids in reconstructing NDVI
time series data with high spatiotemporal resolution, thus facilitating research in land use
change monitoring, agriculture, and various ecosystems. The EGF-WS method leverages
MODIS NDVI time series as a reference and integrates Landsat-8 and Sentinel-2 imagery
through gap-filling and Whittaker smoothing techniques. We produced an NDVI time series
for Fusui County, featuring an 8-day temporal resolution and a 10 m spatial resolution. A
qualitative and quantitative comparison was conducted between EGF-NDVI and GF-NDVI.
The results demonstrated that EGF-NDVI, with its superior 10 m spatial resolution compared
to GF-NDVI’s 30 m resolution, accurately captures the intricacies of land features. EGF-
NDVI precisely reflects NDVI variations across different land cover types, demonstrating a
strong correlation to the reference NDVI (R2 = 0.926, RMSE = 0.67 × 10−5). However, due
to the optical image acquisition method, cloud contamination is inevitable. Sentinel-1 can
penetrating clouds and is not affected by weather conditions. In future work, we will explore
the utilization of Sentinel-1 imagery for NDVI reconstruction.

Author Contributions: Conceptualization, C.R.; methodology, J.L. and C.R.; software, J.L.; validation,
J.L., Y.L. and W.Y.; formal analysis, J.L. and C.R.; investigation, all authors; resources, Z.W.; data
curation, X.L.; writing—original draft preparation, J.L. and C.R.; writing—review and editing, X.S.
and X.Z.; visualization, J.L. and A.Y.; supervision, C.R.; funding acquisition, C.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 42064003); Guangxi Natural Science Foundation (grant number 2021GXNSFBA220046).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The reconstructed NDVI time series data for Fusui County are available
at https://code.earthengine.google.com/41e68d11ef40331df5408f506407b523?noload=true (accessed
on 19 May 2023).

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable
comments on the manuscript, which helped improve the quality of the paper. We would also like to
thank the Google Earth Engine team for their wonderful work and service.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in Guangxi, China, by

time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sens. Environ. 2020, 247, 111951. [CrossRef]
2. Lyle, G.; Clarke, K.; Kilpatrick, A.; Summers, D.M.; Ostendorf, B. A Spatial and Temporal Evaluation of Broad-Scale Yield

Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland
Cropping Region. ISPRS Int. J. Geo-Inf. 2023, 12, 50. [CrossRef]

3. Ghorbanian, A.; Mohammadzadeh, A.; Jamali, S. Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two
Decades of MODIS NDVI Imagery. Remote Sens. 2022, 14, 3683. [CrossRef]

https://code.earthengine.google.com/41e68d11ef40331df5408f506407b523?noload=true
https://doi.org/10.1016/j.rse.2020.111951
https://doi.org/10.3390/ijgi12020050
https://doi.org/10.3390/rs14153683


ISPRS Int. J. Geo-Inf. 2023, 12, 214 19 of 21

4. Mashhadi, N.; Alganci, U. Evaluating BFASTMonitor Algorithm in Monitoring Deforestation Dynamics in Coniferous and
Deciduous Forests with LANDSAT Time Series: A Case Study on Marmara Region, Turkey. ISPRS Int. J. Geo-Inf. 2022, 11, 573.
[CrossRef]

5. Liu, L.; Cao, R.; Chen, J.; Shen, M.; Wang, S.; Zhou, J.; He, B. Detecting crop phenology from vegetation index time-series data by
improved shape model fitting in each phenological stage. Remote Sens. Environ. 2022, 277, 113060. [CrossRef]

6. Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R.; Bian, X.; Wang, R.; Yu, C. Development of a New Phenology Algorithm for Fine Mapping
of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 587.
[CrossRef]

7. Aksoy, H.; Cetin, M.; Eris, E.; Burgan, H.I.; Cavus, Y.; Yildirim, I.; Sivapalan, M. Critical drought intensity-duration-frequency
curves based on total probability theorem-coupled frequency analysis. Hydrol. Sci. J. 2021, 66, 1337–1358. [CrossRef]

8. Huang, T.; Wu, Z.; Xiao, P.; Sun, Z.; Liu, Y.; Wang, J.; Wang, Z. Possible Future Climate Change Impacts on the Meteorological and
Hydrological Drought Characteristics in the Jinghe River Basin, China. Remote Sens. 2023, 15, 1297. [CrossRef]

9. Feng, S.; Li, W.; Xu, J.; Liang, T.; Ma, X.; Wang, W.; Yu, H. Land Use/Land Cover Mapping Based on GEE for the Monitoring of
Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sens. 2022, 14, 5361. [CrossRef]

10. Ma, Z.; Dong, C.; Lin, K.; Yan, Y.; Luo, J.; Jiang, D.; Chen, X. A Global 250-m Downscaled NDVI Product from 1982 to 2018. Remote
Sens. 2022, 14, 3639. [CrossRef]

11. Cao, R.; Xu, Z.; Chen, Y.; Chen, J.; Shen, M. Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVI Time-Series
Data for the Qinghai–Tibetan Plateau from 2000–2020. Remote Sens. 2022, 14, 3648. [CrossRef]

12. Yang, K.; Luo, Y.; Li, M.; Zhong, S.; Liu, Q.; Li, X. Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine.
Remote Sens. 2022, 14, 4395. [CrossRef]

13. Xiong, S.; Du, S.; Zhang, X.; Ouyang, S.; Cui, W. Fusing Landsat-7, Landsat-8 and Sentinel-2 surface reflectance to generate dense
time series images with 10m spatial resolution. Int. J. Remote Sens. 2022, 43, 1630–1654. [CrossRef]

14. Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series
reconstruction techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [CrossRef]

15. Tang, H.; Yu, K.; Hagolle, O.; Jiang, K.; Geng, X.; Zhao, Y. A cloud detection method based on a time series of MODIS surface
reflectance images. Int. J. Digit. Earth 2013, 6, 157–171. [CrossRef]

16. Wu, W.; Ge, L.; Luo, J.; Huan, R.; Yang, Y. A Spectral–Temporal Patch-Based Missing Area Reconstruction for Time-Series Images.
Remote Sens. 2018, 10, 1560. [CrossRef]

17. Yan, L.; Roy, D.P. Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal
Similarity (SAMSTS). Remote Sens. 2018, 10, 609. [CrossRef]

18. Li, X.; Long, D. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product
based on a data fusion approach. Remote Sens. Environ. 2020, 248, 111966. [CrossRef]

19. Carreiras, J.M.B.; Pereira, J.M.C.; Shimabukuro, Y.E.; Stroppiana, D. Evaluation of compositing algorithms over the Brazilian
Amazon using SPOT-4 VEGETATION data. Int. J. Remote Sens. 2003, 24, 3427–3440. [CrossRef]

20. Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens.
Environ. 2009, 113, 248–258. [CrossRef]

21. Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote
Sens. 2002, 40, 1824–1832. [CrossRef]

22. Li, J.; Li, C.; Xu, W.; Feng, H.; Zhao, F.; Long, H.; Meng, Y.; Chen, W.; Yang, H.; Yang, G. Fusion of optical and SAR images
based on deep learning to reconstruct vegetation NDVI time series in cloud-prone regions. Int. J. Appl. Earth Obs. Geoinf. 2022,
112, 102818. [CrossRef]

23. Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series data
by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [CrossRef]

24. Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI
time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [CrossRef]

25. Sadeghi, M.; Behnia, F.; Amiri, R. Window Selection of the Savitzky–Golay Filters for Signal Recovery from Noisy Measurements.
IEEE Trans. Instrum. Meas. 2020, 69, 5418–5427. [CrossRef]

26. Yang, G.; Shen, H.; Zhang, L.; He, Z.; Li, X. A Moving Weighted Harmonic Analysis Method for Reconstructing High-Quality
SPOT VEGETATION NDVI Time-Series Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6008–6021. [CrossRef]

27. Eilers, P.H. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [CrossRef]
28. Khanal, N.; Matin, M.A.; Uddin, K.; Poortinga, A.; Chishtie, F.; Tenneson, K.; Saah, D. A Comparison of Three Temporal

Smoothing Algorithms to Improve Land Cover Classification: A Case Study from NEPAL. Remote Sens. 2020, 12, 2888. [CrossRef]
29. Lu, X.; Liu, R.; Liu, J.; Liang, S. Removal of Noise by Wavelet Method to Generate High Quality Temporal Data of Terrestrial

MODIS Products. Photogramm. Eng. Remote Sens. 2007, 73, 1129–1139. [CrossRef]
30. Zhang, L.; Zhang, L. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities. IEEE

Geosci. Remote Sens. Mag. 2022, 10, 270–294. [CrossRef]
31. Zhao, Y.; Hou, P.; Jiang, J.; Zhao, J.; Chen, Y.; Zhai, J. High-Spatial-Resolution NDVI Reconstruction with GA-ANN. Sensors 2023,

23, 2040. [CrossRef] [PubMed]

https://doi.org/10.3390/ijgi11110573
https://doi.org/10.1016/j.rse.2022.113060
https://doi.org/10.3390/ijgi10090587
https://doi.org/10.1080/02626667.2021.1934473
https://doi.org/10.3390/rs15051297
https://doi.org/10.3390/rs14215361
https://doi.org/10.3390/rs14153639
https://doi.org/10.3390/rs14153648
https://doi.org/10.3390/rs14174395
https://doi.org/10.1080/01431161.2022.2047240
https://doi.org/10.1016/j.jag.2021.102640
https://doi.org/10.1080/17538947.2013.833313
https://doi.org/10.3390/rs10101560
https://doi.org/10.3390/rs10040609
https://doi.org/10.1016/j.rse.2020.111966
https://doi.org/10.1080/0143116021000021251
https://doi.org/10.1016/j.rse.2008.09.003
https://doi.org/10.1109/TGRS.2002.802519
https://doi.org/10.1016/j.jag.2022.102818
https://doi.org/10.1016/j.rse.2018.08.022
https://doi.org/10.1016/j.rse.2004.03.014
https://doi.org/10.1109/TIM.2020.2966310
https://doi.org/10.1109/TGRS.2015.2431315
https://doi.org/10.1021/ac034173t
https://doi.org/10.3390/rs12182888
https://doi.org/10.14358/PERS.73.10.1129
https://doi.org/10.1109/MGRS.2022.3145854
https://doi.org/10.3390/s23042040
https://www.ncbi.nlm.nih.gov/pubmed/36850638


ISPRS Int. J. Geo-Inf. 2023, 12, 214 20 of 21

32. Zhou, J.; Chen, J.; Chen, X.; Zhu, X.; Qiu, Y.; Song, H.; Rao, Y.; Zhang, C.; Cao, X.; Cui, X. Sensitivity of six typical spatiotemporal
fusion methods to different influential factors: A comparative study for a normalized difference vegetation index time series
reconstruction. Remote Sens. Environ. 2021, 252, 112130. [CrossRef]

33. Guo, Y.; Wang, C.; Lei, S.; Yang, J.; Zhao, Y. A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time
Series Construction. ISPRS Int. J. Geo-Inf. 2020, 9, 665. [CrossRef]

34. Chen, B.; Chen, L.; Huang, B.; Michishita, R.; Xu, B. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and
MODIS observations. ISPRS J. Photogramm. Remote Sens. 2018, 139, 75–87. [CrossRef]

35. Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Maneta, M.P.; Camps-Valls, G.; Robinson, N.; Muñoz-Marí, J.; Sedano, F.; Clinton,
N.; Running, S.W. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud. Remote Sens. Environ.
2020, 247, 111901. [CrossRef]

36. Chen, Y.; Cao, R.Y.; Chen, J.; Zhu, X.L.; Zhou, J.; Wang, G.P.; Shen, M.G.; Chen, X.H.; Yang, W. A New Cross-Fusion Method to
Automatically Determine the Optimal Input Image Pairs for NDVI Spatiotemporal Data Fusion. IEEE Trans. Geosci. Remote Sens.
2020, 58, 5179–5194. [CrossRef]

37. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat
surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [CrossRef]

38. Li, A.; Zhang, W.; Lei, G.; Bian, J. Comparative Analysis on Two Schemes for Synthesizing the High Temporal Landsat-like NDVI
Dataset Based on the STARFM Algorithm. ISPRS Int. J. Geo-Inf. 2015, 4, 1423–1441. [CrossRef]

39. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [CrossRef]

40. Wang, Z.; Liu, X.; Li, W.; He, S.; Zheng, T. Temporal and Spatial Variation Analysis of Lake Area Based on the ESTARFM Model:
A Case Study of Qilu Lake in Yunnan Province, China. Water 2023, 15, 1800. [CrossRef]

41. Rao, Y.; Zhu, X.; Chen, J.; Wang, J. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with
Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images. Remote Sens. 2015, 7, 7865–7891. [CrossRef]

42. Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with
different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [CrossRef]

43. Liu, M.; Yang, W.; Zhu, X.L.; Chen, J.; Chen, X.H.; Yang, L.Q.; Helmer, E.H. An Improved Flexible Spatiotemporal DAta Fusion
(IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sens.
Environ. 2019, 227, 74–89. [CrossRef]

44. Guo, D.; Shi, W.; Hao, M.; Zhu, X. FSDAF 2.0: Improving the performance of retrieving land cover changes and preserving spatial
details. Remote Sens. Environ. 2020, 248, 111973. [CrossRef]

45. Song, H.; Huang, B. Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning. IEEE Trans. Geosci. Remote Sens.
2012, 51, 1883–1896. [CrossRef]

46. Liu, X.; Deng, C.; Wang, S.; Huang, G.-B.; Zhao, B.; Lauren, P. Fast and Accurate Spatiotemporal Fusion Based Upon Extreme
Learning Machine. IEEE Geosci. Remote Sens. Lett. 2016, 13, 2039–2043. [CrossRef]

47. Liu, S.; Zhou, J.; Qiu, Y.; Chen, J.; Zhu, X.; Chen, H. The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation.
Remote Sens. Environ. 2022, 279, 113111. [CrossRef]

48. Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth
Engine. Remote Sens. 2021, 13, 3778. [CrossRef]

49. Chen, Y.; Cao, R.; Chen, J.; Liu, L.; Matsushita, B. A practical approach to reconstruct high-quality Landsat NDVI time-series data
by gap filling and the Savitzky–Golay filter. ISPRS J. Photogramm. Remote Sens. 2021, 180, 174–190. [CrossRef]

50. Luo, Y.; Guan, K.; Peng, J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data
to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sens. Environ. 2018, 214, 87–99.
[CrossRef]

51. Yan, L.; Roy, D.P. Spatially and temporally complete Landsat reflectance time series modelling: The fill-and-fit approach. Remote
Sens. Environ. 2020, 241, 111718. [CrossRef]

52. Hu, Y.; Wang, H.; Niu, X.; Shao, W.; Yang, Y. Comparative Analysis and Comprehensive Trade-Off of Four Spatiotemporal Fusion
Models for NDVI Generation. Remote Sens. 2022, 14, 5996. [CrossRef]

53. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020,
12, 3136. [CrossRef]

54. Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite
Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [CrossRef]

55. Zhu, X.; Zhan, W.; Zhou, J.; Chen, X.; Liang, Z.; Xu, S.; Chen, J. A novel framework to assess all-round performances of
spatiotemporal fusion models. Remote Sens. Environ. 2022, 274, 113002. [CrossRef]

56. Justice, C.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The
MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [CrossRef]

https://doi.org/10.1016/j.rse.2020.112130
https://doi.org/10.3390/ijgi9110665
https://doi.org/10.1016/j.isprsjprs.2018.02.021
https://doi.org/10.1016/j.rse.2020.111901
https://doi.org/10.1109/TGRS.2020.2973762
https://doi.org/10.1109/tgrs.2006.872081
https://doi.org/10.3390/ijgi4031423
https://doi.org/10.1016/j.rse.2010.05.032
https://doi.org/10.3390/w15101800
https://doi.org/10.3390/rs70607865
https://doi.org/10.1016/j.rse.2015.11.016
https://doi.org/10.1016/j.rse.2019.03.012
https://doi.org/10.1016/j.rse.2020.111973
https://doi.org/10.1109/TGRS.2012.2213095
https://doi.org/10.1109/LGRS.2016.2622726
https://doi.org/10.1016/j.rse.2022.113111
https://doi.org/10.3390/rs13183778
https://doi.org/10.1016/j.isprsjprs.2021.08.015
https://doi.org/10.1016/j.rse.2018.04.042
https://doi.org/10.1016/j.rse.2020.111718
https://doi.org/10.3390/rs14235996
https://doi.org/10.3390/rs12193136
https://doi.org/10.3390/rs14081863
https://doi.org/10.1016/j.rse.2022.113002
https://doi.org/10.1016/S0034-4257(02)00076-7


ISPRS Int. J. Geo-Inf. 2023, 12, 214 21 of 21

57. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012,
122, 11–21. [CrossRef]

58. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.
Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2011.08.026
https://doi.org/10.1016/j.rse.2011.11.026

	Introduction 
	Study Area and Data 
	Study Area 
	Data 
	MODIS Image Collection 
	Landsat-8 Image Collection 
	Sentinel-2 Image Collection 


	Methodology 
	Preprocessing 
	Enhance Gap-Filling 
	Whittaker Smoothing 
	Accuracy Metrics 

	Results 
	Qualitative Assessment 
	Quantitative Assessment 

	Discussion 
	Parameter Determination of the Window Size 
	Parameter Determination of the Whittaker Smoothing 
	Performance Metrics and Statistical Metrics 
	Advantages and Limitations of the EGF-WS Method 

	Conclusions 
	References

