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Abstract: Accurately measuring industrial spatial agglomeration patterns is crucial for promoting
regional economic development. However, few studies have considered both agglomeration degrees
and cluster locations of industries. Moreover, the traditional multi-scale cluster location mining
(MCLM) method still has limitations in terms of accuracy, parameter setting, calculation efficiency, etc.
This study proposes a new framework for analyzing industrial spatial agglomeration patterns, which
uses the Duranton and Overman (DO) index for estimating agglomeration degrees and a newly
developed local DO (LDO) index for mining cluster locations. The MCLM-LDO method was proposed
by incorporating the LDO index into the MCLM method, and it was validated via comparisons with
three baseline methods based on two synthetic datasets. The results proved that the MCLM-LDO
method can achieve accuracies of 0.945 and 1 with computational times of 0.15 s and 0.11 s on two
datasets, which are superior to existing MCLM methods. The proposed framework was further
applied to analyze the spatial agglomeration patterns of the industry of computer, communication,
and other electronic equipment manufacturing in Guangdong Province, China. The results showed
that the framework gives a more holistic perspective of spatial agglomeration patterns, which can
serve as more meaningful references for industrial sustainable development.

Keywords: industrial spatial agglomeration; multi-scale cluster location mining (MCLM); Duranton
and Overman (DO) index; distance-based method; micro-data; Guangdong Province

1. Introduction

Industrial spatial agglomeration refers to the geospatial concentration of intercon-
nected firms [1], representing a worldwide phenomenon driven by economies of scale [2–4].
A suitable industrial agglomeration pattern, which considers both the agglomeration degree
and the cluster location, can facilitate firms in benefiting from the industrial agglomeration
effect and acquiring clear advantages in terms of cost, productivity, and innovation environ-
ment [5–10]. It serves as a crucial force for the high-quality and sustainable development
of regions and cities [11–15]. A comprehensive analysis of industrial agglomeration pat-
terns helps evaluate the performance of existing policies and formulate new ones, thereby
promoting the development of a more suitable industrial agglomeration pattern [10,16–18].
Therefore, a comprehensive analysis of industrial agglomeration patterns is necessary.
Previous studies have suggested that rapidly and accurately measuring agglomeration
degrees and cluster locations is a prerequisite for comprehensive analysis of industrial
spatial agglomeration patterns [19–21]. Nonetheless, industrial agglomeration degrees and
cluster locations are interrelated and have significant spatial heterogeneity across different
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regions, periods, and industry types, rendering the rapid and accurate measurement of
both challenging [22–26].

Scholars in the early days primarily focused on measuring agglomeration degrees of
industries at the administrative unit scale [17,22]. Specifically, an industrial agglomera-
tion degree is typically quantified by constructing an index that reflects the deviation or
proportion of the industry against all industries based on statistical data in administrative
units [17]. However, traditional indexes are unable to accurately reflect agglomeration
degrees, such as locational entropy, the Thiel index, spatial Gini coefficient, Herfindahl
index, and EG index [13,15,27–31]. This is mainly because these indexes were primarily
designed for a fixed spatial scale [17], which makes them inevitably influenced by the
zoning scheme of the administrative unit, i.e., the existence of the Modifiable Areal Unit
Problem (MAUP) [22,32,33].

Subsequent studies proposed distance-based methods for measuring the agglomera-
tion degrees of industries [22]. These methods can overcome the limitation of the fixed spa-
tial scale and the MAUP [34,35] and produce more accurate agglomeration degrees [17,22].
Specifically, the distance-based method includes two steps, namely, calculating an average
index representing the proximity of point-pair distances of firms to distance thresholds and
comparing it with confidence intervals to obtain a curve representing the multi-scale ag-
glomeration degree. Commonly used indexes of the distance-based agglomeration degree
measuring method include Ripley’s K-function (i.e., the K-function) [36] and its variant,
L-function [37,38], as well as the Duranton and Overman (DO) index [20]. Among these
indexes, the K-function and L-function, which count the numbers of point-pair distances of
firms that are less than different distance thresholds to measure proximity, tend to over-
estimate the spatial scale of the agglomeration distribution. This is because the result of
large spatial scales contains small spatial scales, which consequently results in a cumulative
effect [20,22]. The DO index employs a kernel function to represent the proximity and
address the cumulative effect in the K-function and L-function [20,39]. Although several
indexes, such as the M-function [40,41] and W-function [42], have emerged, they cannot
entirely substitute the DO index because of their low computational efficiency, rendering it
challenging to apply them to massive datasets [22]. Thereby, the distance-based method
based on the DO index has become the predominant method for measuring industrial
agglomeration degrees of regions [17]. It has been widely used in studies of industrial ag-
glomeration in the country, urban agglomeration, and inner city levels [19,20,23,39,43–51].
Nevertheless, the DO index method still faces challenges, such as a lack of explanations
on the result curves, low accessibility of micro-data on firms, and ignorance of cluster
locations [21,22,52].

Several methods have been adopted to obtain accurate industrial cluster locations, such
as the spatial scan statistic [21,53] and the kernel density estimation [54–56]. However, these
methods cannot simultaneously obtain cluster locations and their relationships at multiple
scales, because these cluster locations may vary at different scales [24]. To further address
these limitations, Buzard et al. proposed a Multi-scale Cluster Location Mining (MCLM)
method based on the Local K-function (LK), i.e., MCLM-LK. This method has provided
promising results for mining cluster locations in research and development labs and brew-
eries in America [35,57]. Specifically, the MCLM-LK method counts the number of industry
firms within a given boundary distance parameter for each firm and then adopts a local test
to identify core firms for constituting industrial cluster locations. Although the MCLM-LK
method combined with the K-function method offers an effective way of simultaneously
measuring agglomeration degrees and mining cluster locations of industries [35,57,58], it
still has several limitations. First, the LK exhibits a significant cumulative effect, which may
lead to identical calculation results for neighboring firms and add biases to cluster locations.
Second, the boundary distance parameter in the MCLM-LK method depends on subjective
experience inputs, rendering it difficult to jointly analyze agglomeration degrees and cluster
locations. Third, the computational cost is very high because the local test requires an
additional 999 calculations for each firm at each spatial scale.
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This study aims to propose a new framework for analyzing multi-scale industrial
spatial agglomeration patterns that simultaneously consider agglomeration degrees and
cluster locations. In the proposed framework, agglomeration degrees are calculated by
using the DO index, while cluster locations are estimated based on a newly developed local
DO (LDO) index. By incorporating the LDO index, the traditional MCLM method is im-
proved to provide more accurate cluster location mining results with higher efficiency and
a more objective parameter setting. The proposed MCLM-LDO method will be compared
with three baseline methods based on two synthetic datasets. The integrated DO index
and LDO index (DO-LDO) framework will be applied to analyze the spatial agglomeration
patterns of the industry of computer, communication, and other electronic equipment
manufacturing in Guangdong Province of China from 2000 to 2022. The remainder of this
study is organized as follows. Section 2 describes the proposed framework and Section 3
analyzes the experimental results, followed by the discussion and conclusions in Sections 4
and 5.

2. Methodology

As shown in Figure 1, the DO-LDO framework of this study mainly comprises three
parts. First, the multi-scale agglomeration degrees are measured by using the DO index
method. Then, to obtain multi-scale cluster locations, a novel LDO index is constructed,
and an MCLM-LDO method is proposed by introducing the LDO index into the MCLM.
Thirdly, a comprehensive analysis of industrial spatial agglomeration patterns is performed
from the dual perspectives of agglomeration degrees and cluster locations.
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Figure 1. The overall structure of the proposed integrated Duranton and Overman (DO) index and
Local Duranton and Overman (LDO) index (DO-LDO) framework. Note that MCLM-LDO refers to
the Multi-scale Cluster Location Mining method based on LDO index, hmax and hi represent boundary
distance parameters for global and local spatial scales, respectively, Γ(A) denotes the sum over all
distances of the agglomeration degree, LDOmean denotes the average density of firms in the cluster,
and Pn denotes the percentage of the number of firms in the cluster to the total number of firms in
the industry.

2.1. Multi-Scale Agglomeration Degree Measurement Based on DO Index Method

This study adopted the widely used DO index method to measure agglomeration
degrees because it often provides a satisfactory result for the multi-scale agglomeration
degrees of industries [17]. The DO index of the investigated industry A at the distance
threshold d can be calculated by Equation (1), denoted as DOobs(A, d). Generally, the
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sequence of distance thresholds starts at 0 and increments by one or one-tenth of the
distance unit. The maximum distance threshold will be set at the quartile (e.g., median or
lower quartile) of point-pair distances of firms or the area diameter [20,45].

DO(A, d) =
1

hNA(NA − 1) ∑ NA−1
i=1 ∑ NA

j=i+1e−(
d−di,j√

2h
)2

(1)

where NA is the number of firms in industry A, di,j is the Euclidean distance between firm i
and firm j (unless otherwise specified, distance in this study refers to Euclidean distance),
and h is the optimal bandwidth calculated using Siverman’s method (Equation (2)) [59].

h = 0.9NA
− 1

5 min(dstd,
dQ1

1.34
) (2)

where dstd and dQ1 represent the standard deviation and lower quartile of point-pair
distances of all firms in the industry A.

An upper global confidence band for the random distribution of industry A is then
generated through a counterfactual test [19,20]. The main steps include the following:

(1) A Monte Carlo sample approach is used to create m simulations, with NA firms
in each simulation (m generally ranges from 100 to 1000) from all background industries
(e.g., manufacturing);

(2) DO indexes of these simulations, DOsim
m (A, d), are calculated;

(3) For each d, all DOsim
m (A, d) of simulations are ranked in descending order, and the

initial upper global confidence band is selected as the 5-th percentile;
(4) It is determined whether the number of simulations greater than the upper global

confidence band for at least one d exceeds 5%m;
(5) If so, a larger value, i.e., the

(
5 − 1

m

)
-th percentile, is taken as the new upper global

confidence band to perform step (4), otherwise, a determined upper global confidence band

DOsim(A, d) is achieved.
For example, there are 1000 simulations created and sorted, which can be expressed

as DOsim
1 (A, d) > DOsim

2 (A, d) > · · · > DOsim
1000(A, d) at each d. Among them, DOsim

50 (A, d)
denotes the initial upper global confidence band. If step (4) is not achieved, then use
DOsim

49 (A, d) as a new upper global confidence band and continue with step (4) until it
is achieved.

Finally, the localization index Γ(A, d) at different spatial scales of industry A is cal-
culated by Equation (3), and a localization index curve can be created for quantifying the
multi-scale agglomeration degree [20,43].

Γ(A, d) = max
(

DOobs(A, d)− DOsim(A, d), 0
)

(3)

where Γ(A, d) is greater than 0 at d, the spatial scale at which industry A is agglomerated,
the larger Γ(A, d) indicates the higher agglomeration degree and the stronger industrial
agglomeration effect.

2.2. LDO Index Construction for MCLM-LDO Method

To address the limitations of the MCLM-LK method, this study proposes an MCLM-
LDO method by introducing a novel LDO index into the MCLM. The MCLM-LDO method
first constructs the LDO index and proposes an objective determination approach for its
distance parameter, enhancing an accurate measurement of the agglomeration degrees of
individual firms. Then, the threshold selection is used to identify firms with higher LDO
indexes as core firms, i.e., individual firms with significantly high agglomeration degrees
are identified, dramatically reducing the computation time compared to the local test, and
multi-scale cluster locations are subsequently visualized based on the core firms. Finally,
an evaluation in terms of both the accuracy and efficiency of the proposed MCLM-LDO
method was performed.
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2.2.1. Construction of LDO Index

The preliminary step of the MCLM is to measure the agglomeration degrees of in-
dividual firms by using a suitable index. A traditional index, LK, was commonly used by
counting the number of firms within a specified boundary distance parameter ĥ (Equation (4)).
However, it results in the shortcoming that neighboring firms have identical degrees.

LKi

(
A, ĥ

)
= Ci

(
ĥ
)

(4)

where Ci

(
ĥ
)

denotes the number of firms in industry A whose distance from firm i is not

greater than ĥ.
The DO index has addressed the cumulative effect of the K-function, thereby enabling

a more accurate measurement of industrial agglomeration degrees in a region [20,39]. This
study, therefore, constructs a local version of the DO index to address the shortcomings of
the LK function. Specifically, this study adopts a kernel function instead of the counting
method in the LK, and it constructs a novel index (the LDO index) to obtain neighboring
firms with different degrees for better measuring the agglomeration degrees of individual
firms. For a firm i in industry A, its LDO index when the peak and boundary distance
parameters are d̂ and ĥ, respectively, is denoted as LDOi

(
A, d̂, ĥ

)
and can be described as

Equation (5).

LDOi

(
A, d̂, ĥ

)
=

1
ĥNA

∑ NA
j ̸=ie

−(
d̂−di,j√

2ĥ
)2

(5)

The peak distance represents the distance where the agglomeration degree is maxi-
mized, and the boundary distance represents the farthest distance where the agglomeration
degree is detectable. Given that agglomeration degrees of individual firms decay with
distance [6,24], the peak distance d̂ in this study is set to 0, and the LDO index can be
further simplified as Equation (6). Inputting different ĥ values will obtain the LDO index
of a firm at different spatial scales.

LDOi

(
A, ĥ

)
=

1
ĥNA

∑ NA
j ̸=ie

−(
di,j
ĥ
)2

(6)

2.2.2. Determination of Boundary Distance Parameters

The boundary distance parameter ĥ of the LDO index needs to be determined for
performing Equation (6). Currently, the boundary distance parameter of LK relies on sub-
jective experience for determination, ignoring the heterogeneity of the boundary distance
parameter in different regions, periods, and industry types. This makes it difficult to accu-
rately mine multi-scale cluster locations and their relationships. In this study, both global
and local spatial scales are considered to improve the accuracy of mining multi-scale cluster
locations and their relationships. Combined with the advantage that the localization index
curve is a superior characterization for multi-scale agglomeration degrees, an approach is
proposed to determine the boundary distance parameter at a global scale (denoted as hmax),
and global scopes of industrial agglomeration can be depicted. For the local location of
small cluster, an adaptive approach is used to determine the boundary distance parameter
at a local scale (denoted as hi).

The global scale parameter of the agglomerated industry, hmax, is determined as the
smaller distance between the first decline of the curve to 0 and the first curve trough. For
example, in Figure 2, the localization index curves of industries A, C, and D exhibit Γ(A, d)
greater than 0 within short distances, indicating agglomeration. The corresponding hA,
hC, and hD represent the hmax for these industries. In contrast, the localization index curve
of industry B is greater than 0 at long distances, indicating dispersion [20], with no hmax
determined. The local scale parameter hi refers to Siverman’s optimal bandwidth of the DO
index method and is calculated using Equation (2). The difference here is that dstd and dQ1
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represent the standard deviation and lower quartile of distances of firm i from the other
firms in industry A. Through calculation, each firm i will have its hi, which can detect
clusters at the local scale different from the global scale.
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2.2.3. Core Firm Identification Based on Threshold Selection

Based on the determination of two objective boundary distances, LDO indexes of all
firms were calculated (Equation (6)), and cluster locations can be obtained by identifying
the core firms, i.e., the firms with higher LDO indexes. The MCLM-LK method is generally
limited by computational inefficiency due to the local test, that is, calculating 999 simulated
values for each firm through the Monte Carlo simulation and identifying the firms whose
observed value is higher than all of their simulated values to be the core firms [35]. In this
study, a threshold selection approach is proposed to identify core firms at multiple scales.
The LDO index of a firm complying with Equation (7) is considered as a core firm.

LDOi

(
A, ĥ

)
≥ max(µ, 2σ) (7)

where µ and σ denote the mean and standard deviation of LDO indexes of firms in industry
A with input ĥ. When the distances between core firms are greater than ĥ, they are consid-
ered to belong to different clusters. If the number of a cluster is greater than or equal to
0.5%NA [54], the cluster is selected as the finally estimated cluster.

2.2.4. Cluster Location Visualization

This study uses different visualization approaches for the global and local scales to
compare cluster locations. For the global spatial scale, the global agglomeration boundary
is constructed using the minimum bounding rectangle of core firms, where the firm with
the largest LDO index is the agglomeration center of the industry. For the local spatial scale,
the spatial distribution of core firms is directly used as the visualization results.

2.2.5. Performance Evaluation of MCLM-LDO Method

Due to the difficulty of obtaining real cluster locations to calculate accuracy indicators,
two synthetic datasets characterizing common industrial spatial distribution patterns are
used in this study. The aim is to evaluate the effectiveness of the MCLM-LDO method in
identifying cluster locations and compare it with three baseline methods. The evaluation
metrics include the accuracy and computational efficiency of methods.

The evaluation scheme is shown in Figure 3. The MCLM-LDO method with three
baseline methods is applied to two synthetic datasets separately to obtain estimated firm
types at the global scale (i.e., inputting hmax from the localization index curve) and uses
real firm types as the reference to evaluate both in terms of efficiency and accuracy. The
efficiency indicator uses the computation time, and the accuracy adopts three indicators
from the confusion matrix. Recall denotes the rate of the number of core firms (i.e., the firms
in clusters) correctly estimated to the number of real core firms (Equation (8)); Speci f icity
denotes the rate of the number of sparse firms (i.e., the firms beyond clusters) correctly
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estimated to the number of real sparse firms (Equation (9)); and Accuracy denotes the rate
of the number of firms correctly estimated to the total number of firms (Equation (10)). The
larger the three indicators, the higher the accuracy of the method.

Recall =
TP

TP + FN
(8)

Speci f icity =
TN

FP + TN
(9)

Accuracy =
TP + TN

TP + FN + FP + TN
(10)

where TP is the number of core firms correctly estimated by the method, TN is the number
of sparse firms correctly estimated by the method, and FP as well as FN are the number of
firms incorrectly estimated by the method, respectively.
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Baseline method 1 is the MCLM-LK method proposed by Buzard et al. [35]. The MCLM-
LK method initially calculates observed values (i.e., agglomeration degrees of individual
firms) of the industry based on LK (Equation (4)), and then the core firms are identified
by the local test. To evaluate the effectiveness of each improved step of the MCLM-LDO
method, baseline method 2 and baseline method 3 were constructed using the step in the
MCLM-LDO method replacing the step in the MCLM-LK method.

2.3. Industrial Spatial Agglomeration Pattern Analysis from Dual Perspectives

This study finally employed the proposed framework to analyze the industrial spatial
agglomeration patterns of Guangdong Province from 2000 to 2022, using micro-data on
firms in the computer, communication, and other electronic equipment manufacturing
industry. The multi-scale agglomeration degree of the industry is analyzed using the
localization index curve and its derivations, including the aggregated agglomeration degree
Γ(A) (Equation (11)) and the maximum spatial scale of agglomeration hmax.

Γ(A) = ∑ dΓ(A, d) (11)

where Γ(A) greater than 0 indicates that the spatial distribution of industry A is agglomer-
ated in the region; otherwise, it is considered random or dispersed. A larger Γ(A) signifies
a more significant agglomeration of industry A in the region.

Subsequently, industrial cluster locations are analyzed at the global and local scales.
Additionally, the trends of cluster are quantified by calculating the average LDO index
(denoted as LDOmean, representing the average firm density of each cluster) and the
percentage of firms within each cluster relative to NA (denoted as Pn).
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3. Experiments and Analysis
3.1. Datasets
3.1.1. Synthetic Datasets

This study constructs the synthetic datasets by considering two industries. As listed in
Table 1, A represents the investigated industry, M represents other background industries,
and firms were randomly generated on a 50 × 50 area.

Table 1. Descriptions of industry A in the synthetic datasets.

Datasets Number of
Clusters

Scale of
Clusters

Number of
Core Firms

Number of
Sparse Firms

Dataset 1 1 10 100 100
Dataset 2 2 6 100 50

Synthetic Dataset 1 depicts an industrial spatial distribution of a single cluster sur-
rounded by sparse firms (Figure 4a). Cluster I, with a scale (i.e., circular diameter) of 10,
hosts 100 core firms of industry A. A ring, spanning from 5 to 15 away from the center of
Cluster I, accommodates 100 sparse firms of industry A and 200 firms of industry M.
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Figure 4. The industrial spatial distributions of multiple clusters in (a) Synthetic Dataset 1 and
(b) Synthetic Dataset 2.

Synthetic Dataset 2 depicts an industrial spatial distribution of multiple clusters, with
sparse firms at a distance from a cluster (Figure 4b). Both Cluster I and Cluster II have a
scale of 6, each hosting 50 core firms of industry A. A ring, located 8 to 9 away from the
center of Cluster I, accommodates 50 sparse firms of industry A. Moreover, industry M
comprises 500 firms randomly distributed across the entire area.

3.1.2. Actual Dataset

This study adopts an actual dataset of firms in Guangdong Province, China, encom-
passing 21 cities, obtained from Qichacha, a Chinese enterprise information query platform
(“https://www.qcc.com/” (accessed on 11 April 2023)). This dataset represents the point
data of surviving firms in the computer, communication, and other electronic equipment
manufacturing industry in Guangdong Province from 1949 to 2022 (Figure 5). The latitude
and longitude of the firms were obtained using the geocoder service of Baidu Maps. A total
of 75,275 firms were ultimately used after three preprocessing steps using Python and
ArcGIS 10.4 software, including eliminating invalid data, standardizing attributes, and
correcting city-level locations (i.e., manually coding firms whose cities from the geocoder
service differed from the “city” field). According to the “National Economic Industry Classi-
fication Standard (GB/T 4754-2017) [60]” of China, the industry is coded as C39. Since a

https://www.qcc.com/
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significant portion of firms in this industry were established after 2000, the analysis of this
study mainly concentrates on six specific years, i.e., 2000, 2005, 2010, 2015, 2020, and 2022.
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Guangdong Province is the most industrially and economically developed province
in China. For the past 35 years, Guangdong Province has always been the top province
in China in terms of Gross Domestic Product (GDP). The central region in Guangdong is
the Pearl River Delta, comprising nine cities: Guangzhou, Foshan, Zhaoqing, Shenzhen,
Dongguan, Huizhou, Zhuhai, Zhongshan, and Jiangmen. Presently, Guangdong Province
grapples with a serious industrial and economic imbalance between its central region
and the other regions [61,62]. Preventing the excessive concentration of industries in the
central region and fostering a coordinated regional development strategy are pressing
concerns [61]. In addition, in 2022, the value added by the C39 industry in Guangdong
Province significantly surpassed that of other industries. Therefore, an appropriate frame-
work to analyze the agglomeration patterns of this industry is crucial for the sustainable
development of this region.

3.2. Performance Analysis of MCLM-LDO Method on Synthetic Data

To obtain the hmax to input into the MCLM-LDO method and three baseline methods,
the localization index curves for two synthetic datasets were calculated by inputting a
sequence of distance thresholds D = [0, 1, . . . , 25] and m = 1000 to the DO index method.

3.2.1. Spatial Agglomeration Analysis on Synthetic Dataset 1

As shown in Figure 6, the hmax of industry A is 11, closely matching the scale of Cluster I
(10), demonstrating the accuracy and objectivity of hmax as the boundary distance parameter.

Figure 7 illustrates the distributions of estimated firm types for the MCLM-LDO
method and three baseline methods obtained by inputting ĥ = 11. The core firms in
industry A are denoted as As, while the remainder are sparse firms. Some sparse firms
around Cluster I are misidentified as core firms by all methods. As depicted in Table 2,
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the MCLM-LDO method correctly identified 100 core firms and 89 sparse firms, and its
Recall = 1, Speci f icity = 0.89, and Accuracy = 0.945, which outperforms the other three
methods in all indicators, achieving a computation time of only 0.15 s. The Recall of each
method is similar, indicating that these methods have comparable abilities to correctly
identify core firms. The Speci f icity of the two methods using the LDO index (i.e., MCLM-
LDO method and baseline method 1) reaches 0.89 and 0.85, respectively, significantly
surpassing the other methods using LK (i.e., baseline method 1 and baseline method 2).
This suggests that the LDO index is more effective in correctly identifying sparse firms.
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Table 2. Comparison of accuracy and computational efficiency of different methods based on Synthetic
Dataset 1.

Indicators Baseline
Method 1

Baseline
Method 2

Baseline
Method 3

MCLM-LDO
Method

Recall 0.99 1 1 1
Speci f icity 0.78 0.78 0.85 0.89
Accuracy 0.885 0.89 0.925 0.945

Computational time (s) 24.21 0.16 24.82 0.15

In summary, hmax proves to be a suitable boundary distance parameter, and the meth-
ods using the LDO index, especially the MCLM-LDO method, more accurately pinpoint
the cluster location compared to using the LK.

3.2.2. Spatial Agglomeration Analysis on Synthetic Dataset 2

Figure 8 displays the localization index curve of Synthetic Dataset 2, revealing three
curve crests. The hmax, located 6 from the first curve trough, is consistent with the scales of
the two clusters on Synthetic Dataset 2.
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By inputting ĥ = 6 into the MCLM-LDO method and three baseline methods, the
distributions of estimated firm types are shown in Figure 9, with the corresponding in-
dicators presented in Table 3. The MCLM-LDO method and baseline method 2 correctly
identified core firms and sparse firms by using the threshold selection, as indicated by their
Accuracy reaching 1. In contrast, the other two baseline methods, both using the local test,
have a Speci f icity that is less than 1, indicating that they misidentify some sparse firms as
core firms. This is because the local test aims to identify areas where industry A is more
intensive than industry M, i.e., the surrounding area of the ring on this synthetic dataset.
Additionally, compared to baseline method 1, the lower Speci f icity of baseline method 3 is
attributed to the LDO index focusing more on the distribution of neighboring firms, while
the LK considers all firms within a distance of 6 equally. In the surrounding area of the
ring, industry A is more intensive relative to industry M within a distance of 1, but it has a
similar density as industry M within a distance of 6.

Furthermore, the computation time for the threshold selection (0.11 s for MCLM-LDO
and 0.12 s for baseline method 2) is significantly lower than that of the local test (18.6 s and
19.1 s for baseline method 1 and baseline method 3, respectively). Overall, the threshold
selection outperforms the local test in both accuracy and computational efficiency.
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Table 3. Comparison of accuracy and computational efficiency of different methods based on Synthetic
Dataset 2.

Indicators Baseline
Method 1

Baseline
Method 2

Baseline
Method 3

MCLM-LDO
Method

Recall 1 1 1 1
Speci f icity 0.9 1 0.22 1
Accuracy 0.967 1 0.74 1

Computational time (s) 18.6 0.12 19.1 0.11

3.3. Application of Integrated DO Index and LDO Index Framework on Actual Dataset
3.3.1. Industrial Agglomeration Degree Analysis of Guangdong Province

By inputting a sequence of distance thresholds D = [0 km, 1 km, . . ., 100 km] and
m = 400 to the DO index method, Figure 10 and Table 4 illustrate the evolution of ag-
glomeration degrees for the C39 industry in Guangdong Province from 2000 to 2022. The
Γ(A) of the C39 industry in Guangdong Province is consistently greater than 0 and the
hmax exceeds 45 km in all years, indicating that the industrial agglomeration at the large
spatial scale persists from 2000 to 2022. By collectively analyzing Γ(A, d), Γ(A), and hmax,
the evolution of the spatial agglomeration patterns of the C39 industry in Guangdong
Province can be preliminarily divided into three periods. The first period is from 2000 to
2005, where Γ(A) rises sharply from 0.58 to 0.68, with a moderate change in hmax, reflecting
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rapid agglomeration of the industry and a stable spatial scale of agglomeration. The second
period is from 2005 to 2015, where Γ(A) declines gradually from 0.68 to 0.58, while hmax
expands rapidly from 46 km to 57 km, signifying the start of industry dispersal and a
noticeable growth in the spatial scale of agglomeration. The third period is from 2015 to
2022, where Γ(A) decreases dramatically from 0.58 to 0.38, with a small change in hmax,
indicating a rapid dispersion of the industry but a stable spatial scale of agglomeration.
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Figure 10. The evolution of the localization index Γ(A, d) of the C39 industry in Guangdong Province
from 2000 to 2022.

Table 4. The evolution of the aggregated agglomeration degree Γ(A) and the maximum spatial scale
of agglomeration hmax of the C39 industry in Guangdong Province from 2000 to 2022.

Indicators 2000 2005 2010 2015 2020 2022

Γ(A) 0.58 0.68 0.67 0.58 0.47 0.38
hmax (km) 45 46 54 57 57 55

3.3.2. Industrial Cluster Location Analysis of Guangdong Province

Figure 11 illustrates the evolution of cluster locations for the C39 industry in Guang-
dong Province from 2000 to 2022 obtained by using the MCLM-LDO method. On the global
scale, the agglomeration boundary of the industry experienced a slight expansion in 2005.
Subsequently, the boundary rapidly expanded outward from 2005 to 2015, centered around
Shenzhen City, crossing the Pearl River in 2010. This formed a spatial agglomeration pattern
of urban agglomerations with integrated development on the east and west coasts. After
2015, the boundary tended to stabilize, and the agglomeration center gradually moved closer
to Dongguan City along transportation arteries. This implies a change in the industrial
spatial agglomeration patterns inside the boundary, warranting further analysis.

As shown in Figure 11b and Table 5, at the local scale, the local industrial clusters in all
years are primarily distributed in the coastal area of Shenzhen City and all are located inside
the global agglomeration boundary. In 2005, Cluster V was insignificant, while the LDOmean
of Cluster I rapidly rose to 0.0435, indicating a significant increase in the firm density of
Cluster I. Between 2015 and 2020, Cluster II developed strongly and its area expanded
greatly, with Pn growing from 1.08% to 2.91%. In 2022, Clusters III and IV emerged, and
Cluster I continued to have the highest LDOmean and Pn among the clusters. These results
reflect changes in the industrial spatial patterns inside the global agglomeration boundary.

Overall, the three periods of the agglomeration patterns of the C39 industry in Guang-
dong Province from 2000 to 2022 can be summarized as follows. (1) In the first period of
a stabilizing agglomeration pattern from 2000 to 2005, the industry rapidly clustered in
Shenzhen City with a stable boundary, forming a significant pattern of single Cluster I
(i.e., the cluster of the Huaqiang North Road) in the local area. (2) In the second period of
an expanding dispersion pattern from 2005 to 2015, the industry tended to disperse, and
its global agglomeration boundary expanded considerably, generating an agglomeration
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pattern of urban agglomerations. (3) In the third period of an internal dispersion pattern
from 2015 to 2022, the industry dispersion accelerated, manifesting in the movement of
the agglomeration center to Dongguan City and the emergence of multiple significant
local clusters.
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Figure 11. The evolution of cluster locations of the C39 industry in Guangdong Province from 2000 to
2022: (a) global agglomeration boundary and center and (b) local cluster (inside the gray dotted line
in (a)).

Table 5. The evolution of local industrial clusters of the C39 industry in Guangdong Province from
2000 to 2022. Note that “-” means that the cluster is not significantly clustered in that year.

Cluster
Numbers

LDOmean Pn (%)

2000 2005 2010 2015 2020 2022 2000 2005 2010 2015 2020 2022

I 0.0287 0.0435 0.0347 0.0210 0.0124 0.0108 7.45 6.97 5.90 4.24 3.26 3.26
II - - - 0.0096 0.0068 0.0062 - - - 1.08 2.91 2.64
III - - - - - 0.0049 - - - - - 0.60
IV - - - - - 0.0049 - - - - - 0.58
V 0.0203 - - - - - 3.66 - - - - -

As shown in Table 5, since 2015, among these clusters, the most significant clusters
of the C39 industry in Guangdong Province are Cluster I and Cluster II (i.e., the cluster of
the Airport Economic Zone of Shenzhen). Cluster I remains consistently significant, but
its Pn has been decreasing, indicating that the increase in the number of firms inside the
cluster has been lower than that outside the cluster. This implies that Cluster I is unable to
accommodate more new firms. Therefore, this cluster needs to rely on the transformation
and upgrading of existing firms in the future to continuously develop. In addition, Cluster
II is noteworthy due to its rapid development.

4. Discussion
4.1. Sensitivity Analysis of Distance Parameters

The sensitivity of distance parameters of the MCLM-LDO method, i.e., the boundary
distance ĥ and the peak distance d̂, is analyzed in this section. Taking Synthetic Dataset 2
as an example, the additional parameters, ĥ = 4 and ĥ = 8, are input into the MCLM-LDO
method and three baseline methods, and the distributions of the estimated firms are shown
in Figures 12 and 13, respectively. Overall, the results identified by the four methods vary
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when ĥ is different. As shown in Table 6, the three indicators of the MCLM-LDO method
varied insignificantly and remained considerably higher than the other three methods,
demonstrating that the MCLM-LDO method has superior robustness and can achieve the
best result when ĥ = hmax.
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Table 6. Sensitivity analysis of the boundary distance parameter on Synthetic Dataset 2.

Indicators

Input ĥ=4 Input ĥ=8

Baseline
Method 1

Baseline
Method 2

Baseline
Method 3

MCLM-LDO
Method

Baseline
Method 1

Baseline
Method 2

Baseline
Method 3

MCLM-LDO
Method

Recall 1 0.89 1 0.99 1 0.5 1 0.77
Speci f icity 0.96 1 0.84 1 0.08 1 0 1
Accuracy 0.987 0.927 0.947 0.993 0.693 0.67 0.667 0.85

For the peak distance d̂, this study set it to 0 in the MCLM-LDO method. When d̂ is
greater than 0, the MCLM-LDO method mines points with larger impacts that are spaced a
certain distance. For example, some plants, when spaced at a certain distance from each
other, will develop better [6], and the MCLM-LDO method can be used to identify plants
that match this condition. Furthermore, previous studies have argued the conclusion that
multiple crests of the localization index curve imply the existence of multiple clusters in
the industry [43,45]. By using the MCLM-LDO method with d̂ > 0, the correctness of this
conclusion of previous studies can be discussed in this section.

The localization index curve of Synthetic Dataset 2 has multiple crests (Figure 8). d̂ is
set to be the distance of the maximum value of the three crests, and ĥ is set to be 2. The
combinations of distance parameters

(
d̂, ĥ

)
= (3, 2), (9, 2), and (20, 2) are inputted into

the MCLM-LDO method, and their results are shown in Figure 14. In this case, the core
firms of each combination explain why the localization index curve crests at those distances.
(1) The first crest at a short distance identifies core firms located inside Cluster I and Cluster
II, representing the cluster locations of industry A. (2) The core firms identified by the
second crest are not located inside clusters of industry A but are exactly near 9 from Cluster
I; therefore, they have higher LDO indexes. (3) The third crest identifies core firms mostly
inside two clusters of industry A, which are close to each other by 20. Generally, the crests
of the localization index curve may be generated both by the distance between multiple
clusters and by sparse firms at some distance from the cluster. Thus, this study argues that
the localization index curve having multiple crests does not necessarily mean that there are
multiple clusters.
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Figure 14. Spatial distribution of estimated firm types by using the MCLM-LDO method on Synthetic
Dataset 2 by inputting (a) the first curve crest (d̂ = 3, ĥ = 2), (b) second curve crest (d̂ = 9, ĥ = 2),
and (c) third curve crest (d̂ = 20, ĥ = 2).

4.2. Improvement of the MCLM-LDO Method

The advantages of the proposed MCLM-LDO method lie in adopting a new approach
to determine boundary distance parameters, constructing the LDO index, and proposing
the threshold selection approach.

(1) The determination of boundary distance parameters is data-driven and objective,
facilitating generalization across various regions, periods, and industry types, which is
challenging for previous methods reliant on a priori knowledge for parameter settings [35].

(2) The LDO index can effectively differentiate the agglomeration degrees of neighbor-
ing firms compared to the traditional LK. Consequently, the MCLM-LDO method mines
cluster locations with greater accuracy than the MCLM-LK method.

(3) The threshold selection approach involves two steps, i.e., calculating the standard
deviation and mean of the data and conducting a comparison. These steps have significantly
improved the computational efficiency and applicability to the large-scale data. In contrast,
the local test requires an additional 999 calculations for each firm at each spatial scale,
resulting in highly inefficient computational processes. Furthermore, the local test bears
the risk of misidentifying firms in sparse regions, leading to lower accuracy of the result.

Moreover, the MCLM-LK method used by Buzar et al. further constructs buffers,
centered on core firms with a radius, as the final cluster [35,57], while this step is not
included in the MCLM-LDO method. This is because the radius of buffers directly uses the
boundary distance parameter [35], and in some cases, the results may be unreasonable. For
example, if this step is used to generate clusters of Synthetic Dataset 2 (Figure 9), all sparse
firms around Cluster I will be covered, resulting in a considerable overestimation of the
results; for an industry with a large boundary distance parameter (e.g., C39 industry at the
global scale in this study), the scope of the cluster derived from constructing buffers will be
too large and thus meaningless.

4.3. Applicability of the DO-LDO Framework

Most studies have analyzed industrial agglomeration patterns using the DO index
method, obtaining accurate agglomeration degrees but paying insufficient attention to
cluster location mining [17,22,23]. Although the MCLM-LK method has focused on cluster
location mining, it still suffers from accuracy and efficiency shortcomings and is difficult
to analyze with the agglomeration degree [57]. Based on the DO index method, this study
proposed the MCLM-LDO method to improve the accuracy and efficiency of the MCLM
method. Moreover, the proposed DO-LDO framework can effectively integrate the ag-
glomeration degree and the cluster location to analyze the industrial agglomeration pattern
comprehensively.
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Based on the DO-LDO framework, this study presents findings regarding the evolution
and the current status of the C39 industry (the computer, communication, and electronic
equipment manufacturing industry) in Guangdong Province. By 2022, the industry has
formed an integrated development along the east and west coasts, with startups gravitating
towards emerging local clusters within the global agglomeration scope, while original local
clusters have reached saturation points. Overall, the C39 industry in Guangdong Province
exhibits a pattern of "global single-core agglomeration and local multi-point diffusion".
Policymakers can evaluate the policy effectiveness and formulate sustainable industrial and
urban development policies based on the results obtained from applying our framework.

(1) While the supportive policies have alleviated the decline of the Huaqiang North
Road cluster, startups increasingly dispersed into the surrounding areas, maintaining a
crowding effect. Therefore, the cluster’s policies should focus on promoting the upgrading
and relocation of internal firms and relieving the population and land pressure to safeguard
sustainable urban development.

(2) The initial effectiveness of the coordinated regional development strategy of Guang-
dong Province is evident. The C39 industry can be further distributed in Dongguan City
or along the west coast of the Pearl River based on the Guangdong–Hong Kong–Macao
Bridge and the Shenzhen–Zhongshan Corridor. It will mitigate excessive concentration in
Shenzhen City and foster polycentric and sustainable industrial development.

4.4. Extensibility, Limitations, and Future Work

Referring to the DO index [20], the LDO index also has a form that considers the
weights of firms (Equation (12)).

LDOi

(
A, d̂, ĥ

)
=

1

ĥ ∑NA
j ̸=i wiwj

∑ NA
j ̸=iwiwje

−(
d̂−di,j√

2ĥ
)2

(12)

where wi and wj are the weights of firms i and j, such as the number of employees. When
the number of small- and medium-scale firms has a greater quantity in the industry, an
additive weighting form can be considered [48] (Equation (13)).

LDOi
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1

ĥ ∑NA
j ̸=i(wi + wj)

∑ NA
j ̸=i(wi + wj)e

−(
d̂−di,j√

2ĥ
)2

(13)

The distance metric of the LDO index can consider other linkages between firms,
such as economic, knowledge, and vertical industrial linkage. Road distance is also a
metric that can be considered. If alternative distance-based methods emerge, a step similar
to the LDO index construction can also be applied to mine cluster locations. Since the
DO-LDO framework and the MCLM-LDO method are conducted based on pure point
progress, it is applicable across different economic systems and industries if the input data
are well developed.

The DO-LDO framework also facilitates the balance of efficiency and equity in in-
dustrial distribution to support high-quality and sustainable development. For example,
analyzing industrial agglomeration patterns in ecologically fragile areas can prevent the
further development of heavily polluting industries.

Nevertheless, the DO-LDO framework still faces several limitations. For example, the
distance parameters and threshold of the MCLM-LDO method need to be adjusted for
different domains, thereby improving the rationality of spatial point pattern analysis. It is
important to note that alternative clustering methods may be more suitable in scenarios
like text recognition and map clustering, where multiple classifications for all points are
necessary [35,63]. Moreover, more statistical indicators can be added to quantify the level
of development of industrial agglomeration in a more multidimensional way.
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5. Conclusions

This study constructed a novel LDO index and proposed the MCLM-LDO method
for industrial cluster location mining to address the limitations of the existing MCLM-LK
method in terms of accuracy, parameter setting, and calculation efficiency. The DO-LDO
framework was performed to comprehensively analyze the industrial multi-scale spatial
agglomeration patterns in Guangdong Province of China from 2000 to 2022 by considering
the dual perspective of agglomeration degrees and cluster locations. The main conclusions
of this study are as follows.

(1) The proposed MCLM-LDO method can provide industrial cluster locations at the
global and local scales and deepen the understanding of the localization index curve.

(2) By inputting the objective distance parameter, the evaluation of two synthetic
datasets demonstrated that the MCLM-LDO method yields superior results in accuracy
and computational efficiency, compared with other baseline methods.

(3) The spatial agglomeration patterns of the C39 industry in Guangdong Province
from 2000 to 2022 include three periods, a stabilizing agglomeration pattern from 2000
to 2005, an expanding dispersion pattern from 2005 to 2015, and an internal dispersion
pattern from 2015 to 2022.

These findings can provide a scientific reference for the sustainable planning of the
industry and analyze the impacts and mechanisms of industrial agglomeration.
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