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Abstract: Deep Learning (DL) has become a popular method for Remote Sensing (RS) Change Detec-
tion (CD) due to its superior performance compared to traditional methods. However, generating
extensive labeled datasets for DL models is time-consuming and labor-intensive. Additionally, the
imbalance between changed and unchanged areas in object CD datasets, such as buildings, poses a
critical issue affecting DL model efficacy. To address this issue, this paper proposes a change detection
enhancement method using artificial image generation and attention mechanism. Firstly, the content
of the imbalanced CD dataset is enhanced using a data augmentation strategy that synthesizes
effective building CD samples using artificial RS image generation and building label creation. The
created building labels, which serve as new change maps, are fed into a generator model based
on a conditional Generative Adversarial Network (c-GAN) to generate high-resolution RS images
featuring building changes. The generated images with their corresponding change maps are then
added to the CD dataset to create the balance between changed and unchanged samples. Secondly,
a channel attention mechanism is added to the proposed Adversarial Change Detection Network
(Adv-CDNet) to boost its performance when training on the imbalanced dataset. The study evaluates
the Adv-CDNet using WHU-CD and LEVIR-CD datasets, with WHU-CD exhibiting a higher degree
of sample imbalance compared to LEVIR-CD. Training the Adv-CDNet on the augmented dataset
results in a significant 16.5% F1-Score improvement for the highly imbalanced WHU-CD. Moreover,
comparative analysis showcases the superior performance of the Adv-CDNet when complemented
with the attention module, achieving a 6.85% F1-Score enhancement.

Keywords: building change detection; data imbalance; remote sensing image generation; GAN;
adversarial learning; attention module

1. Introduction

Change Detection (CD) through the analysis of Remote Sensing (RS) images stands as
an indispensable tool across a multitude of disciplines, encompassing agriculture, urban
planning, and environmental surveillance. The fundamental principle involves the analysis
of two or more images captured over different time instances, all within the same geograph-
ical area, aimed at discerning temporal changes [1]. The continuous evolution of remote
sensing technology has significantly eased the task of detecting changes in even small-
scale objects, such as buildings, leveraging the capabilities of Very High-Resolution (VHR)
Images. In the sector of urban management, specifically Land Use Land Cover (LULC),
identification of illegal construction, and disaster evaluation, the application of building
change detection proves to be significantly useful. Furthermore, the insights derived from
change detection analysis offer valuable solutions to policymakers for the effective planning
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and monitoring of sustainable urban development, ensuring the preservation of ecological
balance and the development of cities [2].

Considering the importance of building CD, several traditional and Deep-Learning
(DL)-based methods have been proposed to accurately accomplish this task. Traditional
techniques for CD rely on manual interpretation and image differencing, practices that,
though established, are susceptible to consuming significant time and are prone to errors.
However, the Remote Sensing Change Detection (RSCD) task has been profoundly reshaped
by the strides taken in deep learning. These advancements have launched a new era of
methodologies characterized by heightened efficiency and precision [3].

Depending on how the deep features are extracted or the hidden patterns are learned
from the bi-temporal data, DL techniques for detecting changes can be categorized into
two main approaches: single-stream and double-stream [4]. The single-stream approach
typically involves combining the bi-temporal input images and subsequently conducting a
classification task to generate a binary or multiclass Change Map (CM). However, this con-
figuration poses two significant research challenges: determining the data fusion strategy
and optimizing the DL classifier. In contrast to the single-stream model, which operates
with a single network, the double-stream architecture comprises two subnetworks with
identical structures. These subnetworks are concurrently treated and trained to discern the
deep features inherent in the two input images. The outcomes are then concatenated to
formulate the CM. This configuration, founded upon the Siamese convolutional network,
finds widespread application [5] owing to its capability to simultaneously train the two
subnetworks and learn the deep features of bitemporal input images. However, the current
dual-stream networks exhibit certain limitations, including elevated complexity and the
need for heightened precision in generating the final CM.

To address this challenge, we introduce a single-stream architecture that leverages
adversarial learning. Our approach involves concurrently training two sub-networks
within an adversarial learning, one tasked with generating a CM and the other designed
to evaluate the quality of the generated CM. The model we propose, named Adversarial
Change Detection Network (Adv-CDNet), adopts the adversarial learning principles of
Generative Adversarial Networks (GANs) [6]. The foundational architecture of our model
draws inspiration from the Pix2Pix model, renowned for its ability to translate an input
image from a source domain to a desired target domain [7]. In the same idea of processing
the CD task as an image-to-image translation problem [8], our model operates by employing
the resulting six-channel image, obtained by concatenating the two bi-temporal images,
as the source input, while the CM serves as the intended target image. A schematic
representation of our proposed model is depicted in Figure 1.
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Figure 1. Adversarial learning of the change detection model.

The underlying framework of the pix2pix architecture relies on a supervised deep-
learning methodology that depends on the availability of extensive labeled datasets. How-
ever, this approach faces challenges when applied to the RS building CD task, which
suffers from the lack of large established datasets. The process of annotating large-scale
CD datasets is marked by its time-intensive and labor-demanding nature. Additionally,
the rarity and sparsity of the buildings changes (considered as the positive class) render
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the acquisition of compelling bitemporal images a formidable task. Compounding the
issue, currently available building CD datasets, such as those highlighted in [9,10], often
encompass only restricted geographic regions and are constrained by limited variations in
image conditions.

To address the challenge posed by insufficient CD datasets, the adoption of data aug-
mentation techniques emerges as a viable solution. Traditional approaches, predominantly
rooted in image processing methodologies encompassing geometric and color transforma-
tions, image blending, and related techniques, have been explored [11]. However, these
methods primarily involve geometric transformations or simply change the pixel values
within RGB channels. Consequently, they fail in enhancing the semantic information fidelity
of RS images, particularly when deployed in tasks demanding nuanced interpretation like
CD [12]. To overcome these limitations, some works have leveraged imaging simulation
systems to generate synthetic RS samples, which are subsequently combined with original
data [13]. These innovative methodologies effectively address concerns such as data diver-
sity, blurriness, and distortions. However, it is important to note that the generated images
often exhibit compromised quality [3]. Despite these efforts, the challenge of generating
high-quality synthetic images for bolstering CD datasets remains.

Recently, the performance of DL in image generation has manifested across computer
vision tasks, demonstrating the capacity to produce high-quality and diverse samples that
augment the original dataset. This technique has found substantial utility in generating RS
samples as well. In the field of RS, DL-based approaches for image generation are based on
various techniques, including Variational Auto Encoding (VAE) and adversarial learning
such as the application of GANs [11]. For instance, Lv et al. [12] introduced a modified
GAN, termed Deeply supervised GAN (D-sGAN), to synthesize new RS training samples
for soil-moving detection. Expanding on this, Singh and Bruzzone [14] enhanced the
generative adversarial network with class-based spectral indices, facilitating the generation
of multispectral RS images. Addressing the specific task of aircraft detection within RS
images, Liu et al. [15] devised a multiscale attention Cycle GAN to create novel samples.
Xu et al. [16], on the other hand, proposed a data augmentation strategy combining a mod-
ified pix2pix model with the copy–paste operator for Solid Waste Detection. Notably, these
endeavors primarily center around generating RS images intended for RS classification and
object detection tasks.

Despite these advancements, generating new samples for CD tasks remains a formidable
challenge within the DL method. Seo et al. [17] tackled this by synthesizing changes
through diverse mechanisms like random building cropping, inpainting for building sup-
pression, and copy–paste instance labeling. Another work proposed by Chen et al. [18]
employed a GAN-based approach to create new building CD samples. Their methodology
involved training a GAN model on a building dataset, followed by transferring generated
instances of varying styles onto the synthesized images. The authors additionally intro-
duced context-aware blending techniques for realistic building-background composites,
concluding with context-aware color transfer for the final output. Similarly, Li et al. [19]
proposed a method called Image-level Sample Pair Generation (ISPG) based on Label
Translation GAN (LT-GAN) to address the challenges of limited data volume and severe
class-imbalance issues in building change detection datasets.

Within the scope of our research, as illustrated in Figure 2, we introduce a framework
based on the GAN model, designed to generate new images at time T1 (post-change
instance), that contains basically buildings objects by taking building labels as input. This is
achieved through the creation of a novel building label, extrapolated from an image devoid
of buildings taken at time T0 (pre-change instance). Subsequently, the generated image at T1
and its respective image at T0, both accompanied by their corresponding created building
masks, are integrated with the original dataset to create the balance. This concerted effort
serves to amplify the quantity and variety of building CD samples, effectively remedying
the data imbalance highlighted earlier.
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Figure 2. Comprehensive workflow: building change augmentation and detection.

Furthermore, beyond addressing data imbalance issues using data augmentation
techniques, our study establishes the efficacy of introducing an attention module into
a deep-learning model. This technique, accomplished through the integration of an at-
tention mechanism, serves as a powerful strategy for rectifying the imbalance between
changed and unchanged pixels. The utility of attention mechanisms lies in their capacity
to enhance model detection capabilities by emphasizing specific features. In the context
of RSCD, this mechanism ensures a heightened focus on changes within an image. For
instance, a recent work by Feng et al. [20] introduced a dual-branch multilevel intertempo-
ral network leveraging self and cross-attention mechanisms to effectively capture change
representations, particularly in cases where foregrounds and backgrounds vary. Similarly,
Li et al. [21] proposed a progressive feature aggregation approach with supervised atten-
tion, embedded within MobileNet architecture. This technique demonstrated high accuracy
while maintaining a reduced parameter count and shorter training times for CD tasks.
Due to its efficiency, we integrated an attention module into our Adv-CDNet model. This
amelioration significantly improves the accuracy of change detection while concurrently
rectifying the imbalance between changed and unchanged areas.

This paper contributed significantly in the following ways:

1. Firstly, we propose a data augmentation strategy designed to effectively generate new
CD samples featuring diverse changes in numerous buildings. By employing building
label creation and artificial image generation, we enhance the existing CD dataset,
ultimately mitigating the risk of class imbalance challenges commonly encountered
during the training of DL models for remote sensing building change detection.

2. Secondly, we present an innovative adversarial training framework called Adv-CDNet,
which utilizes a modified Pix2Pix model and integrates a channel attention mechanism.
This model can directly map bi-temporal images to a CM while extracting more
discriminative features, in the imbalanced dataset, for the CD task.

3. Thirdly, we assess the performance of our high-resolution image generation framework
on datasets with severe class imbalance. Experimentation involves two distinct publicly
available Remote Sensing (RS) building Change Detection (CD) datasets. Comprehensive
comparisons between our Adv-CDNet and other state-of-the-art methods show its
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effectiveness over alternative approaches. Furthermore, the empirical findings from
the evaluations of the incorporation of our data augmentation technique demonstrate
significant improvement in the performance of our proposed model.

2. Related Works
2.1. Deep-Learning-Based Methods for Remote Sensing Change Detection

DL-based CD models are commonly structured around two key components. The
primary and pivotal element is the feature extractor, tasked with harnessing the capabilities
of deep neural networks to derive effective feature representations. The second element
is the feature discriminator, responsible for classifying areas as changed or unchanged
based on the extracted features. DL techniques are broadly categorized into supervised
and unsupervised learning paradigms, depending on the presence or absence of labeled
training data. In both learning approaches, a multitude of architectural frameworks has
been proposed to address the RSCD task. For instance, Deep Belief Networks (DBNs) have
emerged as a notable architecture within various unsupervised change detection method-
ologies [22]. In a similar way, Auto Encoders (AEs), being unsupervised feedforward
neural networks, exhibit the capacity to generate sparse representations of input data. AE
encompasses two integral components: the encoder, responsible for condensing the input
image into a lower-dimensional representation, and the decoder, which reconstructs the
encoder’s output into an image closely resembling the original input. Capitalizing on their
robust feature learning capabilities, diverse AE variants have been harnessed as feature
extractors within the context of change detection. These variants encompass stacked AEs,
which incorporate multiple layers of autoencoders; stacked denoising AEs; stacked Fisher
AEs; sparse AEs; denoising AEs; fuzzy AEs; and contractive AEs [4]. Convolutional Neural
Networks (CNNs) have garnered notable success in a multitude of image-processing tasks,
primarily attributed to their intrinsic ability to autonomously learn deep features. These
networks, both classical and their refined iterations [23], are extensively exploited as adept
classifiers or feature extractors within the realm of change detection. Noteworthy examples
encompass VGGNet, CaffeNet, SegNet, UNet, InceptionNet, and ResNet [4].

Recently, some developments have witnessed the integration of adversarial learning
strategies to tackle the intricacies of remote sensing change detection. A pertinent instance
is the conditional adversarial network proposed by Niu et al. [8], tailored for the challenge
of change detection within heterogeneous images. Moreover, the implementation of GANs
has emerged as a promising avenue for accurate urban change detection [24]. This marks a
distinct shift in the landscape of change detection methodologies, wherein the alliance of
adversarial learning principles and remote sensing image analysis showcases remarkable
potential. In the context of our study, we extend our efforts by introducing a tailored
modification to the pix2pix model, a distinctive form of conditional GAN renowned for
its prowess in image-to-image translation tasks within the computer vision tasks [7]. We
deploy this model specifically to address the building change detection task.

Furthermore, in a concerted effort to boost the efficiency of change detection tasks,
various attention modules have been developed and integrated into change detection
models. These modules enable neural networks to selectively focus on subsets of inputs
or features by effectively selecting the most relevant ones, modeling intricate bi-temporal
features, and enhancing feature representation. As a result, the attention mechanism
serves to mitigate the influence of irrelevant information while emphasizing pertinent
data, thereby improving overall performance [25]. Several papers have proposed different
approaches that incorporate attention mechanisms in change detection, including the hier-
archical attention network [26], supervised attention [27], and channel self-attention [28].
Moreover, Zhang et al. developed the Dual Cross-Attention-Transformer (DCAT) method,
which utilizes the cross-attention mechanism to improve change feature discrimination
and merges bi-temporal features [29]. Some works have explored multi-scale attention
mechanisms. Zhang et al. proposed a Dual Multi-scale Attention model for change detec-
tion, incorporating a double-threshold automatic data equalization rule for data category
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imbalance [30]. However, multiple pooling operations can result in the loss of structural
information. Ren et al. introduced the Dual-Attention-Guided Multi-scale Feature Aggre-
gation Network for change detection, which addresses the problems of multiscale feature
fusion and attention allocation strategy in DL methods. It utilizes cross-fusion of different
scales and dual attention to guide fusion in space and channel information [31]. In our
study, we incorporate channel attention module into the architecture of our adversarial
change detection network. This amelioration aligns with the prevailing trend of including
attention mechanisms into neural network structures to improve their performance in
complex image analysis tasks, such as remote sensing change detection.

2.2. Class Imbalance Challenge in Change Detection

The quantity and quality of image data have a significant influence on the training
process of DL models. Invariably, a wealth of high-quality training samples becomes
imperative to ensure the precision and robustness essential to the execution of any RS task
performed by DL-based methodologies. In the CD task, the acquisition of a substantial
number of effective bitemporal images is a great challenge due to the rarity and sparsity
of real-world changes. Consequently, most CD datasets, particularly those focused on
building changes where the changed objects are small compared to the background, suffer
from a pronounced class imbalance between areas with changes and those without changes

To counter this challenge, a prevalent approach involves the manipulation of weighted
loss functions to compel the model to accord greater attention to samples exhibiting changes
during the training phase. Illustratively, methodologies like weighted constrictive loss, as
implemented in [9], or weighted cross-entropy loss, as in [32], are commonly leveraged.
Additionally, Liu et al. [33] adopted a weighted focal loss, introducing nonlinear weights
for different classes to reshape the original focal loss. Although these techniques, by
strategically enhancing the significance attributed to changing samples, address the data
imbalance issue, they can be more computationally expensive compared to standard cross-
entropy loss, as they involve additional calculations. An alternative strategy to address
data imbalance involves the utilization of data augmentation techniques to gather sufficient
training samples. As delineated earlier, three distinct categories of data augmentation
exist: traditional methods, imaging simulation methods, and image generation through
the application of GANs. In this section, our focus is directed toward image generation
utilizing GANs.

Proposed initially by Goodfellow et al. in 2014 [6], GAN stands as a prominent deep-
learning architecture encompassing two neural networks: a generator and a discriminator.
Operating collaboratively, these components strive to produce images closely resembling
authentic ones. The predominant challenges inherent to GAN-based image generation
pertain to maintaining training stability and achieving heightened image realism. Over-
coming these challenges has been the driving force behind numerous advancements. For
instance, Radford et al. [34] integrated Convolutional Neural Networks (CNNs) into GAN
architectures, while the application of the Wasserstein distance [35] has been instrumental
in stabilizing training dynamics. Furthermore, to enhance the quality of spectral images,
Singh and Bruzzone [14] introduced the concept of spectral index GANs. Moreover, in-
corporating a conditional vector into both the generator and discriminator components
enhances control over image attributes, including aspects such as quantity, shape, and
type. This augmented architecture, aptly named conditional GAN, was originally put
forth by Gauthier et al. [36]. This configuration has found extensive application in various
works [12,16,18], all exploiting its potential to generate remote sensing images.

In line with this approach, our study takes a novel path, using a customized conditional
GAN architecture with specific modifications adapted to generate image pairs for building
change detection, all hinged upon created building labels.
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3. Materials and Methods
3.1. Dataset Preparation
3.1.1. Change Detection Dataset

For a comprehensive assessment of our CD model, we conducted experiments on
two widely acknowledged public datasets specifically designed for building CD using
VHR RS images: the WHU Building Change Detection Dataset (WHU-CD) [10] and the
LEVIR Building Change Detection Dataset (LEVIR-CD) [9]. These two datasets present
highly imbalanced change label scenarios, as elucidated in Figure 3, where the ratio of
changed pixels to unchanged pixels is notably skewed, thus giving rise to a pronounced
class imbalance. This, in turn, amplifies the challenges associated with employing DL
techniques for building change detection tasks.

100%

80%

60%

40%

20%

0%

25.00%

75.00%

95.74% 95.35%

55.60%

4.26% 4.65%

44.40%

Figure 3. Visualization of the number of changed and unchanged pixels and images in the LEVIR-CD
and WHU-CD datasets.

The WHU-CD dataset [10] comprises a single pair of VHR optical RS images (with
a spatial resolution of 0.2 m) sized at 32,507 × 15,354 pixels. These bi-temporal RGB im-
ages, captured in 2012 (12,796 buildings) and 2016 (16,077 buildings) across a 20.5 km²
area, were acquired following an earthquake in February 2011 to monitor post-earthquake
building reconstruction. At a pixel level, our analysis identified 21,442,501 changed pixels,
constituting only 4.26% of the total pixel count. The remaining 481,873,979 pixels were
unchanged, accounting for 95.74%. This data distribution results in a highly imbalanced
binary classification dataset (as depicted in Figure 3). To facilitate experimentation, we seg-
mented these images into non-overlapping patches of size 256 × 256, yielding a collection
of 7620 patch pairs. Notably, only 25.00% of their corresponding change maps depicted
changes, intensifying the disparity between change maps containing building changes
(changed maps) and those without (unchanged maps). We adopted a random 7:1:2 ratio to
divide the dataset into training, validation, and testing subsets.

The LEVIR-CD dataset [9], on the other hand, encompasses 637 Google Earth image
patch pairs, each characterized by a very high spatial resolution of 0.5 m and a size of
1024 × 1024 pixels. With a diverse range of building types, including villa residences,
tall apartments, small garages, and large warehouses, this dataset showcases substantial
land-use changes, featuring over 31,000 changed building instances. Similarly, when
quantifying the changed and unchanged pixels across the entire dataset, our analysis
unveiled 31,066,643 changed pixels, constituting 4.65% of the total, while 636,876,269
unchanged pixels constituted 95.35% (as depicted in Figure 3). To facilitate our analyses,
we uniformly cropped these images into non-overlapping pairs of size 256 × 256. As a
result, we accumulated a total of 10,192 image pairs. It is worth highlighting that, unlike
the WHU-CD dataset, a substantial 44.40% of these pairs contained changes within their
respective change maps. This balanced distribution between changed and unchanged
maps distinguishes the LEVIR-CD dataset from its WHU-CD counterpart, which suffers
from an imbalanced representation. To ensure consistent experimentation conditions, we
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performed a random split, allocating the dataset into training, validation, and test subsets
using a 7:1:2 ratio, respectively.

3.1.2. Data Preparation for Remote Sensing Image Generation

Our RS image generation framework aims to generate synthetic RS images containing
buildings. To achieve this objective, we initiated the process by assembling the requisite
training data for our image generator model from both LEVIR-CD and WHU-CD.

Taking advantage from the provided buildings labels in the original bitemporal WHU-
CD dataset images, we collected real remote sensing images with their corresponding
building labels. In a systematic manner, we partitioned the original bitemporal images
and their labels into discrete patches, each measuring 256 × 256. Only those patches that
featured buildings were retained. This meticulous process yielded a total of 9542 pairs of
real images along with their associated building labels, which served as the foundation for
training our image generator model. For the LEVIR-CD dataset, we collected the training
dataset by extracting images from the original CD dataset. Specifically, we selected images
from the post-change instances that exhibited building modifications. This process yielded
a total of 3160 pairs of real images with their corresponding building labels.

3.2. Data Augmentation Strategy

This section presents our data augmentation strategy, aimed at reinforcing the dataset’s
composition by infusing synthetic images predominantly featuring buildings. The core
objective of data augmentation is to redress the balance within the CD dataset, striving for
equilibrium between samples embodying changes and those without changes. To achieve
this, we employ a conditional Generative Adversarial Network (c-GAN) to fabricate new
samples replete with building-related changes. Our data augmentation approach comprises
two pivotal components: the Building Change Detection Image Generator model and the
Buildings Label Creation.

3.2.1. Building Change Detection Image Generator Model

Our model operates within the purview of the conditional GAN (c-GAN), wherein
the architectural framework capitalizes on the building pattern within the input image
as a conditioning factor to generate a fake output image rich in building features. The
model encompasses two integral components: a generator (G) and a discriminator (D) [7].
In our context, the generator (G) undertakes the responsibility of translating a building
label image into a tangible RS image brimming with building structures. Simultaneously,
the discriminator (D) is tasked with distinguishing authentic images from the artificially
generated counterparts.

The model is trained in a supervised manner. The training dataset assumes the form
of corresponding image pairs denoted as (li, ri), where li signifies the building label image
and ri represents the associated authentic remote sensing image. Throughout the training
phase, the generator improves its ability to create more realistic samples to deceive the
discriminator. In parallel, the discriminator is fortified to perceive the subtle nuances that
differentiate authentic images from their fabricated counterparts. This dynamic interplay
between generator and discriminator transpires through the following objective function
designed to measure the degree of authenticity for generated images,

L(G, D) = Arg minGmaxDLc(G, D) + λLL1(G), (1)

where Lc is the commonly used objective function of the c-GAN, defined as:

E(l,r)[log(D(l, r))] +El [log(1− D(l, G(l)))]. (2)
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The variable LL1 embodies the disparity between the generated image and the real image.
This additional loss encourages the generator model to create plausible translations of the
input label image. The formulation of LL1 is expressed as follows:

LL1(G) = E(l,r)[|r− G(l)|]. (3)

The generator model is based on a U-Net architecture, while the discriminator adopts
a patch-based fully convolutional network, as outlined in [7]. Our training approach
couples adversarial learning for both generator and discriminator, aimed at mapping
the input building labels to high-resolution images by optimizing the adversarial loss
function expressed in Equation (1). The adversarial loss function encourages the generator
to produce images that are indistinguishable from real images, thereby ensuring that the
generated images are of high quality and contain realistic building changes. Nonetheless,
we encountered challenges with image quality and training stability, both of which fell
below the desired performance.

To surmount these hurdles and generate superior-quality remote sensing images, we
introduce refinements to this foundational architecture. Specifically, for the generator, we
replace the U-Net with a sequence of SPatially-Adaptive DEnormalization (SPADE) residual
blocks fortified with upsampling layers [37]. Illustrated in Figure 4, the generator takes the
latent vector as input, with each SPADE residual block incorporating the semantic label
of the building to uphold its semantic integrity. This novel architecture yields heightened
performance metrics with a reduced parameter count, achieved through the omission of
downsampling layers. As for the discriminator, we adopt the architecture proposed in the
pix2pixHD model [38], which uses a multiscale discriminator to engender high-resolution
images. The multi-scale discriminator model consists of several discriminator networks
operating at different spatial scales, enabling it to capture both local and global features
of the input images. By using a multi-scale discriminator model, we can ensure that the
generator model produces high-resolution images with building features that are consistent
with the original ones.

Generated
Image 

Latent Vector

Created
Buildings Label

Up-sampling Layer SPADE Residual Block

Figure 4. The architecture of the buildings generator.

To mitigate the training stability, the initial objective function, expressed in Equation (1),
underwent transformation through the adoption of the Hinge loss [39]. Further modifications
encompass the inclusion of feature matching loss and perceptual loss, concepts integral into the
pix2pixHD model [38]. This resultant new loss function is defined as follows:

L(G, D) =minGmaxDLH−GAN(G, D)

+ λFLF(G, D) + λPLP(G, D),
(4)
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where λF and λP denote weight factors that control the significance of each term. To
mirror the original pix2pixHD model [38], both these weights were set at 10. Through
these strategic refinements, we strive to bridge the gap between image quality and training
stability, laying the foundation for a more robust and enhanced model.

3.2.2. Building Label Creation for Change Detection

Building labels are essential for accurately detecting changes in building structures
within remote sensing imagery. By using diverse building masks, we can enhance the
robustness and accuracy of our change detection model. These labels can be used to
generate synthetic building changes, which can be added to the change detection training
data. To generate novel building CD pairs, accompanied by their corresponding labels,
via the previously outlined generation model, it becomes imperative to engender new
building semantic labels or masks. These labels subsequently serve as the annotated CM
for our comprehensive CD dataset. Our change detection dataset comprises pairs of images
captured at distinct moments, denoted as T0 and T1, accompanied by their respective
building CM. Notably, a considerable portion of these CM labels do not encompass building
changes, thus instigating a disparity in the distribution of changed and unchanged images,
as depicted in Figure 3.

In our work, showcased in Figure 5, we introduce building changes to the change
maps that previously lacked such changes. The building label map thus created is then
funneled into the generator to fabricate an image that integrates the presence of buildings.
This ensuing generated image takes its place as a freshly generated image at T1. In this
construct, the image at T0 is selected from the pair of images devoid of changes, while the
generated image occupies the T1 slot. Concurrently, the role of the change label is assumed
by the newly created building label map. This iterative process continues until equilibrium
is established between images manifesting changes and those lacking, which is a critical
stride in fortifying the dataset’s balance.

Original Change
Map

Created Change
Map

Buildings collection

Image at T0 Image at T0 with
pasted buildings

Figure 5. Illustration of building label creation.

The creation of the building label map relies on the copy–paste technique. As il-
lustrated in Figure 5, the process commences with the compilation of diverse building
silhouettes extracted from the original dataset. These cropped building images are sub-
sequently resized to dimensions of (64 × 64), a modification that aligns their geometric
attributes with those of the original dataset (256 × 256). The ensuing step involves embed-
ding their corresponding semantic masks within the fresh CM. The choice of particular
buildings and their spatial positions within the generated change map (CM) depends on
the image assigned for T0, which is a crucial aspect of the process.

To summarize, Algorithm 1 outlines the comprehensive procedure for generating
new CD samples. Initially, we randomly select an image at T0 from the set Duc, which
consists of images without any changes from the original dataset D. Subsequently, we
introduce building masks, chosen from B, into the created label Lcr, aligning them with
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the chosen position in the selected image. This modified label is then input into our
pretrained generator model G-model to produce a newly generated image at T1 with
building changes. The image selected at T0, the generated image at T1, and their respective
created label are subsequently incorporated into the original dataset, augmenting the set
Dc with changed images. This process is repeated until we reach the desired number of
generated samples (N).

Algorithm 1: Building Change Samples Generation
Input: D = {DC, DUC} (original training dataset with changed and unchanged

images); DC =
{(

Tk
c0, Tk

c1, Tk
c

)∣∣∣k = 1 : K
}

(a set of changed images with a

size of K); DUC =
{

Tl
uc0, Tl

uc1, Tl
uc

∣∣∣l = 1 : L
}

(a set of unchanged images

with a size of L where L≫ K for imbalanced dataset); B =
{

bi
∣∣i = 1 : I

}
(a

set of extracted building masks with a size of I); N (the desired number of
images to be generated); G-model (the trained building generator model).

Output: Dg =
{(

Tn
uc0, Tn

g1, Ll
cr

)∣∣∣n = 1 : N
}

(a set of generated changed images
with a size of N); DAug (augmented CD training set).

Initialize Dg ← ϕ; DAug ← D; Ln
cr ← Ln

uc;

for n← 1 to N do
// perform image generation
Tn

uc0 ← select an image at T0 from DUC;
while true do

bi ← select building mask i from B;
h, w← size of bi;
(x, y)← seclect position in Tn

uc0 where to paste the building bi;
Ln

cr(x : x + h, y : y + w)← bi

end
Tn

g1 ← G−model(Ln
cr);

Dg ← Dg ∪
(

Tn
uc0, Tn

g1, Ll
cr

)
;

DAug ← DAug ∪ Dg

end

3.2.3. New Sample Generation for the Change Detection Dataset

Aiming to achieve the desired ratio between changed and unchanged maps, we
judiciously determined the count of image pairs that would incorporate changes in their
change maps. As elaborated in the previous subsections, building masks are incorporated
into the change maps that originally lacked building changes. This step yielded updated
change maps, which subsequently acted as inputs to our pre-trained generator model,
thus generating synthetic RS images at T1. The original image at T0, the corresponding
generated image at T1, and the newly created building CM were added to our CD dataset.
This strategic combination successfully increased the quantity of changed maps, achieving
a balance between the subsets of changed and unchanged images.

3.3. Building Change Detection Model
3.3.1. Adversarial Change Detection Network (Adv-CDNet)

Our approach for building change detection relies on an adversarial training paradigm,
as depicted in Figure 1. The crux of our strategy is to treat change detection as an image-
to-image translation task by translating the combined bi-temporal images from the input
domain to produce a CM in the output. Opting for the Pix2Pix model, which excels
at domain translation, we introduce a customized version of this model to execute the
transformation of two-period images into a change detection map.
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As illustrated in Figure 6, our model consists of two crucial components: the generator
and the discriminator. The generator (Figure 6a) is based on the U-Net architecture, which
features encoder–decoder design and skip connections. These connections align encoder
layers with corresponding decoder layers, ensuring that feature maps of the same dimen-
sions are maintained. The U-Net framework effectively maps fused input images onto the
latent feature space, capturing feature variations. The generator combines shallow and deep
semantic features by harnessing skip connections, enhancing the information encapsulated
within it. In contrast, the discriminator (Figure 6b) adopts a simple patch-based convo-
lutional network form. Armed with either real ground truth change maps or synthetic
change maps generated by the generator, the discriminator evaluates the authenticity of the
presented change maps. It assigns binary values (0 or 1) to differentiate between change
maps produced by the generator and real ground truth. Our objective function remains
consistent with Equation (1). The real images (ri) are replaced by real change maps (ground
truth), and the combined bi-temporal images replace the label image (li). Crucially, the
evaluation of the distance between the produced CM and the ground truth employs a loss
function weighted by λ = 100. Employing the Adam optimizer with a learning rate of
0.0002 and β = 100 facilitates our optimization.
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(b) Discriminator

Figure 6. Building change detection model composed of generator and discriminator networks. The
generator aims to generate a CM and the discriminator examines whether the generated CM is real
or fake.

3.3.2. Channel Attention Module

In our work to emphasize the model’s focus on changed features, we introduced a
channel attention module to the decoder blocks, as illustrated in Figure 6a. This module
harnesses the power of channel connections and channel weight recalibration to refine
intricate features. The recalibrated channel-wise feature responses rely on newly generated
channel weights, fostering a more nuanced representation. Noteworthy is the fact that
channel attention, as elucidated in [40,41], holds immense potential for enhancing the per-
formance of deep convolutional neural networks. This is particularly relevant in the context
of RS change detection DL models, where its efficacy has been demonstrated [26,28,42].

As shown in Figure 7, in alignment with the Channel Self-Attention module intro-
duced by Wang et al. [28], the process starts by the application of Global Average Pool-
ing (GAP) to the input feature maps characterized by their dimensions (Channel (C) ×
Height (H) ×Width (W)). Concretely, GAP computes the mean value for each feature map,
as formulated by:

FGAP =
1

W ∗ H

W

∑
i

H

∑
j

Fin(i, j). (5)
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Subsequently, as articulated in Equation (6), the rest of the calculations encompass a 1 × 1
convolution (conv(1D)), matrix multiplication operations (*), transpose operations (T), and
the employment of two activation functions (Softmax and Sigmoid).

Fout =Sigmoid((So f tmax(conv1D(FGAP)

∗ conv1D(FGAP)) ∗ (conv1D(FGAP))
T)T) ∗ Fin.

(6)
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Figure 7. Channel attention module that can refine the detailed feature.

4. Experiments and Results
4.1. Experimental Setup

The implementation of change detection and image generation models was carried
out using Torch. The CD model was executed on a single Nvidia GeForce RTX 3090 GPU,
which is manufactured by Yunxuan Ltd. from Shanghai, China. In contrast, the image
generation model utilized the power of two Nvidia GeForce RTX 3090 GPUs for increased
processing capability due to its higher complexity compared with the CD model.

4.2. Evaluation

The evaluation of our change detection framework included the utilization of five key
assessment metrics: Overall Accuracy (OA), Intersection over Union (IoU), Precision (Pre),
Recall (Re), and F1-Score (F1).

OA =
TP + TN

N
(7)

IoU =
TP

TP + FN + FP
(8)

Pre =
TP

TP + FP
(9)

Re =
TP

TP + FN
(10)

F1 =
2 Pre Re
Pre + Re

(11)

where TP, FP, TN, FN, and N correspond to the counts of true positives, false positives,
true negatives, false negatives, and the total number of pixels, respectively. These metrics
collectively provided a comprehensive understanding of the framework’s performance.

In the specific context of change detection, a noteworthy precision value signifies
a limited occurrence of false alarms, while a substantial recall value indicates minimal



ISPRS Int. J. Geo-Inf. 2024, 13, 125 14 of 25

instances of missed detections. Simultaneously, the F1-Score and overall accuracy serve as
holistic performance indicators, with higher values indicative of superior performance. The
intersection over Union metric gauges the degree of alignment between the predicted CM
and the Ground Truth. By harnessing this comprehensive suite of metrics, our evaluation
methodology offered a well-rounded perspective on the efficacy and capabilities of our
change detection framework.

4.3. Comparison with the State-of-the-Art Change Detection Methods

To comprehensively assess the performance of our proposed change detection model,
we conducted both quantitative and qualitative comparisons with State-of-the-Art (SOTA)
change detection methods. These methods serve as benchmarks against which the efficacy
of our model can be measured. The following SOTA methods were selected for evaluation:

1. Fully Convolutional Early Fusion (FC-EF) [43]: This method employs image-level
fusion based on the U-Net architecture. The bi-temporal images are concatenated into
a single input for the U-Net model, facilitating holistic feature extraction.

2. Fully Convolutional Siamese Concatenation (FC-Siam-Conc) [43]: In contrast to FC-EF,
FC-Siam-Conc adopts feature-level fusion. It leverages two encoders with shared
weights to extract features from bi-temporal images, concatenating them to the de-
coder at the same level.

3. Fully Convolutional Siamese Difference (FC-Siam-Diff) [43]: This method shares simi-
larities with FC-Siam-Conc, differing primarily in the formation of skip connections.
Instead of simple concatenation, FC-Siam-Diff transports the absolute value of the
difference between bi-temporal features to the decoder.

4. Bitemporal Image Transformer (BIT) [44]: This network captures contextual informa-
tion within the spatial–temporal domain. By leveraging transformer, BIT effectively
models contexts between different temporal images, enhancing its ability to analyze
and interpret complex spatial–temporal relationships.

5. Spatial–Temporal Attention Neural Network (STANet) [9]: STANet represents a
metric-based Siamese FCN approach, enhanced with a spatial–temporal attention
module to extract more discriminative features.

6. Hierarchical Attention Network (HANet) [26]: This model is a discriminative Siamese
network, featuring a hierarchical attention network (HAN) with a lightweight and
efficient self-attention mechanism, which is designed to integrate multiscale features
and refine detailed features.

Analysis of Table 1 reveals our Adv-CDNet boasts a higher parameter count than
the three basic Siamese Networks and BIT, underscoring its ability to learn and represent
complex patterns effectively. Interestingly, when coupled with the attention module, it
exhibits fewer parameters than the intricate STA-Net, showcasing a balance between
complexity and efficiency. Furthermore, our model demonstrates lower FLOPs compared
to HANet and STANet, emphasizing computational efficiency.

Upon reviewing the experimental outcomes detailed in Table 1 for both WHU-CD and
LEVIR-CD datasets, it becomes apparent that our method delivers satisfactory performance
on the LEVIR-CD dataset, even without the attention module. The OA, IoU, Pre, Re,
and F1 were 98.62%, 74.85%, 90.95%, 80.88%, and 85.62%, respectively. Compared to the
three baseline networks (FC-EF, FC-Siam-Conc, and FC-Siam-Diff), our method provided
improvements of 6.99%, 2.83%, and 8.23% in terms of the F1-Score, respectively. These
results can be confirmed through the visual interpretations shown in Figure 8, where we see
limited occurrences of false alarms (FP) and missed detections (FN) in our model’s results
compared to the sub-mentioned networks. The decreased FP and FN explain the improved
precision and recall, respectively, leading to the increase in F1-Score. Similarly, as shown
in Table 1, the test results of our Adv-CDNet on the WHU-CD dataset also outperform
state-of-the-art methods, including FC-EF, FC-Siam-Conc, and FC-Siam-Diff, across various
evaluation metrics such as Overall Accuracy, Intersection over Union, precision, and F1-
Score. These results can be confirmed with the visual interpretation from Figure 8, where
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FC-Siam-Conc and FC-Siam-Diff show a significant amount of occurrence of false positives,
which explains the decrease of their precision compared to our model.

Table 1. Comparative results with other SOTA methods in terms of FLOPS, Parameters (Param),
Overall Accuracy (OA), Intersection over Union (IoU), Precision (Pre), Recall (Re), and F1-Score (F1)
on the LEVIR-CD and WHU-CD test sets. The highest metrics values in each dataset are marked
in bold.

Methods FLOPs Param WHU-CD LEVIR-CD
(G) (M) OA IoU Pre Re F1 OA IoU Pre Re F1

FC-EF 2.29 1.35 95.30 46.12 58.47 68.58 63.12 97.81 64.79 78.16 79.12 78.63
FC-Siam-Conc 2.29 1.54 87.00 40.51 54.00 78.23 63.89 98.33 70.64 87.25 78.77 82.79
FC-Siam-Diff 2.29 1.35 96.77 49.91 60.24 51.53 55.54 97.91 63.11 85.99 70.35 77.39
Adv-CDNet 13.41 6.14 98.20 50.43 77.74 56.22 65.26 98.62 74.85 90.95 80.88 85.62

BIT 4.35 3.55 96.96 57.49 79.58 65.49 71.85 97.81 75.65 88.84 83.05 85.85
STA-Net 13.88 16.92 93.18 56.63 61.83 82.57 70.71 95.92 75.01 77.79 95.56 84.10
HANet 14.07 3.03 97.35 58.34 82.14 62.96 71.28 98.63 75.85 87.45 85.12 86.27

Adv-CDNet + Attention 13.41 6.80 98.53 59.83 84.21 63.02 72.10 98.67 76.10 90.54 82.92 86.56

Image at T0 Image at T1 Ground Truth FC-EF FC-Siam-Conc FC-Siam-Diff STA-Net HANet Adv-CDNet Adv-CDNet+Att

WHU-CD

BIT

LEVIR-CD

Figure 8. Comparative visualization of different methods on the LEVIR-CD and WHU-CD test sets.
For easier comparison, some of the relevant detection errors have been marked with red circles for
false positives (FP) and blue circles for false negatives (FN).

The main reason for these results is related to the fact that most of these sub-mentioned
SOTA methods use a Siamese network, which is a double-stream framework that generates
change maps based on feature differences between two images. Therefore, these methods
are highly dependent on high contrast between the two images, in contrast to our model,
which is a single stream framework that can map directly the two input images into a
building change map. This approach leads to more efficient feature extraction and change
detection, as it eliminates the need for separate processing and alignment of the two images
used in other methods. Moreover, the generator part of the Adv-CDNet utilized U-Net
architecture to generate a change map from input images and skip connection to fuse
shallow and deep feature representations. These allow the proposed model to be able to
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recognize complex features that are difficult to extract using the aforementioned methods.
This is especially helpful in recognizing changes in some complicated scenarios. However,
when we compare its performance for the two datasets (LEVIR-CD and WHU-CD), a
notable discrepancy emerges. Specifically, the F1-Score exhibits a substantial 20% difference
between the two datasets, underscoring the adverse impact of class imbalance in WHU-CD
on the model training. As illustrated in Figure 8, our model exhibits superior performance
on LEVIR-CD, with more effective detection of building changes compared to WHU-CD.
Especially in cases of very subtle changes, the model struggles to detect building alterations
in WHU-CD.

Including the attention module in our Adv-CDNet has shown improvements for
LEVIR-CD in the OA, IoU, Re, and F1, as shown at the bottom of Table 1. We can observe
that our model outperformed the BIT network in terms of OA, IoU, and F1. Moreover,
it also outperformed STA-Net, which uses an attention mechanism, with 2.75%, 1.09%,
and 2.46% in terms of OA, IoU, and F1, respectively. Meanwhile, there was a trade-off in
precision and recall where our change detection model provided a 12.75% improvement in
precision, while STA-Net outpaced our network by 12.64%. We can also note the similar
qualitative and quantitative performance between our Adv-CDNet with attention and
the HANet model in terms of OA, IoU, and F1.This similarity is likely because both
models incorporated the same attention mechanism. Similarly, the incorporation of an
attention module into our model for WHU-CD training has yielded significant performance
enhancements. We observe significant improvements in IoU (9.4%), precision (6.47%),
recall (6.8%), and F1-Score (6.84%). These improvements are very high compared to those
achieved on the LEVIR-CD dataset, where the gains are 1.25% for IoU, 2.02% for recall,
and 0.94% for F1-Score. This highlights the substantial influence of the attention module,
particularly when dealing with severely imbalanced datasets such as WHU-CD in our case.

Notably, the introduction of the attention module amplifies its impact on WHU-
CD more than LEVIR-CD, underscoring its efficacy in addressing dataset imbalances, as
seen in this challenging dataset. The enhanced performance observed with the attention
module stems from its ability to establish relationships among individual channels and
recalibrate feature responses on a per-channel basis. This functionality enables the model
to concentrate its training efforts on more pertinent features, fostering improved deep
representations. Essentially, it facilitates the creation of channel connections and the
recalibration of channel-wise feature responses. In practical terms, this empowers the
network to boost performance by amplifying the response to semantic changes while
constraining the impact of non-changes.

4.4. Data Augmentation

In this section, we examine our generation model’s performance through two key
aspects: visual evaluation of the generated images and their impact when integrated into
the original change-detection dataset for training our Adv-CDNet. Initially, we employ
visual interpretation to compare outcomes produced by our generator model with those
from the copy–paste method. Subsequently, we delve into assessing the qualitative results
stemming from training our model on augmented datasets utilizing both our augmentation
method and the conventional approach. The detailed findings are presented in Figure 9
and Table 2.

As shown in Figure 9, our findings reveal a stark contrast between the quality of
generated images produced by our generator compared to those generated through the
copy–paste method [16] for both WHU and LEVIR datasets. Notably, images generated
using our model exhibit a striking resemblance to reality, complete with intricate details
such as the inclusion of shadows on buildings. In contrast, the copy–paste method fails
to account for the surrounding environment, resulting in buildings appearing detached
and unnatural.
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

WHU-CD LEVIR-CD

Figure 9. Comparative visualizations of WHU-CD and LEVIR-CD image generation. (a) Image at T0,
(b) Original image at T1, (c) Created building label, (d) Created image at T1 using Copy-Paste, and
(e) Generated image at T1 using our building generator.

Furthermore, our generator showcases its versatility by extending its capability to
create realistic representations of roads and trees surrounding the buildings, enhancing the
overall contextual fidelity of the generated scenes. It is worth noting that the performance
of our model can be further improved by expanding the training dataset to include a larger
number of images and by training for an extended number of epochs. These refinements
hold the potential to elevate the model’s ability to capture even finer nuances of the urban
environment in generated imagery.

Table 2. Assessing model performance on WHU-CD and LEVIR-CD: our data augmentation strategy
vs. traditional methods. The highest classification accuracy is marked in bold.

Methods WHU-CD LEVIR-CD
OA IoU Pre Re F1 OA IoU Pre Re F1

Adv-CDNet
without data augmentation 98.20 50.43 77.74 56.22 65.26 98.62 74.85 90.95 80.88 85.62

Adv-CDNet
with traditional augmentation 98.23 53.36 84.05 59.37 69.58 98.11 74.91 89.98 81.63 85.60

Adv-CDNet
with our augmentation 98.61 71.87 85.55 78.29 81.76 98.64 75.24 90.24 82.75 86.33

Table 2 presents a comprehensive evaluation of our Adv-CDNet model’s performance
across three distinct scenarios. First, we examined its performance without any data aug-
mentation, meaning the model was trained on the original datasets. Second, we applied
traditional data augmentation techniques, including copy–paste [16] rotation, reflection,
and color saturation [11] to increase the number of changed images and create balanced
datasets. Finally, we assessed its performance using our proprietary data augmentation
approach for balancing the original data. Notably, both data augmentation approaches im-
proved model performance on WHU-CD. However, our method demonstrated substantial
superiority, with improvements of 21.44% in IoU, 7.81% in Pre, 22.67% in Re, and 16.50% in
F1 compared to just 2.93%, 6.31%, 3.15%, and 4.32% with traditional methods, respectively.
These results highlight the remarkable efficacy of our data augmentation technique, which
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has a more pronounced positive impact on change detection model performance compared
to conventional methods. In contrast, data augmentation resulted in a lower performance
improvement of the model when trained on the augmented LEVIR-CD dataset compared to
WHU-CD. This discrepancy is due to the difference in the original distribution of changed
and unchanged samples in both datasets. Specifically, only 25% of change samples are
present in WHU-CD compared to 44.6% in LEVIR-CD. Consequently, the number of change
samples in LEVIR-CD was not augmented as dramatically as in WHU-CD, thereby ex-
plaining the greater impact of data augmentation on model performance when trained on
WHU-CD compared to LEVIR-CD.

To assess the impact of our data augmentation method on Deep-Learning (DL) models
trained on imbalanced and balanced datasets, we conducted experiments using State-of-
the-Art (SOTA) methods such as BIT, STA-Net, and HANet alongside our ADV-CDNet
with attention. Each model was trained with and without data augmentation. The results
from Table 3 demonstrate performance enhancements across all models when trained on
augmented datasets for both WHU-CD and LEVIR-CD. Notably, the improvements are
more pronounced in WHU-CD compared to LEVIR-CD. For instance, in terms of F1-Score,
the enhancements for WHU-CD are substantial, with increases of approximately 8.67%,
9.63%, 10.95%, and 11.17% for BIT, STA-Net, HANet, and ADV-CDNet with attention,
respectively. In contrast, the improvements for LEVIR-CD are more modest, with gains of
approximately 0.65%, 2.05%, 0.29%, and 0.15% for the same models, respectively. These
findings underscore the significant impact of data augmentation on model performance,
particularly when dealing with highly imbalanced original datasets.

Table 3. Assessing the Impact of the Data Augmentation (DA) method on the performance of BIT,
STA-Net, HANet, and our Adv-CDNet with attention when trained with and without DA.

Methods WHU-CD LEVIR-CD
OA IoU Pre Re F1 OA IoU Pre Re F1

BIT 96.96 57.49 79.58 65.49 71.85 97.81 75.65 88.84 83.05 85.85
BIT with DA 98.42 70.20 82.35 78.76 80.52 98.22 76.35 89.94 83.33 86.50

STA-Net 93.18 56.63 61.83 82.57 70.71 95.92 75.01 77.79 95.56 84.10
STA-Net with DA 96.11 69.92 75.98 85.20 80.33 96.56 76.11 78.53 95.41 86.15

HANet 97.35 58.34 82.14 62.96 71.28 98.63 75.85 87.45 85.12 86.27
HANet with DA 98.63 71.72 83.65 80.86 82.23 98.65 76.37 90.54 82.92 86.56

Adv-CDNet + Attention 98.53 59.83 84.21 63.02 72.10 98.67 76.10 90.54 82.92 86.56
Adv-CDNet + Attention with DA 98.99 72.95 86.94 79.89 83.27 98.70 76.74 91.12 82.71 86.71

To further elucidate the influence of dataset composition on the change detection
model, we conducted an extended series of experiments, systematically varying the ratio of
changed to unchanged images within our datasets. As shown in Table 4, initially WHU-CD
comprised 25% changed and 75% unchanged images, while LEVIR-CD contained 44.4%
changed and 55.6% unchanged images. We incrementally augmented the proportion of
changed images using our data augmentation approach to create an equivalent number to
the unchanged images. Our findings revealed noticeable enhancements in model perfor-
mance with both configurations, with and without the attention module, for both datasets.
Continuing this trend, we progressively adjusted the datasets until reaching 75% changed
images and 25% unchanged images. Interestingly, this particular configuration exhibited
significant performance boosts for WHU-CD in both model variants. Notably, the model
performed excellently without the attention module, demonstrating that a well-prepared
dataset can render this extra module unnecessary. In contrast, this configuration did not
improve model performance for LEVIR-CD compared to the previous one. However, when
we explored using only changed images and deleting all unchanged ones, we observed
stark declines in model performance compared to the prior configuration for both datasets.
This underscores the importance of including unchanged images during training.
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Table 4. Effects of changed image count vs. unchanged images in WHU-CD and LEVIR-CD datasets
on our model performance.

Dataset Changed/Unchanged Maps Method OA IoU Pre Re F1

WHU-CD

25%/75% (original data) Adv-CDNet 98.20 50.43 77.74 56.22 65.26
Adv-CDNet + Attention 98.53 59.83 84.21 63.02 72.10

50%/50% Adv-CDNet 98.61 71.87 85.55 78.29 81.76
Adv-CDNet + Attention 98.99 72.95 86.94 79.89 83.27

75%/25% Adv-CDNet 99.35 90.53 91.21 99.19 95.03
Adv-CDNet + Attention 99.17 88.03 90.3 97.22 93.63

100%/0% Adv-CDNet 98.84 84.14 85.21 98.53 91.34
Adv-CDNet + Attention 98.95 85.49 86.18 99.07 92.17

LEVIR-CD

44.4%/55.6% (original data) Adv-CDNet 98.62 74.85 90.95 80.88 85.62
Adv-CDNet + Attention 98.67 76.10 90.54 82.92 86.56

50%/50% Adv-CDNet 98.64 75.24 90.24 82.75 86.33
Adv-CDNet + Attention 98.70 76.74 91.12 82.71 86.71

75%/25% Adv-CDNet 98.59 74.56 89.95 81.33 85.42
Adv-CDNet + Attention 98.48 73.62 86.24 83.41 84.80

100%/0% Adv-CDNet 98.02 67.44 80.33 80.78 80.56
Adv-CDNet + Attention 98.08 68.53 80.38 82.30 81.33

In summary, our experiments underscore the significance of specific image ratios for
optimal performance in change detection. For WHU-CD, the optimal configuration involves
75% changed and 25% unchanged images, while for LEVIR-CD a balanced distribution of
50% changed and 50% unchanged images yields the best results. These ratios are crucial
in maximizing the effectiveness of our change detection model. These findings can be
attributed to the characteristics of the original datasets. WHU-CD contains a relatively
small number of changed buildings (3281) compared to the more extensive set in LEVIR-CD
(31,000). Furthermore, the change maps in LEVIR-CD exhibit a more uniform distribution
of building changes, in contrast to WHU-CD, where a majority of change maps depict
smaller alterations. This discrepancy underscores the necessity for an augmented dataset
when training the change detection model on WHU-CD, emphasizing the importance of
introducing an excess of building change samples to capture the nuanced variations present
in the data.

Figure 10 provides valuable insights into model performance for LEVIR and WHU
CD across three illustrative examples. In the first two WHU-CD instances, we observe
decreased false positives (FP) and false negatives (FN) when increasing the number of
changed images in the dataset. This positively influences the model’s precision and recall,
respectively. The inclusion of an attention mechanism demonstrates effectiveness with the
original dataset composition. However, the second example indicates that the attention
mechanism has minimal effect when an adequate number of changed images are available.
For LEVIR-CD, the first two examples show that the best change detection result occurs
when the model is trained with an attention mechanism on balanced data. Moving to
the third example, for both datasets it becomes evident that the improvement in model
performance due to an increased number of changed images reaches a limit. This is
characterized by emerging false positive pixels, subsequently reducing precision and model
performances, as discussed in Table 4. Overall, these findings underscore the dynamic
relationships between dataset composition, attention mechanisms, and model performance.
They provide nuanced insights into predicted image interpretation.



ISPRS Int. J. Geo-Inf. 2024, 13, 125 20 of 25

Image at T0 Image at T1

Adv-CDNet

Adv-CDNet
+ Attention

Ground Truth

25% / 75% 50% / 50% 75% / 25% 100% / 0%

Image at T0 Image at T1 Ground Truth

25% / 75% 50% / 50% 75% / 25% 100% / 0%

Image at T0 Image at T1 Ground Truth

25% / 75% 50% / 50% 75% / 25% 100% / 0%
Example (1) Example (2) Example (3)

(a) WHU-CD

Image at T0 Image at T1

Adv-CDNet

Adv-CDNet
+ Attention

Ground Truth

25% / 75% 50% / 50% 75% / 25% 100% / 0%

Image at T0 Image at T1 Ground Truth

100% / 0%50% / 50% 75% / 25%100% / 0%

Image at T0 Image at T1 Ground Truth

25% / 75% 50% / 50% 75% / 25% 100% / 0%
Example (1) Example (2) Example (3)

(b) LEVIR-CD

Figure 10. Qualitative results of the impact of increasing the number of changed samples in the
training dataset on the prformance of Adv-CDNet with and without attention. The results of testing
on the WHU-CD and LEVIR-CD test sets are illustrated in three examples for each data. For easier
comparison, some of the relevant detection errors have been marked with red circles for false positives
(FP) and blue circles for false negatives (FN).

5. Discussion

The Adv-CDNet has demonstrated competitive performance in detecting changes
in remote sensing images. However, it faces challenges in detecting very subtle changes,
particularly in building alterations, when dealing with highly imbalanced data such as the
WHU-CD dataset, as discussed in the previous section. To enhance change detection in such
data, the incorporation of an attention module has been proposed. The attention module is
designed to selectively focus on the most informative features by assigning higher weights
to the features that are most relevant to the change detection task. This is achieved through
the use of channel connections and channel weight recalibration, which refine intricate
features and are then used to modulate the generator’s output. By selectively focusing
on the most informative features, the attention module helps the generator produce more
accurate change maps, even in cases of highly imbalanced data.

In addition to the attention module, another approach to enhance the performance
of Adv-CDNet in imbalanced data is the creation of extensive labeled datasets and the
generation of remote sensing images to augment the change detection dataset. Labeled
datasets play a pivotal role in supervised learning tasks, enabling models to learn patterns
and make accurate predictions. In the context of building CD, having a diverse and exten-
sive labeled dataset is essential for training models to detect building changes accurately
across various environmental conditions. Moreover, the use of generator models based on
GAN for data augmentation has significantly enhanced the performance of Adv-CDNet
by generating synthetic data samples that can supplement the original dataset. GANs are
particularly useful for addressing data scarcity issues and improving model generalization
by creating additional training examples. By leveraging GANs for data augmentation, the
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robustness and accuracy of CD model has been enhanced, especially in scenarios where the
dataset is highly imbalanced.

The obtained findings illuminate a delicate trade-off between leveraging attention
modules to optimize model performance and enhancing dataset effectiveness through data
augmentation techniques. Each method carries its distinct advantages and limitations.
employing attention modules to enhance change detection model performance emerges as
particularly advantageous when dealing with imbalanced datasets. In these instances, the
attention mechanism can significantly bolster the model’s ability to discern changes. How-
ever, its impact becomes marginal when the dataset achieves a balanced state, primarily
adding complexity and latency without yielding substantial performance improvements
compared to non-attention models. This nuanced understanding underscores the signif-
icance of dataset balance and the judicious application of attention mechanisms in the
context of change detection models.

On the other hand, data augmentation, particularly through GANs, proves invaluable
in augmenting the dataset with effective training samples. By introducing diverse building
changes to images, this technique enhances the diversity of the dataset, augmenting both
its quality and quantity within the realm of change detection. These samples closely align
with real-world scenarios, facilitating training on a higher number of high-quality images.
Furthermore, the training loss plot of the change detection model in Figure 11 shows
that the use of our data augmentation method led to faster model stability compared to
other approaches for addressing data imbalance. Specifically, Adv-CDNet with our data
augmentation strategy yielded stability in fewer epochs than using an attention module
or traditional augmentation techniques. This more rapid stabilization also helps address
overfitting issues. However, it is essential to note that GAN-based augmentation requires
its own set of training samples to fine-tune the generative model, a task facilitated in our
WHU-CD dataset through building labels in conjunction with before and after images.
Nonetheless, datasets lacking such supplementary information may necessitate a dedicated
effort to construct an appropriate training dataset for the generative model. For example,
in the case of LEVIR-CD, a set of images with their building label is meticulously extracted
from the primary CD dataset. Moreover, the generator model needs further improvement
to generate more realistic RS images.

Figure 11. Training loss of different training configurations of Adv-CDNet model on WHU-CD dataset.
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6. Conclusions

This paper proposed a data augmentation strategy and attention mechanism to en-
hance the performance of change detection-based adversarial learning frameworks when
training on imbalanced data. The proposed data augmentation strategy aims to synthesize
effective building CD samples to mitigate the data imbalance. This approach relies on a
GAN-based technique to generate realistic building images, guided by created building
label inputs, facilitating the generation of diverse images containing building changes. To
evaluate the effectiveness of the proposed data augmentation method, a change detection
model rooted in adversarial learning called Adv-CDNet has been proposed. This model
is primarily based on the Pix2Pix architecture. Furthermore, we enhanced this model by
incorporating a channel attention module to amplify its performance. The combination of
Adv-CDNet with the attention module produced exceptional results, outperforming several
state-of-the-art CD methods on the imbalanced WHU-CD and LEVIR-CD datasets. Our
rigorous experimentation has underscored the efficacy of our proposed data augmentation
methodology, highlighting its potential in addressing class imbalance.

Throughout this study, we have demonstrated the effectiveness of leveraging Gen-
erative Adversarial Networks for both generating new samples and detecting changes,
by reconfiguring the baseline model to accommodate these dual tasks. However, it is
crucial to acknowledge the existing dataset’s limitation, as our labels are predominantly
based on building object detection. Future extensions could explore the inclusion of other
urban objects for a more comprehensive approach. Moreover, the generated images still
require improvements in terms of both the quality of the generated building objects and
the surrounding environment. Further research avenues could focus on enhancing the gen-
erator model’s architecture to attain higher-quality synthetic data with less computational
complexity. Lastly, while our change detection model surpasses current state-of-the-art
methods, it is acknowledged that room for improvement remains. In this regard, exploring
alternative loss functions and spectral–spatial attention mechanisms beyond the baseline
Pix2Pix model deserves investigation in future endeavors.
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Adv-CDNet Adversarial Change Detection Network
c-GAN conditional Generative Adversarial Network
CD Change Detection
CM Change Map
CNN Convolutional Neural Network
DL Deep Learning
GAN Generative Adversarial Network
LEVIR-CD LEVIR Building Change Detection Dataset
RS Remote Sensing
RSCD Remote Sensing Change Detection
VHR Very High-Resolution
WHU-CD WHU Building Change Detection Dataset
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