
Citation: Bacińska, Z.; Baberowska,

K.; Surowiak, A.K.; Balcerzak, L.;

Strub, D.J. Exploring the

Antimicrobial Properties of 99

Natural Flavour and Fragrance Raw

Materials against Pathogenic Bacteria:

A Comparative Study with

Antibiotics. Plants 2023, 12, 3777.

https://doi.org/10.3390/

plants12213777

Academic Editor: Jésus Palá-Pául

Received: 3 October 2023

Revised: 28 October 2023

Accepted: 3 November 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Exploring the Antimicrobial Properties of 99 Natural Flavour
and Fragrance Raw Materials against Pathogenic Bacteria: A
Comparative Study with Antibiotics
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Abstract: Currently, one of the most serious global problems is the increasing incidence of infectious
diseases. This is closely related to the increase in antibiotic use, which has resulted in the development
of multidrug resistance in microorganisms. Another problem is the numerous microbiological contam-
inations of cosmetic products, which can lead to dangerous bacterial infections in humans. Natural
fragrance raw materials exhibit a wide spectrum of biological properties, including antimicrobial
properties. Despite their prevalence and availability on the commercial market, there is little research
into their effects on multidrug-resistant microorganisms. This study examines the inhibitory effect of
natural substances on Gram-positive and Gram-negative bacteria. For this purpose, screening and
appropriate assays were carried out to determine the minimum inhibitory concentration (MIC) value
of individual substances, using the alamarBlueTM reagent. The lowest MIC values were observed for
Staphylococcus aureus (black seed (Nigella sativa) expressed oil, MIC = 25 µg/mL), Kocuria rhizophila
(fir balsam absolute, MIC = 12.5 µg/mL), and Pseudomonas putida (cubeb oil and fir balsam absolute,
MIC = 12.5 µg/mL). The most resistant Gram-negative species was Enterobacter gergoviae, while
Staphylococcus epidermidis was the most resistant Gram-positive species.

Keywords: Gram-positive bacteria; Gram-negative bacteria; natural fragrance raw materials; essential
oils; MIC

1. Introduction

Multiple drug resistance (MDR) is defined as the resistance of a microorganism to at
least one antimicrobial drug in three or more categories [1]. Currently, it poses a significant
obstacle to the treatment of bacterial and fungal infections in patients due to the limited
possibility of selecting an effective and selective antibiotic therapy [2]. The presence of
resistant microorganisms in the hospital environment is a very serious problem that makes
it difficult to perform surgeries, among other things. The main cause of resistance is the
excessive and inappropriate use of antibiotics, as well as their widespread use in industries
such as agriculture, food, and veterinary medicine in rapidly developing countries [3].
Therefore, it is essential to find natural substances that can inhibit the growth of bacteria. It
is important to note that bacteria of the same species are not always resistant or sensitive
to a given antimicrobial compound in the same way. Resistance and susceptibility are
determined by the minimum inhibitory concentration (MIC) of the biocidal compound that
inhibits the growth of the microorganism.

Microorganisms have developed specific mechanisms to survive in the presence of
toxic compounds due to their adaptation to various environmental conditions. Bacteria
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use mechanisms that can be classified into four categories: absorption of limitation of
substances, modification of the target site, inactivation, and active pumping out of the
cell interior [4]. The main mechanisms of resistance in bacteria is shown in Figure 1. Red
squares indicate substances toxic to bacteria.
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So far, antibiotics and synthetic chemicals with antibacterial activity have been the
most effective and widely used tools against pathogens. However, due to increasing
multidrug resistance, other solutions should be sought. Taking into account the growing
global market of natural fragrance raw materials, essential oils, absolutes, balsams, and
concretes show great potential in this area.

Essential oils (EOs) are secondary metabolites that have a characteristic scent. Their
secretion aims to protect against parasites and predators, limit the growth of competing
plants, and prevent sprouting in the winter. In addition, EOs play an important ecological
role in ecosystems, where they act as attractants and repellents. They are soluble in
alcohols and ethers, but insoluble in water [5]. Their lipophilic nature allows them to
penetrate the cell wall and the cytoplasmic membrane of bacteria, causing their integrity and
structure. The presence of various chemical compounds in EOs can reduce the membrane
potential, interfere with the proton pump activity, coagulate the cytoplasm, and degrade
structures such as lipids or proteins [6]. Consequently, these activities lead to the leakage
of cellular organelles into the environment and the lysis of the bacterial cell [6]. EOs exhibit
a wide spectrum of biological properties, including antimicrobial, antiviral, antifungal,
antiparasitic, antioxidant, and insecticidal [7]. The properties of the natural material depend
on the main bioactive components. Numerous studies have confirmed the antimicrobial
activity of natural fragrance raw materials [2,5,7–12]. Due to their antimicrobial properties,
they can be used in the fight against pathogens in the cosmetics, pharmaceutical, and
food industries.

The purpose of this study was to determine the inhibitory effect of selected natural
fragrances, which were essential oils, balsams, concretes, and absolutes, on selected species
of microorganisms that are considered pathogens capable of developing antibiotic resistance
and contributing to the development of diseases. These bacterial strains were selected
due to their significant pathogenic capacity and high risk of product contamination in
various areas. The results of this study may help find natural alternatives to antiseptics and
antibiotics that will be equally effective against antibiotic-resistant microorganisms. In this
study, we used Gram-negative bacteria from the genera Pluralibacter, Klebsiella, Pseudomonas,
and Burkholderia, and Gram-positive bacteria from the genera Staphylococcus, Kocuria, and
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Cutibacterium. These bacteria are natural members of the skin microbiota and are not a
threat in the case of healthy skin tissue. However, many studies have shown that these
species are closely related to skin diseases, including atopic dermatitis or acne [13–15].
Numerous other parts of the body can be colonised by pathogens, including the axillae,
groin, and gastrointestinal tract. Colonisation provides a reservoir from which bacteria
can be introduced into the bloodstream when the host defence is disrupted, whether by
shaving, aspiration, or surgery [16]. In the case of S. aureus, its presence can cause, for
example, pneumonia, respiratory tract infections, endocarditis, osteomyelitis, conjunctivitis,
and other diseases [17]. Furthermore, the presence of bacteria in damaged skin tissue leads
to the development of wounds, bacterial infections, and difficulties in healing [12]. One
of the most extreme developments in skin and soft tissue infections is necrotising fasciitis
and necrotising soft tissue infections caused by the Streptococcus A group and methicillin-
resistant S. aureus (MRSA) [18]. In our work, we focus on the use of essential oils and other
fragrances due to their availability, simplicity of use, and biological properties. Due to
their characteristic fragrances, they are mainly used in aromatherapy, where they have a
relaxing function, improving emotional and physical health by penetrating subcutaneous
tissues [19]. Therefore, we focused on the use of natural fragrances as growth inhibitors of
selected bacterial species.

2. Results
2.1. Screening Assays

The first part of the study was devoted to screening assays for each microbial species
to identify raw materials that showed an inhibitory effect on bacterial growth. The assays
were carried out with the use of alamarBlueTM reagent. The number of natural fragrances
that showed an inhibitory effect (at a concentration of 200 µg/mL) on the growth of
the tested bacterial species is as follows: out of 99 natural fragrance raw materials, 47
showed an inhibitory effect on the growth of Pseudomonas putida, 36 on Cutibacterium acnes
and Pseudomonas fluorescens, 35 on Staphylococcus aureus, 32 on Kocuria rhizophila, 26 on
Burkholderia cepacia, 22 on Staphylococcus epidermidis, 15 on Klebsiella pneumoniae, and 11 on
Pluralibacter gergoviae (Figure 2).
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Figure 2. Summary of the amount of inhibitory and non-inhibitory materials against all tested
bacterial species.

2.2. Results of the MIC Assay
2.2.1. MIC Evaluation—Gram-Positive Bacteria

The MIC values for the most active natural fragrance materials against all the evaluated
strains are presented in Table 1. Regarding the S. aureus strain, the most effective bacterio-
static activity was found for raw materials such as Nigella sativa expressed oil (black seed)
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(MIC = 25 µg/mL) and Callitris intratropica essential oil (blue cypress) (MIC = 50 µg/mL).
For the S. epidermidis strain, the lowest MIC values were observed with natural fragrance
raw materials such as Juniperus communis CO2 extract (juniper berry) (MIC = 25 µg/mL),
Coriandrum sativum oil (coriander herb), C. intratropica essential oil (blue cypress), and Abies
balsamea absolute (fir balsam) (MIC = 50 µg/mL). Regarding K. rhizophila, the fragrances
with the lowest MIC values were A. balsamea absolute (fir balsam) (MIC = 12.5 µg/mL),
Copaifera officinalis balsam (copaiba), J. communis CO2 extract (juniper berry), and C. sativum
oil (coriander herb) (MIC = 25 µg/mL). The essential oils of Angelica archangelica (angelica
root), Piper cubeba (cubeb), and A. balsamea absolute (fir balsam) showed inhibitory effects
on C. acnes bacteria with a MIC of 25 µg/mL.

Table 1. Minimal inhibitory concentration (MIC) values for the most active fragrance raw materials
against all strains evaluated.

No. English Common Name Botanical Name Country of Origin MIC [µg/mL]

Staphylococcus aureus

1 Black seed expressed EO Nigella sativa L. India 25

2 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 50

3 Pepper black oleoresin 40/20 Piper nigrum L. India 100

4 Copaiba balsam Copaifera officinalis L. Brazil 100

5 Hinoki EO Chamaecyparis obtusa (Siebold and
Zucc.) Endl. Japan 100

6 Cognac white EO Vitis vinifera L. USA 73.17

7 Orris root concentrate Iris pallida Lam. France 73.17

Staphylococcus epidermidis

8 Juniper berry CO2 Juniperus communis L. India 25

9 Coriander herb EO Coriandrum sativum L. Russia 50

10 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 50

11 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 50

12 Sandalwood EO Santalum spicatum (R.Br.) A. DC Australia 100

13 Vetiver CO2
Chrysopogon zizanioides (L.) Roberty
syn. Vetiveria zizanioides (L.) Nash India 100

14 Ginger CO2 Zingiber officinale Roscoe India 100

15 Fir balsam Canadian concrete Abies balsamea (L.) Mill. Canada 100

16 Labdanum gum refined Cistus ladanifer L. Spain 100

Kocuria rhizophila

17 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 12.5

18 Copaiba balsam Copaifera officinalis L. Brazil 25

19 Juniper berry CO2 Juniperus communis L. India 25

20 Coriander herb EO Coriandrum sativum L. Russia 25

21 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 50

22 Mugwort EO Artemisia taurica Willd. Russia 100

Cutibacterium acnes

23 Angelica root EO Angelica archangelica L. Hungary 25

24 Cubeb EO Piper cubeba L.f. Singapore 25
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Table 1. Cont.

No. English Common Name Botanical Name Country of Origin MIC [µg/mL]

25 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 25

26 Catnip (catmint) EO Nepeta cataria L. Canada 100

27 Fir balsam Canadian concrete Abies balsamea (L.) Mill. Canada 100

Pluralibacter gergoviae

28 Juniper berry CO2 Juniperus communis L. India 50

29 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 100

Pseudomonas fluorescens

30 Juniper berry CO2 Juniperus communis L. India 50

31 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 50

32 Ginger CO2 Zingiber officinale Roscoe India 100

33 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 100

34 Coffee EO Coffea arabica L. Canada 100

35 Cognac white EO Vitis vinifera L. USA 100

Pseudomonas putida

36 Cubeb EO Piper cubeba L.f. Singapore 12.5

37 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 12.5

38 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 25

39 Fir balsam Canadian concrete Abies balsamea (L.) Mill. Canada 50

40 Juniper Berry CO2 Juniperus communis L. India 100

41 Vetiver CO2
Chrysopogon zizanioides (L.) Roberty
syn. Vetiveria zizanioides (L.) Nash India 100

42 Hinoki EO Chamaecyparis obtusa (Siebold and
Zucc.) Endl. Japan 100

Burkholderia cepacia

43 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 25

44 Juniper berry CO2 Juniperus communis L. India 50

45 Coriander herb EO Coriandrum sativum L. Russia 50

46 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 50

47 Vetiver CO2
Chrysopogon zizanioides (L.) Roberty
syn. Vetiveria zizanioides (L.) Nash India 100

48 Fir balsam Canadian concrete Abies balsamea (L.) Mill. Canada 100

Klebsiella aerogenes

49 Juniper berry CO2 Juniperus communis L. India 25

50 Coriander herb EO Coriandrum sativum L. Russia 25

51 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 25

52 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 50

53 Labdanum gum refined Cistus ladanifer L. Spain 100

54 Artichoke absolute Cynara scolymus L. Egypt 100
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Table 1. Cont.

No. English Common Name Botanical Name Country of Origin MIC [µg/mL]

Klebsiella pneumoniae

55 Coriander herb EO Coriandrum sativum L. Russia 50

56 Juniper berry CO2 Juniperus communis L. India 100

57 Blue cypress EO Callitris intratropica Baker and H.G.Sm. Australia 100

58 Fir balsam Canadian absolute Abies balsamea (L.) Mill. Canada 100

Of all the natural fragrance raw materials tested, the best results against Gram-positive
species were obtained using Piper nigrum oleoresin 40/20 (pepper black), J. communis CO2
extract (juniper berry), essential oils of C. sativum (coriander herb), C. intratropica essential
oil (blue cypress), Fokienia hodginsii (siam wood), and A. balsamea absolute (fir balsam), as
well as Iris pallida concentrate (orris root). These substances exhibited significant inhibitory
activity against the growth of each bacterial strain.

In particular, S. epidermidis was found to be the most resistant to the action of natural
fragrances, as evidenced by its inhibition by only 22 fragrance materials, while C. acnes was
the least resistant, with inhibition by 36 fragrance materials.

2.2.2. MIC Evaluation—Gram-Negative Bacteria

The results obtained for Gram-negative bacteria are as follows: for K. aerogenes, the
most effective substances were J. communis CO2 extract (juniper berry) (MIC = 25 µg/mL), C.
sativum oil (coriander herb) (MIC = 25 µg/mL), A. balsamea absolute (fir) (MIC = 25 µg/mL),
and C. intratropica essential oil (blue cypress) (MIC = 50 µg/mL). For K. pneumoniae, the
most effective substance was C. sativum oil (coriander herb) (MIC = 50 µg/mL), while for E.
gergoviae, it was J. communis CO2 extract (juniper berry) (MIC = 50 µg/mL). C. intratropica
essential oil (blue cypress) was the most effective substance for B. cepacia (MIC = 25 µg/mL),
whereas J. communis CO2 extract (juniper berry) and A. balsamea absolute (fir) were the most
effective substances for P. fluorescens (MIC = 50 µg/mL). For P. putida, the most effective
substances were Piper cubeba (cubeb) and A. balsamea absolute (fir) (MIC = 12.5 µg/mL). The
results summarised in Table S1 indicate that P. putida is the least resistant Gram-negative
bacteria, as most of the raw materials showed an MIC value of around 400 µg/mL (more
information is included in the supplement).

Regarding the number of fragrance materials that inhibit the tested pathogens, P.
gergoviae is the most resistant species, as only 11 fragrance raw materials inhibited its
growth, which is the smallest number among all the tested Gram-negative species. On the
other hand, P. putida is the least resistant bacteria species, as it was inhibited by 47 fragrance
raw materials.

All MIC values obtained for each of the bacterial strains are presented in Table S1. The
most effective raw materials for each type of Gram-negative bacteria were essential oils of
C. sativum and C. intratropica, J. communis CO2 extract, and A. balsamea absolute, which had
the lowest MIC values.

2.2.3. MIC Evaluation of Antibiotics against Tested Bacteria

MIC values were determined for antibiotics such as gentamicin, ciprofloxacin, ampi-
cillin, and amfotericin B. Gentamicin was tested on S. aureus, K. rhizophila, P. fluorescens,
and P. putida, species with MIC values of 5 µg/mL, 1 µg/mL, 2 µg/mL, and 0.625 µg/mL,
respectively. Ciprofloxacin inhibited the growth of K. rhizophila with an MIC = 0.625 µg/mL,
K. pneumoniae with an MIC = 0.50 µg/mL, B. cepacia with an MIC = 0.25 µg/mL, P. fluorescens
with an MIC = 0.008 µg/mL, and P. putida and K. pneumoniae with an MIC = 0.019 µg/mL.
For ampicillin, the MIC values were determined for P. gergoviae (MIC = 0.008 µg/mL),
S. epidermidis (MIC = 0.0625 µg/mL), and C. acnes (MIC = 0.25 µg/mL). All results are
presented in Table S1.
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3. Discussion

The antimicrobial activity of essential oils has been confirmed in many studies [5,7–11].
In this study, we evaluated the antibacterial activity of ninety-nine fragrance raw materials
against Gram-positive and Gram-negative pathogens. The essential oils of C. intratropica
and C. sativum, N. sativa expressed oil, A. balsamea absolute, and J. communis CO2 extract
showed the lowest MIC values (12.5–50 µg/mL) for all evaluated species. Previous studies
have shown that natural fragrance materials are more active against Gram-positive strains
than Gram-negative strains [20–22]. This is due to the structure of the cell wall and the
natural resistance of Gram-negative bacteria caused by the presence of a double layer of
phospholipids and LPS [23]. However, in our study, we did not observe this dependence:
the MIC values were the same or very similar for both Gram-positive and Gram-negative
bacteria. For example, the MIC values for J. communis CO2 extract for S. epidermidis and P.
gergoviae were 50 µg/mL, and for A. balsamea absolute for K. rhizophila and P. putida, the
MIC values were 12.5 µg/mL.

Most of the studies conducted so far have focused on the Gram-positive microorgan-
isms of the S. aureus species, and there is still limited research into the effects of natural
fragrance materials on other Gram-negative bacteria besides the E. coli species [21,24–27].
Furthermore, there is a paucity of the literature investigating the effects of natural fragrance
materials on bacterial species belonging to the genera Burkholderia, Pseudomonas, Klebsiella,
Cutibacterium, and Kocuria. In existing studies, the MIC values are often given as the zone of
inhibition of growth or concentration % (v/v) [21,24,28,29]. To compare the results obtained
with those of other authors, it is crucial to use the same method, culture conditions, specific
bacterial strains, and tested fragrance compounds. Therefore, it is challenging to compare
the obtained MIC values with other data.

On the basis of the MIC values obtained, several natural fragrance raw materials that
exhibited the lowest MIC values were selected for the tested bacterial strains. For the
selected raw materials, the main components that occur in their composition are presented
in Table 2.
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Table 2. Chemical composition of selected natural fragrance raw materials showing the lowest MIC values.

Botanical Name of the
Plant Natural Raw Material Plant Parts Major

Components
Geographical

Sources (Region) The Lowest MIC Values Ref. Producer

Nigella sativa L. Black seed expressed oil seeds cuminaldehyde 1 (20–50%)
β- caryophyllene 2 (0.1–1%) India S. aureus

(MIC = 25 µg/mL) [30] Ultra International B.V.

Callitris intratropica
Baker and H.G.Sm. Blue cypress essential oil chipped

bark, wood

guaiol 3 (14.64%), bulnesol 4
(10.58%), dihydrocolumellarin 5

(10.12%),
γ-eudesmol 6 (8.40%)

Australia
P. putida,
B. cepacia

(MIC = 25 µg/mL)
[31,32] Ultra International B.V.

Juniperus communis L. Juniper berry essential oil ripe
berries

(-)- α-pinene 7 (44.47%),
D-limonene 8 (19.41%) India

K. rhizophila, S.epidermidis,
K. aerogenes

(MIC = 25 µg/mL)
[33,34] Ultra International B.V.

Coriandrum sativum L. Coriander herb essential oil leaves

2(E)-decenal 9 (27.78%),
(-)-linalool 10 (18.72%),

2-dodecen-1-ol 11 (18.53%),
2(E)-dodecenal 12 (6.19%)

Russia K. rhizophila, K. aerogenes
(MIC = 25 µg/mL) [35,36] Ultra International B.V.

Abies balsamea (L.) Mill. Fir balsam absolute needle-like leaves

β-pinene 13 (22.5 ± 0.44%), borneol
acetate 14 (18.0 ± 0.23%),

3-carene 15 (10.3 ± 0.15%),
8-hydroxylinalool 16 (9.34 ± 0.11%),

camphene 17 (7.98 ± 0.15%),
α-pinene 18 (7.09 ± 0.18%)

Canada

K. rhizophila, P. putida
(MIC = 12.5 µg/mL)

C. acnes,
K. aerogenes (MIC = 25 µg/mL)

[37] Berje Inc.

Copaifera officinalis L. Copaiba balsam tree trunk resin β-caryophyllene 2 (35.03%)
α-copaene 19 (33.61%) Brazil K. rhizophila (MIC = 25 µg/mL) [38] Lluch Essence

Angelica archangelica L. Angelica root essential oil root

α-pinene 18
(20–25%),

3-carene 15
(12–17%),

β-phellandrene 20 (6.0–15%),
limonene 21

(5.0–15%)

France C. acnes
(MIC = 25 µg/mL) [31] Ultra International B.V.

Piper cubeba L.f. Cubeb essential oil unripeberries
γ –cadinene 22 (13 ± 0.17%),
β-cubebene 23 (12.1 ± 0.62%),
α-copaene 19 (11.7 ± 0.17%)

Singapore

P. putida
(MIC = 12.5 µg/mL)

C. acnes
(MIC = 25 µg/mL)

[39] Berje Inc.
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Each of the selected natural raw materials listed in Table 2 has a different composition.
Therefore, their antibacterial activity differs from that of the microorganisms tested. The
composition and properties of essential oils and extracts are influenced by the time of
harvesting the plant, the conditions under which it was grown, light interception, the
part of the plant from which the raw fragrance material was extracted, or the manner and
conditions under which the extraction process was carried out [40]. The structures of the
main components of natural fragrance raw materials showing the lowest MIC values are
shown in Figure 3.
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In the case of N. sativa expressed oil, for which the lowest MIC value was shown for S.
aureus (MIC = 25 µg/mL), the main compounds found in this raw material are cuminalde-
hyde 1 and β-caryophyllene 2 [30]. Li et al. showed that cuminaldehyde inhibits the growth
of S. aureus (ATCC 6538) with an MIC result of 800 µg/mL, confirming its antibacterial
properties [41]. Chew Li Moo confirmed the biocidal properties for β-caryophyllene for
Bacillus cereus (ATCC 14579), but not for S. aureus [42]. However, these results make it
possible to conclude that N. sativa expressed oil containing mainly cuminaldehyde and
β-caryophyllene in the volatile fraction has antibacterial properties.

The essential oil of C. intratropica, which showed the highest antimicrobial activity for
P. putida and B. cepacia (MIC = 25 µg/mL), contains mainly guaiol 3, bulnesol 4, dihydro-
columellarin 5, and γ-eudesmol 6 [31,32]. Petard showed that the essential oil of Bulnesia
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sarmienti, which consists mainly of bulnesol and guaiol, exhibits an inhibitory effect on the
growth of Gram-positive bacteria [43]. This allows us to conclude that, despite the different
natural raw materials tested, the high percentage of bulnesol and guaiol influences the
biocidal activity of the fragrance raw material.

In the case of the J. communis CO2 extract, the lowest MIC values were shown for K.
rhizophila, S. epidermidis, and K. aerogenes (MIC = 25 µg/mL). The main components of the
volatile fraction of this raw material are (-)-α-pinene 7 and D-limonene 8 [33,34]. Dhar et al.
found no antibacterial activity exhibited by (-)-α-pinene against E. coli and S. aureus [44].
Silva et al. also found no antibacterial activity for (-)-α-pinene against S. aureus [45]. In the
case of limonene, Han et al. confirmed its antibacterial activity against S. aureus [46]. It can
be suspected that limonene may contribute to the antimicrobial action, together with the
non-volatile components of the J. communis CO2 extract.

C. sativum essential oil was found to be most active against K. rhizophila and K. aerogenes
(MIC = 25 µg/mL). To our knowledge, the literature lacks studies on the activity of the
main constituents of this raw material, namely 2(E)-decenal 9, linalool 10, 2-dodecen-1-ol
11, and 2(E)-dodecenal 12, against these microorganisms [35,36].

A. balsamea balsam absolute showed the highest inhibitory potency against K. rhizophila,
P. putida (MIC = 12.5 µg/mL), C. acnes, and K. aerogenes (MIC = 25 µg/mL). This raw
material mainly contains compounds such as β-pinene 13, borneol acetate 14, carene 15,
8-hydroxylinalool 16, camphene 17, and α-pinene 18 in the volatile fraction [37]. To our
knowledge, there are no studies demonstrating the antimicrobial activity of the individual
chemical compounds mentioned against K. rhizophila, P. putida, C. acnes, and K. aerogenes.

C. officinalis balsam showed the most prominent inhibitory effect against K. rhizophila
(MIC = 25 µg/mL). The main volatile constituents of the raw material are β-caryophyllene
(for which its antibacterial activity has already been described above) and α-copaene
19 [35,39]. However, consistent with our results are the results of Martins et al. who
found that the essential oil of the inner bark of Kielmetera coriacea, of which α-copaene
(14.9%) is one of the main components, showed positive antimicrobial activity against
Prevotella nigrescens (ATCC 33563) (MIC = 25 µg/mL), but not against the microorganisms
we studied [47].

Our results showed that A. archangelica essential oil is the most effective against C.
acnes with an MIC = 25 µg/mL. This raw material mainly contains compounds such as
α-pinene, β-phellandrene 20, 3-carene, and limonene 21 in its composition [31]. Juliano et al.
showed that Santolina insularis essential oil containing β-phellandrene (18.87%) inhibited
the growth of C. acnes (ATCC 6919) with an MIC value of 1 mg/mL [48]. This is a higher
result compared to that obtained in this study, but allows us to conclude that A. archangelica
essential oil has antibacterial properties. The differences in the values presented may be
due to the presence of other chemical compounds in this essential oil.

Lastly, P. cubeba essential oil showed the highest inhibitory effect against C. acnes
(MIC = 25 µg/mL) and P. putida (MIC = 12.5 µg/mL). The main constituents of this raw
material are γ-cadinene 22, β-cubebene 23, and α-copaene [39]. The antibacterial effect of
the raw materials, mainly γ-cadinene, in their composition has been confirmed against the
species of C. acnes [49]. Furthermore, the growth inhibitory activity of the P. putida species
was assessed using Piper porphyrophyllum essential oil containing α-copaene (13.2%) in its
composition [50]. These results suggest that the described compounds significantly affect
antimicrobial activity. The possible inconsistencies observed between our results and those
reported by other investigators could be explained by differences in the experimental setup.

From the MIC values obtained in this study, all antibiotics showed antibacterial activity
against different bacterial strains, but at different levels (the antibiotic results are presented
in Table 3).
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Table 3. Results for antibiotics obtained for tested bacterial strains.

Bacteria
Antibiotics [µg/mL]

Gentamicin Ciprofloxacin Ampicillin

Gram-positive

S. aureus 5.000

K. rhizophila 1.000 0.625

S. epidermidis 0.0625

C. acnes 0.250

Gram-negative

P. gergoviae 0.008

P. fluorescens 2.000 0.008

P. putida 0.625 0.019

B. cepacia 0.250

K. aerogenes 0.019

K. pneumoniae 0.500

All bacteria tested were more or less sensitive to the three antibiotics. Differences
may be due to evolved resistance mechanisms, the cell structure of the species, or the
chemical structure of the antibiotic [50]. The MIC values obtained for antibiotics are
lower than those for raw materials of natural fragrance. One way to achieve better results
for essential oils is to use them in combination (synergism) [23,51,52]. This approach
can reduce the required concentration of essential oils and improve their antimicrobial
effectiveness. The combination of selected components that exhibit synergism will then reduce
the concentration needed to achieve the same inhibitory effect against bacteria, compared to
the use of individual components. The selection of suitable components depends on the MIC
values they exhibit, their chemical structure, the percentage of their chemical composition,
and, when given a fragrance raw material for combination, the effect on the bacterial cell
and the main chemical compounds in the formulation. An example mechanism is to increase
the permeability of the cytoplasmic membrane by one component while allowing the other
component to be transported into the bacterial cell. To obtain satisfactory synergistic results,
lower concentrations of components should be chosen whenever possible compared to their
individual inhibitory concentrations. To test the effect of synergism, the checkerboard method
can be used by placing medium, appropriately diluted fragrance raw materials and inoculum
in a 96-well plate. As microorganisms are constantly developing resistance to conventional
antibiotics, it is essential to explore alternative ways to combat them. Pathogenic bacterial
species employed in this study have already developed resistance mechanisms against specific
types of antibiotics [53–62]. However, most raw materials were able to inhibit their growth,
indicating that the mechanisms responsible for antibiotic resistance may not guarantee
resistance to natural fragrances. Although the tested raw materials may have a weaker
effect on microorganism activity and growth compared to antibiotics, they exhibit great
potential in the fight against pathogenic microorganisms and the treatment of bacterial
infections caused by them. The results of the research obtained can contribute to the design
of appropriate tools to combat resistant pathogens in the future in the pharmaceutical,
cosmetic, or household industries.

4. Materials and Methods
4.1. Materials

The applied pathogenic bacteria strains, including Staphylococcus aureus WDCM
000322, WDCM 00193 (ATCC 6538), Staphylococcus epidermidis WDCM 00036 (ATCC 12228),
Kocuria rhizophila ATCC 9341, Klebsiella aerogenes WDCM 00175 (ATCC 13048), Klebsiella
pneumoniae WDCM 00097 (ATCC 13883), Pluralibacter gergoviae ATCC 33028, Burkholderia
cepacia ATCC 25416, Pseudomonas putida ATCC 49128, Pseudomonas fluorescens WDCM 00115
(ATCC 13525), and Cutibacterium acnes ATCC 11827, were purchased from Sterbios, Poland.
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Ninety-nine samples of natural fragrance materials were generously donated by the
essential oil industry, members of the International Federation of Essential Oils and Aroma
Trades, to ensure the highest quality. These materials included:

Lluch Essence (Spain): Essential oils of Cinnamomum camphora, Lippia citriodora, Cananga
odorata, Dipterocarpus balsam, and Copaifera officinalis balsam, and oleoresins of Ocimum
basilicum, Capsicum annuum var. annuum 1.000.000 SHU, Capsicum annuum 40.000 SHU,
Capsicum annuum 80.000 SHU, Piper nigrum 40/20, Thymus vulgaris, Origanum vulgare, and
Laurus nobilis.

Dutjahn Sandalwoods Oils (Australia): Santalum spicatum essential oil.
Vessel Essential Oils (Greece): Essential oil of Ocimum basilicum ct linalool.
A. Fakhry and Co. (Egypt): Essential oils of Citrus x aurantium var. amara, Ocimum

basilicum ct methylchavicol, and Tagetes minuta, and absolute of Cynara cardunculus.
Albert Vieille (France): Absolute of Cistus ladanifer.
Eucaforest (Southern Africa): Essential oils of Melaleuca alternifolia, Pelargonium grave-

olens, Eucalyptus smithii, and Leptospermum petersonii.
Ultra International (India): Essential oils of Angelica archangelica, Artemisia absinthium,

Artemisia taurica, Citrus sinensis, Callitris intratropica, Fortunella japonica, Kunzea ambigua,
Agathosma betulina, Eremophila mitchellii, Chamaecyparis obtusa, Coriandrum sativum, Back-
housia citriodora, Eucalyptus kochii, and Melaleuca ericifolia, and CO2 extracts of Juniperus
communis, Coffea canephora, Coffea arabica, Chrysopogon zizanioides, Elettaria cardamomum,
Nigella sativa, Curcuma longa, Illicium verum, and Zingiber officinale.

Berje Inc. (USA): Essential oils of Angelica archangelica root, Angelica archangelica seed,
Illicium verum, Aniba rosodora, Agathosma betulina, Agathosma crenulate, Acorus calamus, Croton
eluteria bark, Nepeta cataria, Coffea arabica, Vitis vinifera, Piper cubeba, Anethum graveolens seed,
Abies balsamea needle, Lavandula angustifolia, Levisticum officinale leaf, Levisticum officinale
root, Citrus reticulata, Achillea millefolium, Ocotea cymbarum, Petroselinum crispum leaf, Mentha
x piperita Yakima, Perilla frutescens, Pinus pumilio, Rosa damascene Bulgaria and Turkey,
Sassafras albidum, Satureja hortensis, Fokienia hodginsii, Tagetes minuta, Valeriana officinalis
root, and Artemisia absinthium European, and absolutes of Abies balsamea, Rosa damascena
Morocco and Bulgaria, Picea glauca, and Abies balsamea concrete, Iris pallida concentrate, and
refined gum of Cistus ladanifer and Liquidambar styraciflua.

Lebermuth (USA): Essential oils of Cedrus deodora Himalayan, Eucalyptus polybractea,
Solidago canadensis, Citrus x paradisi, Mentha x piperita tails, Picea mariana, Melaleuca alternifolia,
Cananga odorata, Myroxylon peruiferum resin, and Azadirachta indica oil.

Microplates were obtained from NEST Biotechnology Co., Ltd., China. Nutrient
LAB-AGARTM, Brain Heart Infusion LAB-AGARTM, Brain Heart Infusion BrothTM and
Nutrient BrothTM were provided by BioMaxima S.A. (Poland). The alamarBlueTM reagent
was acquired from Bio-Rad Antibodies UK. Dimethyl sulfoxide was purchased from Hon-
eywell Sp. z.o.o. The alamarBlueTM reagent was obtained from Bio-Rad-Antibodies UK.
The antimicrobial agents gentamicin, ciprofloxacin, and ampicillin were purchased from
Merck Poland.

4.2. Methods
4.2.1. Test Microorganisms

All bacterial strains were subcultured from the original culture (KWIK-STIK) and
kept in Nutrient LAB-AGARTM or Brain Heart Infusion Broth AGARTM plates at 4 ◦C and
grown in the appropriate conditions and medium presented in Table 4.

4.2.2. Natural Fragrance Materials

Natural fragrance raw materials with an initial concentration of 10 mg/mL in DMSO
were used. DMSO at low concentrations does not have a significant effect on the growth in
short-term experiments [63]. In this study, the 8% DMSO concentration used was not toxic
to bacterial strains.
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Table 4. Incubation conditions for selected bacteria (conditions provided by ATCC).

Bacteria Name + Trade
Name

Incubation
Temperature

[o C]

Incubation
Time [h] Medium Environment

Staphylococcus aureus
WDCM 000322, WDCM

00193 (ATCC 6538) 37 48

Nutrient Broth Aerobic

Staphylococcus epidermidis
WDCM 00036 (ATCC 12228)

Kocuria rhizophila
(ATCC 9341) 30

24Klebsiella aerogenes WDCM
00175 (ATCC 13048)

Klebsiella pneumoniae
WDCM 00097 (ATCC 13883) 37

Pluralibacter gergoviae
(ATCC 33028)

Burkholderia cepacia
(ATCC 25416) 30 48

Pseudomonas putida
(ATCC 49128)

Pseudomonas fluorescens
WDCM 00115 (ATCC 13525) 26

Cutibacterium
Acnes

(ATCC 11827)
37 24 Brain Heart

Infusion Broth Anaerobic

4.2.3. Antibacterial Activity Screening Assay

The purpose of the screening tests was to identify compounds that inhibit the growth
of microorganisms. Furthermore, screening tests allow to determine cytotoxicity, early
safety screening, and antimicrobial potential of minor oxime constituents of natural raw ma-
terials. All tested bacterial strains were subcultured in appropriate medium and incubated
under optimal conditions. Cell cultures were used to make suspensions in physiological
saline corresponding to the McFarland protocol to obtain suspensions of approximately
1–2 × 108 CFU/mL [64]. The suspensions obtained were used to inoculate medium to
achieve the final cell concentration of 5 × 106 CFU/mL (OD550 = 0.125).

The appropriate medium was added to the 96-well plates in volumes: col. 1–9: 82 µL,
col. 10: 90 µL, col. 11: 100 µL, and col. 12: 110 µL. Natural fragrance materials dissolved in
DMSO were placed in 96-well plates in col. 1–9 in triplicate (final concentration 400 µg/mL).
The inoculum was added to the col. 1–11 in a volume of 10 µL, and plates were incubated un-
der the appropriate conditions for each of the strains according to Table 4. After incubation,
10 µL of alamarBlueTM reagent was added to the col. 1–11. The plates were again incubated
for 3 h under appropriate conditions and then analysed (the procedure is described in Sec-
tion 4.2.5). The 96-well plates included one control with DMSO in col. 10 (medium + inocu-
lum + 8% DMSO solution), one positive control in col. 11 (medium + inoculum + antibiotic),
and one negative control in col. 12 (medium + inoculum). In the tests, antibiotics used
gentamicin at concentration of 20 µg/mL for S. aureus, K. rhizophila, P. fluorescens, and P.
putida; ciprofloxacin at concentration of 10 µg/mL for K. rhizophila, P. fluorescens, P. putida,
B. cepacia, K. aerogenes, and K. pneumoniae; and ampicillin at concentration 2 µg/mL for S.
epidermidis, C. acnes, and P. gergoviae.
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4.2.4. Minimal Inhibitory Concentration (MIC)

The objective of the tests was to determine the minimum inhibitory concentration
(MIC) of the natural fragrance materials against the microorganisms tested. Cell density
was obtained in a way similar to that of the screening test. Natural fragrance materials
dissolved in DMSO were diluted (two times) in 96-well plates in the concentration range
of 800–3.125 µg/mL for all bacteria. The appropriate medium was added to the 96-well
plates in volumes: col. 1: 164 µL, col. 2–10: 90 µL, col. 11: 100 µL, and col. 12: 110 µL. The
natural material was added to the col. 1 in volume of 16 µL, and two-fold serial dilutions
were prepared horizontally on the plate. Excess dilutions (90 µL) were discarded from the
plate. The subsequent part of the MIC assay was carried out in the same way as for the
screening tests (the procedure is described in Section 4.2.3).

4.2.5. Analysis of the Screening and MIC Assays

The basis for the change in the analysis of the assays was the colour of the alamarBlueTM

reagent from pink to blue. The lack of colour change after the addition of the dye indicated
inhibition of bacterial growth, as described by Rampersad [65]. The MIC value was deter-
mined as the last well showing a noticeable blue colour, expressed in µg/mL. Screening
and MIC assays were performed and analysed according to CLSI (Clinical and Laboratory
Standards Institute) with slight modifications [66,67].

5. Conclusions

The growth inhibitory and microbial activity of the 99 fragrance materials was deter-
mined for the first time against specific bacterial species, namely S. aureus (ATCC 6538), S.
epidermidis (ATCC 12228), K. rhizophila (ATCC 9341), K. aerogenes (ATCC 13048), K. pneu-
moniae (ATCC 13883), P. gergoviae (ATCC 33028), B. cepacia (ATCC 25416), P. putida (ATCC
49128), P. fluorescens (ATCC 13525), and C. acnes (ATCC 11827). Screening tests revealed that
S. epidermidis was the most resistant Gram-positive bacterium, inhibited by 22 fragrance ma-
terials, whereas P. gergoviae was the most resistant Gram-negative bacterium, inhibited by
11 materials. The appropriate tests demonstrated that the lowest MIC values were obtained
for S. aureus (Nigella sativa expressed oil, Cynara scolymus absolute, MIC = 25 µg/mL), K.
rhizophila (Abies balsamea absolute, MIC = 12.5 µg/mL), and P. putida (Piper cubeba EO, Abies
balsamea absolute, MIC = 12.5 µg/mL). On the basis of the results obtained, it indicates
the antibacterial potential of natural fragrance raw materials. We can conclude that the
most active aroma materials against the pathogens tested offer an alternative to chemical
preservatives and antibiotics. Thus, they can be used as ingredients in various formulations
of the cosmetic, chemical, medical, or food industries. In addition to providing unique
characteristics such as fragrance and colour, they will exhibit antimicrobial activity to
prevent product contamination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12213777/s1, Table S1. Minimal Inhibitory Concentration (MIC)
parameters of natural flavour and fragrance materials on all evaluated strains.
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