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Abstract: Satellite-derived bathymetry (SDB) techniques are increasingly valuable for deriving
high-quality bathymetric maps of coral reefs. Investigating the performance of the related SDB
algorithms in purely spaceborne active–passive fusion bathymetry contributes to formulating reliable
bathymetric strategies, particularly for areas such as the Spratly Islands, where in situ observations are
exceptionally scarce. In this study, we took Anda Reef as a case study and evaluated the performance
of eight common SDB approaches by integrating Sentinel-2 images with Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2). The bathymetric maps were generated using two classical and six
machine-learning algorithms, which were then validated with measured sonar data. The results
illustrated that all models accurately estimated the depth of coral reefs in the 0–20 m range. The
classical algorithms (Lyzenga and Stumpf) exhibited a mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE) of less than 0.990 m, 1.386 m, and 11.173%,
respectively. The machine learning algorithms generally outperformed the classical algorithms in
accuracy and bathymetric detail, with a coefficient of determination (R2) ranging from 0.94 to 0.96
and an RMSE ranging from 1.034 m to 1.202 m. The multilayer perceptron (MLP) achieved the highest
accuracy and consistency with an RMSE of as low as 1.034 m, followed by the k-nearest neighbor
(KNN) (1.070 m). Our results provide a practical reference for selecting SDB algorithms to accurately
obtain shallow water bathymetry in subsequent studies.

Keywords: satellite-derived bathymetry; active-passive fusion; machine learning; in situ measurements;
the Spratly Islands

1. Introduction

According to the International Hydrographic Organization (IHO), more than half of
the shallow marine waters of the world remain uncharted or poorly explored [1–3]. Shallow
water regions, as zones of contact between the sea and the land or surrounding islands,
maintain the viability and richness of marine ecosystems [4–6]. Accurate bathymetric
mapping is essential for various applications, including climate change monitoring, marine
navigation, habitat monitoring, and risk assessment [7–10]. Especially in the South China
Sea (SCS), where over 200 coral reefs or islands are under the dual pressure of climate
change and human activities [11–13]. Therefore, shallow water bathymetric information in
the region must be urgently surveyed.
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The two of the most commonly applied shallow water topographic methods are (1) the
single or multibeam echo sounding based on a ship-based platform and (2) the bathymetric
lidar data acquired from airborne systems, which can provide accurate measurements [14,15].
However, these approaches may not be applicable in remote, protected, or disputed sea
areas that cannot be easily reached by ships and aircraft [16,17]. In particular, any in situ
measurements of coral reefs are challenging for the remote Spratly Islands [11,18], which
contain the elements of the present political situation. Currently, in situ measurements for
acquiring bathymetric maps in remote coral reefs can be replaced using satellite-derived
bathymetry (SDB) [19–22].

There are three categories for shallow water bathymetric mapping using SDB models:
physics-based, empirical-based, and machine-learning approaches [23–25]. The physics-
based strategies rely on the theory of radiation transmission, which describes the physical
correlations among depth, inherent optical properties, bottom albedo, and spectral infor-
mation [26]. These methods require no prior knowledge of water depth but are generally
computationally expensive [18]. The linear band model [27] and the band ratio model [28]
are widely used empirical models for bathymetric inversion. The empirical methods
combining Sentinel-2 and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data have
recently become a hot research topic [4,13,29,30].

Furthermore, many recent works suggested applying flexible machine-learning tech-
niques to enhance the efficiency and accuracy of bathymetry retrieval in transparent wa-
ters [16,25,30–33]. Susa [25] demonstrated the performance of random forest (RF), and
extreme gradient boosting (XGBoost) outperformed traditional techniques in nearshore
bathymetry. Duan et al. assessed the bathymetric potential of multilayer perceptron (MLP),
support vector machine (SVM), and RF and found that the MLP is superior [15]. Xie et al.
employed the SVM, BP, and RF to achieve an overall root mean square error (RMSE) below
1.5 m [34]. Other models, including the light gradient boosting machine (LGBM) [35]
and the k-nearest neighbor (KNN) [36], were also applied to SDB methods and produced
reliable bathymetric predictions. However, few studies adequately quantified the relative
accuracy and reliability between numerous machine learning and classical approaches
under the same scenarios. Especially for coral reefs bathymetry in the Spratly Islands, the
choice of bathymetry inversion methods in the satellite-derived active-passive fusion still
lacks scientific references, primarily due to the lack of field observations.

Therefore, we evaluated the performance of two classical models (Lyzenga and
Stumpf) and six machine learning models (LGBM, XGBoost, RF, SVM, KNN, and MLP) for
bathymetry estimation, using Anda Reef as a case study. First, the time series Sentinel-2
images were synthesized by applying a median filter on the Google Earth Engine (GEE)
platform. Second, the bathymetric points, which were accurately obtained from the ICESat-
2 via manual interactive annotation, were used to train the water depth retrieval model.
Finally, benefiting from in situ data, we systematically evaluated the bathymetric per-
formance of classical and machine learning models using both visual and quantitative
statistical parameters. We also discussed the performance differences between the inver-
sion models, as well as the application perspectives and potential limitations of SDB. This
work showed the potential of utilizing only satellite data for bathymetry estimation in the
Spratly Islands, providing a valuable reference for selecting appropriate SDB algorithms in
optically shallow water regions.

The main highlights of this study can be summarized as follows: (1) We estimated coral
reef bathymetry by fusing ICESat-2 and Sentinel-2 data, and further validated the potential
of spaceborne bathymetry in the Spratly Islands using valuable sonar measurement data.
(2) We conducted a comprehensive assessment of eight prevalent SDB methods, including
two classical algorithms and six machine learning algorithms, which provide practical
references for future research when choosing SDB algorithms.
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2. Study Area and Data
2.1. Study Area

The Anda Reef (10◦21′ N, 114◦42′ E) is located at the eastern end of Zhenghe Reefs
in the Spratly Islands (Figure 1). The area of Anda Reef is 22.86 km2 and ranks first
among Zhenghe Reefs. Anda Reef has an irregular shape. It is a northeast-oriented
reef with a sharp protrusion, which is approximately 11 km in length from northeast to
southwest and 0.3–5 km in width. Regarding the bathymetric distribution, Anda Reef
shows a shallow north and deep south trend, with shallow water depths of 2 m or less
in the northeastern part and up to 20 m in the southern region. The edges of Anda Reef
clearly show a transition between deep and shallow zones. This study primarily focuses
on the shallow water areas (0–20 m) of the Anda reef, while deeper areas beyond the reef
are not considered. In addition, Anda Reef is an unenclosed atoll with a southwest outlet,
which can accommodate some small boats.
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Figure 1. The map of the study area. (a) Location of Anda Reef in the SCS region. (b) Location of
Anda Reef in Zhenghe Reefs. (c) Different colored lines of ICESat-2 trajectories represent the data
obtained on different dates.

2.2. Sentinel-2 Imagery

The Sentinel-2A and Sentinel-2B, launched on 23 June 2015, and 7 March 2017, re-
spectively, have global coverage with a revisit interval of 5 days [37]. The Sentinel-2
with the Multispectral Instrument (MSI) can effectively monitor temporal changes in land,
vegetation, snow, and ice [38]. It has 13 bands with varying resolutions, and detailed
spectral information can be found in the User Manual [39]. Compared with other available
multispectral sensors, Sentinel-2 is used for bathymetric inversion because of the free-
access policy and high resolution [37]. These images were obtained from the GEE platform
(https://earthengine.google.com/) (accessed on 16 September 2023), which offers a broad
range of remote sensing products [40]. A total of 12 high-quality Sentinel-2 images were
used in this study, with four images per year from 2019 to 2021, as illustrated in Figure 2.

https://earthengine.google.com/
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Figure 2. The 12 high-quality Sentinel-2 images of Anda Reef, four images per year from 2019 to 2021.
Most images are close to the best conditions for visual judgment (e.g., almost no clouds, low turbidity,
and low white caps).

2.3. ICESat-2 Datasets

The ICESat-2 satellite, launched in September 2018, utilizes a 532 nm laser with a
17 m footprint to measure the global surface elevation [41]. It comprises three strong and
weak pairs, with a separation of 90 m between each pair and 3.3 km spacing between
pairs of beams. The energy ratio of strong and weak beams in each laser pair is 4:1 [42].
With an altitude of about 500 km and a high repetition rate of 10 KHz, the distance
between neighboring lasers is around 70 cm along the track [43,44]. The ICESat-2 ATL03
product contains geolocated photon data that provide information on elevation, coordinates
(latitude, longitude), and time. See the official documentation for comprehensive data
information [41,45]. The ATL03 data were queried and obtained from the NSIDC (https:
//nsidc.org/data/ATL03/versions/5) (accessed on 16 September 2023).

2.4. In Situ Sonar Data

The sonar measurements of Anda Reef were conducted on 21 January 2018, using the
Odom Hydrotrac II single-beam bathymetry system [46]. The data were superimposed
into the matching 10 m pixel of the Sentinel-2 imagery, and the mean value was calculated
as the final water depth. The spatial distribution and frequency distribution histograms
of sonar data in the shallow water area are shown in Figure 3. A total of 1294 points were

https://nsidc.org/data/ATL03/versions/5
https://nsidc.org/data/ATL03/versions/5
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surveyed, covering a route length of 12.45 km. The maximum, minimum, and mean values
of the measured data are 1.73, 21.13, and 9.85 m, respectively. The performance of various
SDB models was verified using the following water depths ranging from 0 to 20 m: 0–5 m
(226), 5–10 m (488), 10–15 m (400), and 15–20 m (157). The tidal correction was applied to
the field measurements of Anda Reef, resulting in bathymetry data referenced to the mean
sea level (MSL). Although water depth may have changed between field measurements
and the acquisition of satellite data (ICESat-2 and Sentinel-2), the topography of remote
reefs, particularly for areas such as the Spratly Islands, is generally considered to be stable
or only slightly variable [29,46,47].
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3. Methods

We proposed a multialgorithm evaluation framework of classical and machine learn-
ing methods for SDB (Figure 4). First, the Sentinel-2 images were processed, filtered, and
median synthesized based on the GEE platform. Second, the ICESat-2 bathymetric infor-
mation was extracted precisely by manual tagging, refraction-corrected, and tide-corrected.
Third, the bathymetric maps were retrieved from eight SDB models by integrating the
optimal Sentinel-2 image with ICESat-2 bathymetric data. Finally, an independent dataset
from in situ measured data was used for validating the eight bathymetric results.
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3.1. Sentinel-2 Data Preprocessing

We used the GEE platform to preprocess and obtain the time series images for develop-
ing SDB. The GEE provides sufficient satellite imagery, enabling quick dataset processing
and output visualization [40]. The Sentinel-2 Level 2A dataset that had undergone ra-
diometric calibration and atmospheric correction was employed in this study. The 10 m
resolution bands, namely, B2, B3, and B4, were included in constructing the inversion
model for consistency with previous studies [23,48]. All images of the study area were
geometrically projected into WGS 1984 UTM Zone 50N.

Although the majority of the selected images were close to the best conditions for
satellite observation, a few images were still noisy (Figure 2). For instance, an image
obtained on 27 July 2020, contains a small amount of cloud cover. To effectively address
the hindering factors present in the satellite images of the study area, such as clouds, sun
glint, white caps, and sensor-related noises, we adopted the median function to construct
a composited image [29,49]. First, we selected reliable reference images with almost no
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clouds, sun glare and water turbidity of Anda Reef from 2019 to 2021 in the GEE platform.
Then, the 12 selected Sentinel-2 images (four per year) were synthesized using a median
filter method to improve bathymetric inversion accuracy. We believe the composite of
12 high-quality images sufficiently minimizes image-induced uncertainty.

3.2. ICESat-2 Bathymetric Point Extraction

ICESat-2 satellites can deliver precise bathymetric points in optically shallow water
areas, but the ATL03 product contains significant noise. However, existing denoising algo-
rithms and high-level data products for detecting underwater signals are still exploratory,
requiring further optimization for their generality and reliability in bathymetry [5,50]. Ac-
cordingly, we accurately extracted the bathymetric points by manual interactive annotation
with the PhotonLabeler software developed by Malambo and Popescu [51]. PhotonLa-
beler software provides an accessible graphical user interface for visually interpreting and
manually labeling ICESat-2 products. For example, Figure 5 displays the results of photon
classification using the beam collected on 30 March 2022.
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The red line indicates the whole trajectory and the yellow line depicts the seafloor signal photon.
(b) The classification results of the sea surface and seafloor photons.

The ICESat-2 products do not currently consider refraction at the air-water interface,
which causes an overestimation of the distance traversed through water [52,53]. In this
work, we applied the refraction correction model proposed by Parrish et al. [52], as shown
in Equation (1), where the refractive indices for air na and seawater nw were set to 1.00029
and 1.34116, respectively.

zn = zo ∗ (na/nw) (1)

where zn is the corrected depth, zo is the initial depth, na and nw represent the refractive
indices of air and seawater, respectively. Subsequently, we made the tidal correction of
ICESat-2 bathymetric photons to ensure that the depth reference matched the measured
data. Finally, the ICESat-2 depth was stacked into 10 m pixels of Sentinel-2 image and
averaged to generate the final prior bathymetric information.

3.3. Methods of SDB

In this study, we built two classical methods (Lyzenga and Stumpf) and six machine
learning models (LGBM, XGBoost, RF, SVM, KNN, and MLP). Many previous studies
have shown that these algorithms effectively estimate water depth [3,6,11,16,30,54]. The
red, green, and blue bands of Sentinel-2 images and ICESat-2 water depth were split into
training and test datasets with a segmentation ratio of 8:2. Additionally, we conducted
500 random experiments to ensure the accuracy of these inversion models and performed
the grid search cross-validation approach to identify the best hyperparameters. The setting
of these parameters brings promising preliminary results for bathymetric derivation.
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3.3.1. Classical Methods

(1) Lyzenga

The Lyzenga model, first developed by Lyzenga [27], has a long history and can be
used as a reference for comparing bathymetric inversion methods, as follows:

z = a0 +
N

∑
i=1

ai ln[R(λi)− R∞(λi)] (2)

where z is the water depth (m), a0 and ai are linear regression coefficients, N is the number
of bands, R(λi) represents the reflectance of the ith band, and R∞(λi) represents the
reflectance of deep-water pixels for the ith band.

(2) Stumpf

The Stumpf model is simple, representative, and widely used for generating bathy-
metric maps, as follows:

z = m1
ln(nR(λi))

ln(nR(λj))
−m0 (3)

where z is water depth, R(λi) and R(λj) are the reflectance for bands i and j, the values of
m1 and m0 are adjustable parameters to convert the estimated water depth to the actual
depth, andn is a fixed constant (commonly set to 1000).

3.3.2. Machine Learning Methods

(1) MLP

The MLP model has been widely used in many kinds of research due to its robust
processing and self-learning capacity [15,17,55,56]. MLP comprises an input, output, and
several hidden layers. The input layer acquires external modeling factor data for each pixel,
which is then processed through one or more middle layers before being transmitted to the
output layer. The output layer generates the final prediction result of the network, i.e., the
estimated water depth. The optimal hyperparameters of the MLP model are presented in
Table 1.

Table 1. The optimal hyperparameters of six machine learning models were used in this study.
Unmentioned hyperparameters are default.

Models Optimal Hyperparameters

MLP hidden_layer_sizes = (20, 15), activation = tanh, solver = lbfgs,
alpha = 0.0001, max_iter = 100,000

KNN n_estimators = 5, p = 1, algorithm = brute, weights = uniform.
SVM kernel = rbf, gamma = 1000, penalty parameters C = 100

RF n_estimators = 600, max_depth = 14, min_samples_leaf = 1,
min_samples_split = 2, bootstrap = True

XGBoost n_estimators = 600, max_depth = 6, gamma = 0.1, subsample = 0.6

LGBM n_estimators = 400, max_depth = 3, num_leaves = 8,
boosting_type = gbdt, feature_ fraction = 0.9

(2) KNN

The KNN model is a nonparametric machine learning algorithm that estimates a contin-
uous dependent variable using K nearest training samples from the feature space [3,36,57].
Its principle is to apply methods, such as Euclidean distance and Manhattan distance, to
calculate the distance between the current point to be classified and the known points.
We can use this algorithm to find the nearest K points to the point to be classified and
then calculate the weighted average of these K points’ water depth to obtain the point’s
estimated water depth. The optimal hyperparameters of the KNN model are presented in
Table 1.
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(3) SVM

The SVM model, with the radial basis function (RBF) kernel, can effectively address
minor sample problems and establish a reliable relationship between satellite imagery
and water depth [16,58,59]. Furthermore, the nonlinear kernel function of SVM, which
transforms the training set into a high-dimensional feature space, enhances the generaliza-
tion capacity. The SVM model achieves its best performance by selecting a suitable kernel
parameter and tuning the model inputs. The optimal hyperparameters of the SVM model
are presented in Table 1.

(4) RF

The RF model is an ensemble learning regression technique for bathymetric inver-
sion [30,34,60,61]. RF models build an ensemble of decision trees called a forest using
bootstrap resampling on the training dataset. Each decision tree in the forest is constructed
independently. Averaging or taking the majority vote of the forecasts from all decision trees
yields the final estimation value for the RF model. The optimal hyperparameters of the RF
model are presented in Table 1.

(5) XGBoost

The XGBoost model is a tree-based boosting algorithm [25,62,63]. It creates decision
trees for the model in an iterative manner and generates decision trees in series, with
each subsequent tree learning to correct the mistakes of the previous tree. The algorithm
incorporates a regularization term that helps regulate the complexity of the model and
prevent overfitting. Thus, the computation requirements are reduced, and the optimal
solution is obtained quickly. The optimal hyperparameters of the XGBoost model are
presented in Table 1.

(6) LGBM

The LGBM model is a tree-based learning algorithm-based gradient boosting frame-
work used for various applications, including ranking and classification problems [35,64–66].
This model constructs a histogram-based segmentation approach instead of the conven-
tional presorted traversal. Additionally, it can directly explore k discrete feature nodes
using the histogram algorithm optimization to locate the optimal splitting node. The
optimal hyperparameters of the LGBM model are presented in Table 1.

3.4. Accuracy Assessment

The accuracy of SDB results was further validated by in situ measurements using the
following statistical metrics: coefficient of determination (R2), mean absolute error (MAE),
RMSE, and mean absolute percentage error (MAPE).

R2 =

(
n
∑

i=1
(yi − yi)(oi − oi))

2

n
∑

i=1
(yi − yi)

2 n
∑

i=1
(oi − oi)

2
(4)

MAE =
1
n

n

∑
i=1
|yi − oi| (5)

RMSE =

√
1
n

n

∑
i=1

(yi − oi)
2 (6)

MAPE =
100%

n

n

∑
i=1

|oi − yi|
yi

(7)

where n represents the number of observations, yi is the measured depth, oi is the estimated
depth, yi and oi are the mean values of all measured and estimated depths, respectively.
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4. Results
4.1. Optimal Sentinel-2 Imagery and ICESat-2 Bathymetric Points

In this study, we employed a total of 12 high-quality Sentinel-2 images from 2019
to 2021, selecting four images per year that are close to the best conditions for satellite
observation, as shown in Figure 2. However, despite being the best for several years, a few
images were still noisy. To obtain an optimal clean water mosaic image, the selected images
were synthesized using a median filter, as depicted in Figure 6a. Obviously, the median
composite image had no cloud coverage, sun glint, and water turbidity. This approach
helps to minimize the uncertainty caused by images when comparing different bathymetric
estimation algorithms, enhancing the reliability and accuracy of the subsequent analysis.
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bathymetric points.

We acquired 2614 available ICESat-2 bathymetric points of Anda Reef, and only water
depths of less than 20 m were used to train the bathymetry inversion model. Figure 6b
illustrates the distribution characteristics of bathymetric points over the Anda Reef, which
covers a wide range of spatial regions and depth intervals. We can find that the effective
bathymetric trajectory of ICESat-2 is characterized by a discontinuous distribution, with
intermittent photons commonly occurring in deep water areas. Additionally, the bathymet-
ric points were more densely distributed in shallow water regions, as fewer photons can
reach the seafloor with increasing water depth. This phenomenon also indicates a positive
correlation between the bathymetric points and the surface reflectance.

4.2. Accuracy Assessment of SDB Models

As illustrated in Figure 7, scatter density plots were generated for each model using
measured depth, and four statistical indicators were summarized to assess their stability
and robustness. The R2 values of eight SDB methods were more than 0.91, showing good
agreement between predicted and measured depths. In terms of MAE and RMSE, the
bathymetry accuracy of these models ranked as follows: MLP > KNN > SVM > RF >
XGBoost > LGBM > Stumpf > Lyzenga. Machine learning models outperform the classical
models, with a low MAE (0.782–0.853 m) and RMSE (1.034–1.202 m), proving their superior
nonlinear fitting abilities in water depth inversion. The MLP (1.034 m) and KNN (1.070 m)
achieved exceptionally high accuracy and consistency, with RMSE values below 1.10 m.
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The MLP exhibited a notable improvement of 0.387 m compared to the RMSE of the
worst-performing Lyzenga (1.421 m).
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We further calculated the MAE and RMSE of these SDB models to varying depths from
0–20 m, as presented in Table 2. The results demonstrated a general negative correlation
between the accuracy of various SDB models and increasing depth. Machine learning
methods exhibited comparable bathymetry errors in the 5–10 m, with the RMSE ranging
from 1.135 to 1.194 m. The MLP showed superior performance compared to other inversion
models, achieving RMSE values of only 0.605 m and 1.367 m in the 0–5 m and 15–20 m,
respectively. These excellent performances were directly reflected in the water depth
estimation, leading to the highest overall accuracy achieved by the MLP. However, classical
models remarkably underestimated the deep water (Figure 7), and their performance was
inferior to those of machine learning models. In the depth ranges of 15–20 m, the Lyzenga
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model displayed unsatisfactory performance, with a considerably higher RMSE of 3.233 m
than the other models.

Table 2. The MAE and RMSE values of eight SDB models at various depth ranges.

Models Accuracy Indicator
Water Depth (m) (the Number of Validation Points)

0–5 (226) 5–10 (488) 10–15 (400) 15–20 (157)

Lyzenga MAE (m) 0.697 0.723 0.665 3.042
RMSE (m) 0.852 0.958 0.885 3.233

Stumpf MAE (m) 0.561 0.854 0.835 2.440
RMSE (m) 0.727 1.131 1.112 2.623

LGBM
MAE (m) 0.452 0.859 0.779 1.603
RMSE (m) 0.809 1.136 1.009 2.038

XGBoost
MAE (m) 0.444 0.888 0.736 1.496
RMSE (m) 0.759 1.151 0.971 1.910

RF
MAE (m) 0.442 0.869 0.784 1.421
RMSE (m) 0.792 1.151 1.105 1.808

SVM
MAE (m) 0.382 0.928 0.677 1.532
RMSE (m) 0.633 1.194 0.878 1.969

KNN
MAE (m) 0.454 0.868 0.734 1.164
RMSE (m) 0.696 1.135 0.996 1.430

MLP
MAE (m) 0.391 0.905 0.712 1.137
RMSE (m) 0.605 1.151 0.917 1.367

The bold numbers represent the highest accuracy within each water depth interval.

4.3. Bathymetric Mapping of SDB Models

The bathymetric maps of Anda Reef generated by classical and machine learning
models are depicted in Figure 8. All SDB models show satisfactory results overall, with no
significant visual differences. The depth prediction of these models effectively reflected
the coherent spatial distribution patterns of the Anda reef, which gradually increased
from northeast to southwest. The maximum depth and most of the deep-water area are
distributed in the southwestern part of the coral reef. Machine learning methods provide
richer details and better spatial continuity than classical methods, particularly in deep
water. The MLP performs the best, as indicated by the purple box line. Bathymetric maps
derived from classical approaches have lower depth than machine learning models, with
the deepest color bands (i.e., deep water) always appearing in the latter. The Lyzenga
displayed apparent discrepancies, particularly in the central regions of Anda Reef, where it
consistently underestimates water depths compared to other models.

As illustrated in Figure 9, we constructed bathymetric variation profiles of the Anda
Reef from various orientations, namely P1, P2, P3, and P4, with the aim of further evaluating
the consistency and reliability of eight estimation models. Figure 9a provides a direct
comparison of the bathymetric inversion results with measured sonar data, while the
three subsequent figures show representative profile lines reflecting water depth changes
(Figure 9b–d). In general, the depth profiles generated from various SDB models largely
showed consistent variation trends, especially in areas where the bathymetry varies gently.
The bathymetric capability and stability of these models in shallow water are higher than in
deep water, which is consistent with the segmental validation results in Table 2. However,
at locations exhibiting sharp transitions in water depth, the discrepancies between the
bathymetric inversion results and the measured sonar data are evident, as depicted in
Figure 9a. This trend becomes particularly evident when the water depth exceeds 15 m,
where the depth variations between all models increase sharply. In addition, compared
with the profile depths extracted from classical models, those extracted from machine
learning displayed high consistency that can express numerous topographic undulations.
In deep water areas, the profile depths obtained from the Lyzenga and Stumpf methods
are commonly lower than those obtained from other models. This factor was also visually
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reflected in the scatter plots (Figure 7), indicating that the classical models performed
poorly within the depth range of 15–20 m.
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Figure 9. Depth profiles of bathymetric maps using eight SDB methods for Anda Reef. (a–d) represent
profiles along transect P1, P2, P3, and P4, respectively, where P1 is the depth segments of the measured
sonar data. The black arrows indicate the direction of the profile line. The red box lines highlight
areas with significant differences in the various bathymetric maps.

5. Discussion
5.1. Comparative Analysis of SDB Models

The selection of SDB methods directly affects bathymetric accuracy, highlighting the
need for further exploration, especially in the Spratly Islands [30,35]. Our findings showed
that classical and machine learning models produced satisfactory bathymetric results for
Anda Reef. Among the SDB models, MLP had the lowest RMSE of 1.034 m, while Lyzenga
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had the highest RMSE of 1.421 m. The depth profiles generated by various models largely
align with the trends observed in sonar measurements, with machine learning models
exhibiting superior inversion capabilities compared to classical models. The discrepancies
between the inversion results and sonar data emerged at locations with abrupt depth
transitions, especially in deeper waters exceeding 15 m. Such deviations are largely limited
by the bathymetric capabilities of satellite data sources and SDB models in accurately
capturing sharp depth variations within complex coral reef topography. The bathymetric
performances of SDB models used in this study align with or are better than those recorded
in previous investigations, although differing site conditions may limit the comparability
of results [11,13,16,67]. Furthermore, our results indicated that multiple machine-learning
models could achieve excellent and comparable bathymetric accuracy when provided
with sufficient training data and the same background conditions, which has rarely been
discussed in previous studies.

The effect of different machine learning algorithms on bathymetric accuracy is closely
related to their fundamental mathematical framework, data processing strategies, and
hyperparameter configurations. For example, the MLP algorithm, with the multi-layer
network structure, exhibited more significant advantages when dealing with global and
intricate relationships, resulting in excellent bathymetric accuracy [15,56]. Similarly, the
distance-based KNN algorithm, benefiting from substantial training data, achieved high
prediction accuracy, although it might be more sensitive to noise [3,57]. On the other hand,
tree-based models, such as XGBoost [25] and LGBM [35], are relatively complex in design
but did not show the anticipated accuracy in this study. This suggests that the inherent
complexity of models may not always directly correlate with prediction accuracy. Further-
more, although we rigorously chose optimal hyperparameters for our experiments, each
algorithm is characterized by specific hyperparameter combinations and applicable scopes,
which undeniably play pivotal roles in model performance. Consequently, obtaining better
bathymetric results requires both selecting a suitable model and carefully optimizing it
according to dataset characteristics.

The adequate ICESat-2 training data from Anda Reef ensured the reliability of ma-
chine learning models and enabled a fair comparison of their best performance. However,
machine learning algorithms may face limitations when there is a lack of extensive training
data. Earlier studies indicated that the bathymetric errors of SDB models exhibited an
overall decreasing trend and eventually stabilized with the increasing training data [15,68].
Moreover, machine learning models may be sensitive to environmental heterogeneity,
which could necessitate calibration when applied to other sites with varying sample char-
acteristics. Noteworthy, although machine learning models outperformed classical models,
the feasibility and convenience of classical models for large-scale mapping should not be
ignored. Many studies have shown that classical models can construct valid models with
only a limited number of calibration points and exhibit excellent generalization ability,
which enhances the utility of such models [15,48,69].

5.2. Application Perspectives and Potential Limitations of SDB Models
5.2.1. Application Perspectives of SDB Models in the Spratly Islands

The SDB methods have demonstrated the capability of integrating ICESat-2 with multi-
spectral imagery for reliable bathymetric retrieval in optically shallow water areas [7,49,60].
Recently, several studies successfully produced bathymetric maps of specific areas in the
Spratly Islands using this approach, overcoming the limitations of traditional in situ mea-
surements. For example, Zhang et al. proposed an SDB method based on ICESat-2 diffuse
attenuation signals to obtain the bathymetric maps of Zhongye Island [4]. Hsu et al. em-
ployed three semi-empirical functions to derive the bathymetric maps of six coral reefs in
the SCS by merging ICESat-2 with Sentinel-2 [69]. Nguyen et al. evaluated the potential of
bathymetry retrieval using ICESat-2 and Sentinel-2 for five islands in the SCS, obtaining
an RMSE ranging from 0.66 m to 1.87 m [11]. The development of active-passive (e.g.,
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ICESat-2/Sentinel-2) fusion bathymetry holds promise for producing accurate shallow
water bathymetric maps across the Spratly Islands and globally.

5.2.2. Potential Limitations Analysis of SDB Models

The SDB methods offer a bathymetric view on a global scale; however, they inevitably
possess the following limitations. The accuracy of the water depth estimation can be influ-
enced by various factors, including data quality, water conditions and bottom features [59].
The SDB methods are mainly applicable to shallow water regions, where the availability
and accuracy of bathymetry information could seriously reduce once water depths exceed
20 m. In addition, due to cloud coverage restricting the quantity of photons hitting the
ground, ICESat-2 may provide a poor record of bathymetric data, even in near islands with
high transparency [69]. The generality and reliability of the existing processing algorithms
for ICESat-2 bathymetric photons are still exploratory. On the other hand, the reliability
of satellite imagery plays a crucial role in the accuracy of bathymetry inversion. Situa-
tions when high-quality images are limited in some regions, such as no or few cloud-free
images, are unavoidable. Moreover, some works have successfully monitored coral reefs
using deep-learning-based approaches [70–73]. Clearly, there is a great potential to utilize
deep learning for coral reef bathymetry, which can also help to more accurately obtain
the bathymetric maps at large scales. Future improvements may benefit from additional
data processing methods and further exploration of machine learning or deep learning
techniques.

6. Conclusions

This study presented a comprehensive framework to evaluate the various bathymetric
inversion methods by coupling ICESat-2 and Sentinel-2. Two classical models (Lyzenga
and Stumpf) and six machine learning models (LGBM, XGBoost, RF, SVM, KNN, and MLP)
were used to generate accurate topographic features of Anda Reef in the Spratly Islands.
The accuracy of the bathymetric results was then validated with the in situ measurements.
Our findings indicated that all SDB models could reflect the water depth distribution
of coral reefs, but performance and accuracy generally decreased with increasing water
depths, notably higher than 15 m. The average R2 and RMSE of classical models were
0.917 m and 1.386 m, respectively, within the depth range of 0–20 m. By contrast, machine
learning techniques efficiently improved the bathymetric accuracy, and the mean R2 and
RMSE can be as low as 0.943 m and 1.132 m, respectively. The MLP achieved the highest
accuracy with an RMSE of 1.034, surpassing the performance of other models in deep
waters (15–20 m). Overall, machine learning models exhibited superior reliability and gen-
eralizability compared to classical models, improving accuracy and topographic detail. The
findings show that combining satellite data and machine learning approaches, specifically
the MLP model, can effectively derive bathymetry in highly transparent waters. Future
research will investigate the feasibility and robustness of more machine learning or deep
learning techniques in complex water types, including turbid waters and coastal regions.
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