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Abstract: Drought stress is one of the major causes of crop losses. The WRKY families play important
roles in the regulation of many plant processes, including drought stress response. However, the
function of individual WRKY genes in plants is still under investigation. Here, we identified a new
member of the WRKY families, OsWRKY97, and analyzed its role in stress resistance by using a
series of transgenic plant lines. OsWRKY97 positively regulates drought tolerance in rice. OsWRKY97
was expressed in all examined tissues and could be induced by various abiotic stresses and abscisic
acid (ABA). OsWRKY97-GFP was localized to the nucleus. Various abiotic stress-related cis-acting
elements were observed in the promoters of OsWRKY97. The results of OsWRKY97-overexpressing
plant analyses revealed that OsWRKY97 plays a positive role in drought stress tolerance. In addition,
physiological analyses revealed that OsWRKY97 improves drought stress tolerance by improving
the osmotic adjustment ability, oxidative stress tolerance, and water retention capacity of the plant.
Furthermore, OsWRKY97-overexpressing plants also showed higher sensitivity to exogenous ABA
compared with that of wild-type rice (WT). Overexpression of OsWRKY97 also affected the transcript
levels of ABA-responsive genes and the accumulation of ABA. These results indicate that OsWRKY97
plays a crucial role in the response to drought stress and may possess high potential value in
improving drought tolerance in rice.

Keywords: drought tolerance; ABA; OsWRKY97; antioxidation; Oryza sativa L.

1. Introduction

Drought is one of the major stresses that seriously affects plant growth and reduces
yield [1]. Plants have evolved various strategies to cope with drought stress for survival
and development. The response process of plants to drought stress includes stress signal
perception, signal transduction and amplification, and adaptation at morphological, physi-
ological, and molecular levels [2]. In these processes, many diverse stress-related proteins
are expressed that enhance drought resistance via outputs such as osmotic adjustment,
stomatal closure, and reactive oxygen species (ROS) scavenging [3].

ABA has been characterized extensively as an important plant hormone, which re-
sponds to drought stress by regulating stomatal closure and transpiration rate [4,5]. It has
been reported that most water stress-inducing genes respond to treatment with exogenous
ABA and relate to ABA signal transduction pathways [6]. ABA-mediated stomatal closure
is usually accompanied by the production of H2O2 [7]. It was reported that H2O2 partici-
pated in ABA signal transduction in plant guard cells and triggered stomatal closure by

Plants 2023, 12, 3338. https://doi.org/10.3390/plants12183338 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12183338
https://doi.org/10.3390/plants12183338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-4921-1215
https://orcid.org/0000-0001-5549-2637
https://doi.org/10.3390/plants12183338
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12183338?type=check_update&version=1


Plants 2023, 12, 3338 2 of 15

activating Ca2+ channels on cell membranes [8,9]. It has also been reported that H2O2 can
induce stomatal closure, which was independent of the ABA pathway [10]. However, under
stress conditions, the content of H2O2 increased sharply in plant cells, which posed a threat
to plants, but it is also thought that ROS is a signal for activation of defense pathways [11].

The WRKY protein has a highly conserved WRKY domain, containing an almost
unchanged WRKYGQK sequence at the N-terminal, followed by a Cx4–5Cx22–23 HxH or
Cx7Cx23 HxC zinc-finger motif [12]. Based on the number of WRKY domains and the
types of zinc finger motifs, WRKY proteins can be divided into groups I-III. Group I WRKY
contains two WRKY domains, Group II WRKY contains a WRKY domain, and the I-II
groups all contain a Cx4–5Cx22–23 HxH zinc-finger motif. Group III WRKY contains a WRKY
domain and a Cx7Cx23 HxC zinc-finger motif [13].

At present, studies have revealed the involvement of the WRKY families in plant
responses to abiotic stresses. For example, overexpression of TaWRKY2 reduced the wa-
ter loss rate of transgenic wheat and enhanced its drought resistance [14]. Furthermore,
many transcription factors have been reported to be involved in ABA-mediated signaling
pathways of plant responses to drought stress [15]. CmWRKY10 is located in the nucleus,
and overexpression of CmWRKY10 enhanced chrysanthemum tolerance to drought stress
through the ABA-signaling pathway [16]. OsWRKY45 plays an important role in drought
tolerance and ABA signal regulation in rice [17]. AREB/ABF transcription factor needs post-
translational modification to activate. Some studies show that AREB requires ABA for full
activation, and its activity is regulated by ABA-dependent multi-site phosphorylation of the
conserved domains. Further analysis shows that SnRK2s play a key role in ABA-dependent
phosphorylation of AREB/ABF [18]. The default state of SnRK2 kinase is the active state of
autophosphorylation. PP2Cs make SnRK2 kinase inactive by dephosphorylation [19]. In
the presence of ABA, the PYR/PYL/RCARs can disrupt the interaction between the SnRK2s
and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and
resulting in the activation of the SnRK2 kinases [20]. It has been reported that WRKY tran-
scription factors regulate the expression of many genes related to ABA-induced physiology
and development by binding the w-box sequence in the promoters of ABFs/AREBs [21].
AtWRKY63 mutants impair the sensitivity of ABA-mediated stomatal closure and affect
its drought tolerance [22]. It is reported that WRKY18, WRKY60, and WRKY40 play an
important role in the complex mechanism of ABA signal transduction. It is found that
WRKY40 and WRKY60 transcription factors inhibit ABI4 gene expression. In addition, their
mutual antagonism not only occurs between WRKY40 and WRKY60, but also between
WRKY18 and WRKY40 to balance the repressive functions on the ABI4 gene. However, for
the ABI5 gene, WRKY60, WRKY18, and WRKY40 inhibit ABI5 independently, but WRKY60
also antagonizes the inhibition of WRKY18 and WRKY18-WRKY40 heterodimer to balance
the inhibition of ABI5 gene [23].

The corresponding sequence of OsWRKY97 (LOC_Os12g02420.1) can be downloaded
from the Rice Genome Annotation Project (RGAP) (http://rice.uga.edu/, accessed on 10
July 2019) and OsWRKY97 belongs to the WRKY families. In this present research, we found
that the expression level of OsWRKY97 in wide-type rice was significantly improved under
abiotic stress. And OsWRKY97-overexpressing plant analyses indicate that OsWRKY97
positively regulates abiotic stress tolerance and ABA sensitivity. These findings contribute
to our understanding of OsWRKY97-mediated drought responses and ABA signaling, and
has potential application in genetically modified crops with improved drought tolerance.

2. Results
2.1. Expression Patterns of OsWRKY97

We examined the expression of OsWRKY97 in 15 different tissues by Real-Time Quanti-
tative Polymerase Chain Reaction (qRT-PCR), so that the expression pattern of OsWRKY97
in different tissues at different stages of rice was detected. OsWRKY97 was expressed
in various tissues of rice at different stages (Figure S1). We investigated the expression
patterns of OsWRKY97 seedlings under various abiotic stresses by qRT-PCR. These results

http://rice.uga.edu/


Plants 2023, 12, 3338 3 of 15

suggested that OsWRKY97 may be involved in responses to various stresses (Figure 1). For
drought treatment, the transcription level of OsWRKY97 gradually increased until reaching
a maximum at 8 h (Figure 1A). The transcription level of OsWRKY97 reached its maximum
after treatment with 50 µM ABA for 12 h, and similar results were obtained after treatment
with 250 mM NaCl (Figure 1B,C). The expression of OsWRKY97 increased significantly in
12 h to 24 h under cold stress (Figure 1D). However, the transcription level of OsWRKY97
under high-temperature treatment was not significantly induced (Figure 1E).
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2.2. Phylogenetic Analysis of OsWRKY97 

Figure 1. Expression analysis of the OsWRKY97 gene in rice. (A–E) OsWRKY97 expression analysis
(qRT-PCR) in leaves of 2-week-old rice seedlings subjected to 20% (w/v) PEG6000, 50 µM ABA,
250 mM NaCl, cold (4 ◦C), and heat (42 ◦C) treatments, respectively. OsActin gene was used as
internal controls. The data are represented as the mean ± SD (n = 3), with three biological experiments.
Asterisks indicates a significant difference from the value at 0 h (t-test, * p < 0.05, ** p < 0.01).

2.2. Phylogenetic Analysis of OsWRKY97

We searched the homologous amino acid sequence of OsWRKY97 by using the Na-
tional Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/, ac-
cessed on 10 July 2019) BLASTp online tool. The phylogenetic tree of OsWRKY97 protein
sequences and other similar sequences was constructed using the N-J method in MEGA-
X software. The results showed that OsWRKY97 is closer to TaWRKY13, followed by
ZmWRKY46 (Figure 2). However, the identity of OsWRKY97 with other orthologs was
lower than that with TaWRKY13; this shows that OsWRKY97 has a wide range of changes
with other members.

http://www.ncbi.nlm.nih.gov/
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2.3. Subcellular Localization of OsWRKY97

To determine the subcellular localization of OsWRKY97, the full-length cDNA se-
quence of OsWRKY97 was fused to green fluorescent protein (GFP) and driven by CaMV35S.
The fusion protein and GFP control were transiently expressed in tobacco cells via Agrobac-
terium infiltration, and meanwhile, the carrier of the red fluorescent protein (RFP) NLS-RFP
connected with the nuclear localization signal is used as the nuclear localization con-
trol. The fluorescence signal of the fusion protein was located in the nucleus (Figure 3A),
while the fluorescence signal of the GFP control was located in the nucleus and cytoplasm
(Figure 3B). OsWRKY97-GFP fusion protein and NLS-RFP were co-located in the nucleus,
indicating that OsWRKY97 is a nuclear protein.
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Figure 3. Subcellular localization of OsWRKY97-GFP. OsWRKY97 driven by the CaMV35S promoter
was transiently expressed in tobacco leaf epidermal cells and viewed with confocal microscopy.
Nuclear and cytosolic localization of GFP protein was shown as a control. (A) 35S: OsWRKY97-GFP;
(B) 35S: GFP. Bar = 50 µm.
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2.4. Analysis of OsWRKY97 Promoter Domain

The promoter region contains many cis-acting elements related to stress response. In
order to further understand the regulatory mechanism of OsWRKY97, we analyzed the
promoter region upstream of OsWRKY97 ATG initiation codon. The results showed that
the promoter region contained the W-box elements, and MYB and MYC binding sequences.
In addition, gibberellin-responsive elements (GAREs) and SA-responsive element (W-Box)
were identified (Table 1).

Table 1. Putative cis-elements in the OsWRKY97 promoter.

Elements Sequence Function

MYB WAACCA/YAACKG/CTAACCA/CNGTTR/AACGG/
TAACAAA/TAACAAA/MACCWAMC/CCWACC/GGATA ABA and drought-responsive elements

CGTCA-motif CGTCA Involved the MeJA-responsiveness

MYC CATGTG/CANNTG ABA and drought-responsive elements

GARE TAACAA GA-responsive element

W-Box TTTGACY/TTGAC/CTGACY/TGACY SA-responsive element

TC-rich repeats GTTTTCTTAC involved in defense and
stress-responsiveness

TCA-element CCATCTTTTT involved in SA-responsiveness

2.5. Overexpression of OsWRKY97 in Rice Improved Osmotic Stress Tolerance at the Germination
and Post-Germination Stages

In this study, we found that OsWRKY97 was strongly induced by osmotic stress
(Figure 1A). To further verify whether OsWRKY97 was involved in regulating the sensitivity
of rice to stress, we constructed an OsWRKY97 overexpression vector and transferred it
into wild-type rice. The expression level of OsWRKY97 in overexpressed plants (OE)
was analyzed by qRT-PCR. The results showed that the expression of OsWRKY97 was
significantly enhanced in transgenic lines (Figure 4A). The screened T2 transgenic plants
all showed significant response to drought stress, but the OE-1 and OE-23 lines showed the
most significant performance. Therefore, these two independent transgenic rice lines, OE-1
and OE-23, were selected for future testing. Under normal conditions, the germination
rates of WT and overexpression lines were not significantly different. However, after
5 days of absorption under osmotic stress (20% (w/v) PEG6000), the germination rate of
overexpressed lines OE-1 and OE-23 (76% and 80%, respectively) were higher than that of
WT (50%) (Figure 4B,C). To learn about the sensitivity of overexpression lines to osmotic
stress at the post-germination stage, seedings of WT and overexpression lines that were
growing under normal conditions for 4 days were selected and transferred to the nutrient
solution under normal and osmotic stress conditions. After 12 days, each material was
photographed, and its plant height was measured. Under normal conditions, the seedlings
of WT and overexpressing lines were similar in growth. Under osmotic stress, the plant
height of WT seedlings was 8.6 cm, while the plant height of overexpression seeding OE-1
was 10.8 cm, and that of OE-23 was 10.6 cm (Figure 4D,E). These results showed that
overexpression of OsWRKY97 in rice did not affect seed germination and seedling growth
under normal growth conditions, but significantly attenuated the inhibitory effects on seed
germination and seedling under osmotic stress induced by 20% (w/v) PEG6000.
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Figure 4. Phenotype of OsWRKY97-overexpressing plants under osmotic stress. (A) Two independent
transgenic lines (OE-1, OE-23) of OsWRKY97 were verified by qRT-PCR. OsActin was analyzed as
an internal control. Data were means ± SD with at least three biological replicates. Asterisks
represent statistically significant differences between WT and OsWRKY97 overexpression lines (t-test,
** p < 0.01). The growth performance (B) and germination rate (C) of OsWRKY97 overexpression
lines and wild-type at 5 days after germination in nutrient solution under normal and osmotic stress
conditions. The data are represented as the mean ± SD with at least three biological replicates,
and every replicate contains 20 individual plants. The growth phenotype (D) and plant height ©
of overexpression lines and WT, which were growing under normal conditions for 4 days, were
transferred to nutrient solution under normal and osmotic stress conditions for 12 days. (E) Data
are shown as the mean ± SD (n = 4) with four biological replicates, and every replicate contains
40 individual plants. The asterisk represents the statistically significant difference between the WT
and OsWRKY97 overexpression lines under osmotic stress (t-test, ** p < 0.01).
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2.6. Overexpression of OsWRKY97 in Rice Enhanced Drought Stress Tolerance

To further validate the biological function of OsWRKY97, we tested the drought stress
tolerance of OsWRKY97 overexpression lines by water deficit. OsWRKY97-overexpressing
lines and WT seedlings with similar vigor were sown in the same pots, watering was
stopped until the leaves curled, and then resumed. Growth conditions were similar for all
plants before stress was applied. After drought treatment, WT plants showed more severe
leaf curling than OsWRKY97-overexpressing plants. After re-watering, the survival rate
of overexpressed plant OE-1 was 53%, and that of OE-23 was 55%; however, the survival
rate of WT was only 14–16% (Figure 5A,B). These results indicated that overexpression
of OsWRKY97 enhances the drought tolerance of rice. The relative water loss rate of
detached leaves is an important characteristic reflecting drought tolerance [24]. Leaves of
2-week-old transgenic plants and WT seedlings were removed and exposed to water-free
air for dehydration. Compared with WT, the leaf water loss of overexpression lines was
significantly slower (Figure 5C), which means that OsWRKY97 played an active role in
improving the water retention capacity of plants under dehydration conditions.
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Figure 5. Drought stress analysis of wild-type plants and transgenic plants with OsWRKY97.
(A) Performance of 2-week-old seedlings from OsWRKY97 transgenic and wild-type plants sub-
jected to drought stress without water for 15 days and then recovered for 3 days. The experiment
contained three biological replicates. (B) Survival rates of transgenic and WT plants under drought
stress. Values represent the mean ± SD (n = 3) from three independent biological experiments, and
every replicate contains 12 individual plants. Statistically significant differences between WT and
OsWRKY97 overexpression lines were indicated by asterisks (t-test, ** p < 0.01). (C) Rate of water loss
by detached leaves from control and transgenic plants. It is expressed as percentage of initial fresh
weight. Values are the mean ± SD (n = 3) from three independent biological experiments, and every
replicate contains 5 individual plants. The asterisk represents the statistically significant difference at
the same time between the WT and OsWRKY97 overexpression lines (t-test, ** p < 0.01).
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2.7. Effects of OsWRKY97 Overexpression on Related Physiological Indexes under Drought Stress

To further clarify the physiological mechanism by which OsWRKY97 confers tolerance
to drought, we investigated the possible physiological basis related to the enhancement
of drought resistance in OsWRKY97-overexpressing plants. ROS were generated in plants
when they were subjected to abiotic stresses such as drought, salinity, heat, and cold [25].
H2O2, which is an important second messenger, is one of the most significant of these
ROS [26]. Therefore, we measured the accumulation of H2O2 in plants after drought treat-
ment. We found that the accumulation of H2O2 in OsWRKY97-overexpressing plants after
drought treatment was much lower than that of WT (Figure 6A). To explore the potential
mechanism of the reduction of active oxygen level in transgenic plants, ROS scavenging
enzyme activity was also measured [11]. As shown in Figure 6, there was no significant
difference in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities
between transgenic lines and WT under normal conditions, while the enzyme activities
of transgenic lines were higher than those of WT under drought stress (Figure 6B,D).
Abiotic stresses to plants lead to enhanced membrane peroxidation and accumulation
of osmotic substances in plants to maintain osmotic potential tissues of leaves [27]. As
shown in Figure 6E, under drought conditions, the contents of malondialdehyde (MDA)
in the OsWRKY97-overexpressing plants were significantly lower than that in the WT,
which indicated that overexpression of OsWRKY97 in rice could reduce membrane lipid
peroxidation under drought stress. Under drought stress, the proline content of transgenic
plants was significantly higher than that of control plants (Figure 6F). This result clearly
shows that overexpression of OsWRKY97 can increase proline synthesis and protect rice
plants to better cope with drought stress.
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(20% (w/v) PEG6000). (A) H2O2 content, (B) CAT activity, (C) POD activity, (D) SOD activity,
(E) MDA content, (F) proline content. Values are shown as the mean ± SD (n = 3) and the experiments
were performed with at least three biological repetitions. The asterisk represents the statistically
significant difference between the WT and OsWRKY97 overexpression lines under osmotic stress
(t-test, * p < 0.05, ** p < 0.01).

2.8. OsWRKY97 Is a Positive Regulator in ABA Signaling under Drought Stress

In this study, we found that OsWRKY97 was also strongly induced by ABA (Figure 1B),
to verify this expression pattern, the sensitivities of OsWRKY97-overexpressing plants to
exogenous ABA were examined. The results showed that the germination rate of WT
plants was higher than OsWRKY97-overexpressing plants under the treatment of exoge-
nous ABA (Figure 7A,B). Therefore, we suspect that the drought tolerance of OsWRKY97-
overexpressing transgenic lines may be related to ABA. In order to verify this hypothesis,
we measured the ABA content in OsWRKY97-overexpressing lines and WT, respectively,
under drought stress. The results showed that the endogenous ABA level was not signifi-
cantly different between WT plants and OsWRKY97-overexpressing plants under normal
conditions. However, under drought stress, the endogenous ABA level in OsWRKY97-
overexpressing plants was significantly higher than WT plants (Figure 7C). In addition, we
also analyzed the transcription level of response genes in the ABA signaling pathway in WT
plants and OsWRKY97-overexpressing plants, including OsRAB21, OsRD22, OsRAB16A,
and OsNCED3 [28,29]. As shown in Figure 7D, the transcription level of these genes in
OsWRKY97-overexpressing plants was significantly higher than WT plants under drought
stress. These results indicate that OsWRKY97 may improve drought tolerance via the ABA
signaling pathway.
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overexpression lines under exogenous ABA stress (t-test, * p < 0.05, ** p < 0.01). (C) ABA contents of
OsWRKY97 overexpression and WT plants under normal and drought stress conditions. Results are
means ± SD from three independent biological experiments. (D–G) Real-time PCR analysis of the
expression of ABA biosynthesis and responsive genes under normal and drought stress conditions.
The data are represented as the mean ± SD, with three biological experiments. The asterisk represents
the statistically significant difference between the WT and OsWRKY97 overexpression lines under
osmotic stress (t-test, * p < 0.05, ** p < 0.01).

3. Discussion

Plants will suffer from various abiotic stresses in their natural environment, which
will affect the normal development of plants and even affect their yield [30,31]. At present,
many studies have shown that WRKY genes are negatively or positively involved in the
integration of signaling pathways in abiotic stress responses [32]. However, the functions
of many WRKY genes in plants, especially stress responses, are still unclear. In this
study, we examined whether OsWRKY97 participates in the regulation of the response to
drought stress and its effect on rice. In addition, we found that OsWRKY97-GFP subcellular
localization was in the nucleus of tobacco epidermal cells (Figure 3), which is consistent
with previous studies on other WRKY families and may be related to its function [33].

Increasing evidence shows that WRKY families play an important role in the drought
stress response, as ectopic expression of OsWRKY11 enhanced tolerance to drought stress
and induced constitutive expression of drought-responsive genes [34]. Overexpression of
GsWRKY20 from Glycine soja L.G07256 in Arabidopsis resulted in increased sensitivity to ABA
when stomata were closed and stronger drought tolerance compared with the WT [35].
Similarly, our results showed that OsWRKY97 expression was rapidly activated under
drought stress, suggesting that OsWRKY97 may play an important role in drought stress.
Therefore, we constructed OsWRKY97-overexpressing transgenic plants and tested their
resistance to drought stress. The results showed that the germination rate of OsWRKY97-
overexpressing plants at the germination stage was significantly higher, and the growth
inhibition of OsWRKY97 at the seedling stage was also weakened compared with that of
WT plants under osmotic stress (Figure 4). These results suggest that OsWRKY97 may
positively regulate drought stress tolerance. In addition, this conclusion was supported by
the result that the survival rate of OsWRKY97-overexpressing plants was higher than that
of WT plants under drought conditions (Figure 5A,B).

Plants respond to water loss at physiological, cellular, and molecular levels [36].
ABA is an important plant hormone involved in the plant developmental process, which
is widely considered as the main regulatory factor of plant response to drought. ABA
reduces water loss by inducing stomatal closure and induces a number of stress response
genes [37,38]. It has been reported that ABA-independent and ABA-dependent regulatory
systems both exist in response to drought stress [39]. In this study, first, we found that
OsWRKY97 was strongly induced by exogenous ABA (Figure 1B). Second, OsWRKY97
overexpression enhances the sensitivity of plants to exogenous ABA (Figure 7C). Third,
the expression level of OsWRKY97 induces ABA accumulation and the expression level
of ABA-responsive genes under drought stress (Figure 7A,D); this result was consistent
with the capability of OsWRKY97 to reduce the water loss rate of plants under drought
conditions (Figure 5C). These results intimate that OsWRKY97 improves drought tolerance
by enhancing water retention of rice through the ABA-dependent pathway. Meanwhile, the
up-regulation of OsWRKY97 expression under drought stress will lead to the up-regulation
of ABA biosynthesis and response genes, resulting in ABA accumulation and increased
sensitivity to exogenous ABA.

H2O2 is not only an important ROS but also the pivot for the mutual conversion of
ROS, which is also an important signal molecule at normal levels [26]. The ABA signal
interacts with H2O2 in plant tissues. There is evidence that H2O2 acts upstream of the ABA
signaling pathway. Exogenous H2O2 increases ABA catabolism during seed germination
by enhancing the expression of CYP707A genes [40,41]. It has also been reported that
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H2O2 plays an important role as a second messenger in ABA-induced stomatal closure
in guard cells [8,9]. It is reported that H2O2 can be induced by ABA, which is mediated
by inducing plant gene expression encoding NADPH oxidase to respond to ABA [42,43].
However, the increase in H2O2 content induced by drought stress is more obvious than
that caused by exogenous ABA; this shows that the water deficit signal enhances the
production of ROS to a greater extent, which will pose a threat to plants [44]. As expected,
the level of H2O2 in plants increased under drought stress. However, the accumulation
of H2O2 in WT plants was significantly higher than that in OsWRKY97-overexpressing
plants (Figure 6A), and the activities of major oxygen scavenging enzymes, including SOD,
POD, and CAT, were also observably higher than those in OsWRKY97-overexpressed plants
(Figure 6B,D). SOD, POD, and CAT, which maintain the ROS homeostasis, were activated
in OsWRKY97-overexpressing plants.

As a product of ROS-stimulated lipid peroxidation, MDA contents can be used to
evaluate the extent of ROS-mediated injuries in plants. In our research, we found that
the accumulation of ROS and MDA in WT plants under drought stress were higher than
that in OsWRKY97-overexpressing plants (Figure 6E). In addition, we also found that the
accumulation of proline in OsWRKY97-overexpressing plants was greater than that in WT
plants under drought stress (Figure 6F). Under osmotic conditions, proline, as an important
osmotic protective agent, can maintain low water potential of cells so as not to be damaged
by active enzymes [45]. These results showed that WT was more seriously damaged than
OsWRKY97-overexpressing plants under osmotic conditions, thus increasing the probability
of WT death.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

The plant material Oryza sativa L. subsp. japonica cv. Nipponbare was used in this
experiment as the wild-type rice. Rice seeds were sterilized with 0.1% NaClO for 30 min
before being soaked in distilled water for 2 days in the dark and were then transferred
to a culture dish containing Hoagland nutrient solution and grown in a climate chamber
(Southeast instrument, Ningbo, China) with a temperature of 28 ◦C, a relative humidity of
70%, and a 14 h light/10 h dark photoperiod [46].

4.2. Abiotic Treatments

To determine the expression pattern of OsWRKY97 under different stress conditions,
two-week-old seedlings of Nipponbare rice were subjected to various stress treatments.
For drought treatment, seedlings were grown in culture solution containing 20% (w/v)
PEG6000. For salt treatment, NaCl solution was added to achieve a final concentration of
250 mM. ABA treatment was carried out by adding 50 µM ABA to the culture solution. The
seedlings were transferred to a 4 ◦C climate chamber for cold treatment. For heat stress,
the seedlings were subjected to 42 ◦C heat shock treatment [47,48]. Samples were collected
at 0, 1, 2, 4, 8, 12, 16 and 24 h after treatment. Two-week-old seedings of OsWRKY97
overexpression lines were subjected to drought treatment, and samples were collected at
0 h and 10 h after treatment, respectively.

4.3. RNA Extraction and Real-Time PCR

The leaves of 14-day-old plants were sampled, and total RNA was extracted with
TRIzol reagent (Invitrogen, Nanjing, China) according to the manufacturer’s instructions.
One microgram of DNase-treated RNA was reverse-transcribed using a RevertAid RT
Reverse Transcription Kit (TaKaRa, Beijing, China) according to the manufacturer’s protocol.
Real-Time Quantitative Polymerase Chain Reaction was performed on a Bio-Rad CFX96
real-time PCR system. Each reaction was performed in triplicate, and the reaction procedure
was as follows: 95 ◦C for 10 min and, then 39 cycles of 95 ◦C for 10 s and, 60 ◦C for 30 s. The
data of relative expression level were analyzed by the 2−∆∆Ct method [49]. The OsActin rice
gene was used as an internal control gene, and relevant primer pairs are listed in Table S1.
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4.4. Sequence Analysis of OsWRKY97

The BLASTp online tool is used to search for homologous protein sequences of dif-
ferent dicot species in NCBI protein database. MEAG-X software was used to construct
phylogenetic trees and neighbor-joining method with 1000 bootstrap was applied. The pro-
moter region of 1.5 KB upstream of OsWRKY97 gene was obtained from NCBI database, and
the putative cis-acting elements of the promoter region were analyzed by PLACE database.

4.5. Vector Construction and Gene Transformation

To construct the overexpression vector of OsWRKY97, cDNA from rice (Oryza sativa
L. japonica cv. Nipponbare) was used. Total RNA was used to amplify the open reading
frame of OsWRKY97, and the relevant primer pairs are listed in Table S1. The fragments
confirmed by sequencing were digested and cloned into the pCAMBIA1300 vector, and
the digestion sites were HindIII and SalI. This gene was driven by the CaMV35S promoter
(Figure S2). All the vectors were transferred into Nipponbare plant calli via Agrobacterium-
mediated transformation [50]. After producing the transgenic plants, the second generation
of transgenic plants (T2) were screened using hygromycin and PCR detection.

4.6. Determination of Stress-Associated Physiological Indicators

Seedlings growing under normal conditions for two weeks were transferred to a
solution under normal and osmotic stress conditions 20% (w/v) PEG6000. Samples were
collected at 0 h and 10 h, and then the corresponding physiological indexes were measured.
MDA content was qualified by thiobarbituric acid reaction method, as described by Gao [51].
H2O2 content was determined according to the method of Zhan [52]. For the water loss
rate, two-week-old seedlings were selected, exposed to air under the condition of no
water supply, and weighed and recorded every half hour until the weight was constant.
Water loss rate was calculated by comparing the measured weight from each indicated
time with the measurement at time zero. It is expressed as percentage of initial fresh
weight [53]. Proline was detected by following the reported methods [54]. The activity of
active oxygen-scavenging enzymes was determined according to previous methods [55].

4.7. Measurement of ABA Content

We analyzed the content of ABA in rice by liquid chromatography–mass spectrometry
(LC-MS) [56]. Briefly, 1 g of frozen leaf tissue was extracted in 10 mL of acetone/water/acetic
acid (80:19:1, v/v). The complete homogenate was incubated overnight in darkness at 4 ◦C.
After that, they were vortexed and centrifuged at 15,000 rpm, 4 ◦C for 10 min, and the crude
extract supernatant was collected and dried in in a rotavapor until an aqueous fractions
were obtained. Dried samples were resuspended in 1 mL of acetonitrile/water/acetic
acid (90:10:0.05, v/v), and filtered through a 0.45 µm PTFE filter (JET BIOFIL, Guangzhou,
China). Quantification was performed by the standard addition method by spiking control
plant samples with ABA solutions.

4.8. Subcellular Localization of OsWRKY97

The coding region of OsWRKY97 was amplified and cloned into the pAcGFP1-N1
vector to generate the OsWRKY97-GFP (green fluorescent protein) fusion construct, which
was inserted into the pCAMBIA1300 vector, and the constructed vector was transferred
into Agrobacterium. After sequencing confirmation, the fusion structure and the control
vector were co-transfected with another NLS-RFP vector, respectively, into tobacco cells
by Agrobacterium-mediated transient expression method, and the fluorescence signal was
observed by confocal laser scanning microscope [57].

4.9. Analysis of Stress Tolerance

Two independent T2 overexpression lines and WT seeds were soaked in clear water
for two days after being sterilized by 0.1% NaClO, and then the seeds were transferred to
culture solution for growth. When the plant height was approximately 1 cm, seedlings with
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similar growth potential were selected and transferred to nutrient solution containing 20%
(w/v) PEG6000, and their growth conditions were observed and recorded. To simulate an
arid environment, the two-week-old seedlings were transferred to the sand, and watering
was stopped after two days of normal irrigation. The mortality rates were determined. In
order to test the sensitivity of ABA sensitivity at germination stage, seeds of OsWRKY97-
overexpressing plants and WT plants were germinated on culture solution containing 5 µM
ABA, and the germination rate was calculated on the 6th day after germination.

4.10. Statistical Analysis

Results are reported as the mean ± standard deviation (SD) values of the three indepen-
dent biological experiments; all experiments were repeated at least three times, Statistical
analysis was performed using the Student’s t-test by SPSS 27.0 (IBM SPSS, Chicago, IL,
USA) software package, * p < 0.05, ** p < 0.01.

5. Conclusions

In conclusion, we identified a nuclear gene OsWRKY97, which affects the sensitivity
of rice to exogenous ABA and the accumulation of ABA content. In addition, OsWRKY97
affects the redox balance and drought resistance of rice. Redox-related mechanisms might
be involved in OsWRKY97-mediated drought tolerance, which might affect the content of
proline and MDA in rice. All these results indicated that the OsWRKY97 gene has high
potential for improving rice drought resistance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12183338/s1, Figure S1: Real time PCR analysis
of OsWRKY97 gene in rice Nipponbare different tissues, Figure S2: Schematic diagram of the archi-
tecture of the vector; Table S1: Primer sequences used in this study.
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