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Abstract: Rice (Oryza sativa L.) is one of the most significant staple foods worldwide. Carbohydrates,
proteins, vitamins, and minerals are just a few of the many nutrients found in domesticated rice.
Ensuring high and constant rice production is vital to facilitating human food supplies, as over three
billion people around the globe rely on rice as their primary source of dietary intake. However,
the world’s rice production and grain quality have drastically declined in recent years due to the
challenges posed by global climate change and abiotic stress-related aspects, especially drought, heat,
cold, salt, submergence, and heavy metal toxicity. Rice’s reduced photosynthetic efficiency results
from insufficient stomatal conductance and natural damage to thylakoids and chloroplasts brought
on by abiotic stressor-induced chlorosis and leaf wilting. Abiotic stress in rice farming can also cause
complications with redox homeostasis, membrane peroxidation, lower seed germination, a drop
in fresh and dry weight, necrosis, and tissue damage. Frequent stomatal movements, leaf rolling,
generation of reactive oxygen radicals (RORs), antioxidant enzymes, induction of stress-responsive
enzymes and protein-repair mechanisms, production of osmolytes, development of ion transporters,
detoxifications, etc., are recorded as potent morphological, biochemical and physiological responses
of rice plants under adverse abiotic stress. To develop cultivars that can withstand multiple abiotic
challenges, it is necessary to understand the molecular and physiological mechanisms that contribute
to the deterioration of rice quality under multiple abiotic stresses. The present review highlights the
strategic defense mechanisms rice plants adopt to combat abiotic stressors that substantially affect
the fundamental morphological, biochemical, and physiological mechanisms.

Keywords: abiotic stress; drought; physiology; rice; tolerance

1. Introduction

Rice (Oryza sativa L.), a species of Poaceae, is a ubiquitous staple food worldwide,
offering vital nutrients, including carbohydrates, thiamin, folate, calcium, iron, pantothenic
acid, and energy [1,2]. Due to the global significance of this economically essential crop
in supporting growing human populations and meeting extensive nutritional needs, im-
proving grain production and quality standards is becoming increasingly important [3,4].
Although yields have plateaued in the cultivation of most cereals, including rice, in recent
decades, climate change is a significant challenge that greatly influences breeders’ decisions
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regarding productivity and quality issues [5]. In the coming decades, persistent negative
impacts of climatic change and global warming can cause shifts in the severity, duration,
and frequency of abiotic stress in rice farming, jeopardizing agricultural sustainability and
global food security [6]. By 2050, it is anticipated that global warming and changes in the
climate will lower irrigated rice production by 7%, while the yields of rainfed rice will likely
decline by 6% and, more conservatively, up to 2.5%, respectively [7]. Various strategies
have been adopted in climate-resilient agriculture to promote long-term sustainability. The
Green Revolution brought a substantial increment in rice productivity across the globe
through the usage of promising and high-yielding rice varieties and the implementation of
modern farming techniques like drip irrigation, biofertilizers, biopesticides, and usage of
recommended doses of plant protection formulations (PPFs) [8].

Rice farming is under continuous exposure to a broad category of biotic (pathogen
invasion and insect infestations) and abiotic (extreme temperatures, drought, cold, heavy
metal toxicity, and salinity) stress-related factors leading to serious agricultural issues
like poor grain production and quality deterioration [9]. Figure 1 depicts different abiotic
stress-related factors that negatively impact rice farming considerably.
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Figure 1. Effects of different abiotic stresses on rice.

Heat stress and drought are major abiotic stressors that interfere with rice’s physiolog-
ical, molecular, biochemical, and morphological responses, resulting in massive crop losses
and compromises in quality [10]. It has become apparent that frequent exposure to high
temperatures during rice cultivation appears to have detrimental effects in various tropical
and subtropical countries, including India, China, Bangladesh, Pakistan, Thailand, and
several African countries. This includes substantial declines in yield and quality, which can
be attributed to the sudden occurrence of pollen sterility and loss of fertility [11]. According
to Oladosu et al., frequent exposure to drought is detrimental to brown and milled rice, as
it can drastically reduce the quality of grain production to a great extent [12]. On the other
hand, a rise in temperature leads to a rise in humidity, making spikelets sterile [13]. The
flower buds cannot mobilize essential nutrients like carbohydrates and derived products
when subjected to extreme heat stress.

Chilling stress is another influential environmental stress that significantly impacts
the rice plants’ normal growth and development, including the percentage of seeds that
successfully germinate, the vigor of seedlings, the formation of tillers, the reproductive
capacity of plants, and the maturity of grains [14]. Similarly, under salinity stress, invasive
apoplastic ion transport drives Na+ uptake into rice shoots [15]. Likewise, the submersion
of plants can have detrimental effects on various physiological processes, including oxygen
and carbon dioxide exchange, light availability, and nutrient absorption. These adverse con-



Plants 2023, 12, 3948 3 of 41

ditions can hinder the process of photosynthesis, exhaust energy reserves, and eventually
lead to growth impairment or the mortality of plants [16]. According to Suwanmontri et al.,
rice farming under rainfed lowland ecosystems is severely affected by intense and rapid
exposure to abiotic stressors, leading to significant damage both in terms of quality and
quantity [17]. Furthermore, plants exposed to high amounts of heavy metals experience a
decrease or complete halt in metabolic activities and exhibit morphological abnormalities,
ultimately leading to a reduction in crop yield [18].

To adapt to these abrupt changes in environments, plants have established intricate
response mechanisms for detecting environmental signals and displaying appropriate
physiological, morphological, and biochemical adaptations. Abiotic stressors can trigger
the up- or downregulation of various genes, activating or inhibiting multiple signaling
pathways and enhancing the plant’s tolerance to different environmental challenges [19].
Therefore, a complex interaction of signaling cascades is required at the molecular level
to recognize external stimuli and the subsequent awakening of defense mechanisms [16].
In recent years, significant advancements have been made in our understanding of how
plants respond to abiotic stresses. This progress can be attributed to contributions made in
plant physiology, genetics, biotechnology, and molecular biology. By building upon the
existing knowledge of stress tolerance mechanisms in rice cultivars, it is possible to develop
novel gene pools that exhibit enhanced resistance to abiotic stresses [20]. In light of the
preceding, this review aims to assess the biochemical, physiological, and morphological
responses of rice to different abiotic stimuli and identify the process parameters used to
generate rice varieties that are tolerant to abiotic stress.

2. Morphophysiological and Biochemical Impacts and Tolerance Mechanisms in
Response to Different Abiotic Stressors
2.1. Drought Stress

The environment has witnessed several persistent repercussions from global climate
change, like alterations to the growing season, patterns of rainfall, severe droughts, and
soaring temperatures. A significant impact of these changes is the serious threat posed to
global rice production by drought stress [21]. Statistics show that 42 million hectares of
rice in Asia are occasionally or frequently vulnerable to drought, significantly reducing
yield [22–24]. According to Lafitte et al., rice suffers economic losses of 48–94% during the
reproductive stage due to water stress and another 60% during the grain-filling stage [25].
Reduced cell development, elongation, expansion, and the disruption of plant antioxidant
activity triggered by the buildup of reactive oxygen species (ROS) are all ways that drought
stress affects rice yield [26].

2.1.1. Morphophysiological and Biochemical Responses to Drought Stress

Plants have different strategies to deal with drought, which include escape, avoidance,
and tolerance. Escape involves adapting to a shorter life cycle or growing seasonally to
reproduce before the environment becomes dry [27]. Avoidance focuses on maintaining a
high water potential in plants by reducing water loss through stomatal control and having
a well-developed root system for water uptake [28]. Tolerance, on the other hand, involves
limiting the number and size of leaves in response to water scarcity, but this strategy can
result in reduced yield [29]. Rice production is particularly impacted by three typical
types of droughts: early water stress, which delays the transplantation of seedlings; mild
intermittent stress with cumulative impacts; and late stress, which affects late-maturing
varieties [30]. The root–canopy ratio, plant height, and dry weight decrease upon water
scarcity exposure. Especially at the flowering stage of rice, the rate of photosynthesis,
stomatal conductance, rate of transpiration, water potential of leaves, and the air–leaf
temperature gap all experience a substantial decline [23]. During the reproductive stage,
rice is highly susceptible to water stress, significantly reducing grain production with a
drastic decrease in the number of whole grains and spikelets per panicle [31]. The major
plant part that detects changes in soil conditions are the roots, which also play a pivotal
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role in how plants react to water stress. When studying rice root systems under drought
stress, a significant positive association was observed between root diameter, depth, and
overall plant health and vitality. In drought, plants lengthen their roots to use the water
in the soil more efficiently [32]. In response to the drought, rice’s root length increases,
enabling the plants to access deeper water reserves in the soil. Additionally, there is a
notable reduction in the diameter of nodal roots, leading to the development of relatively
finer roots that aid in resource conservation [33]. Many upland japonica rice cultivars can
withstand drought because of their vast and deep root systems. In contrast, the indica
subspecies of rice often experience a reduction in their growth period [34]. Rice is less
adapted to water-scarce circumstances than other cereal crops. Upland rice cultivars’ deep
root systems are considered good at sustaining yields under drought conditions. In contrast,
lowland rain-fed rice crops are susceptible to fluctuating soil water levels, and specific
genotypes have adapted to these circumstances by promoting root growth even before
and throughout drought [35]. According to Banoc et al., rice plants with well-established
root systems exhibit greater water stress resilience and can maintain productivity even
under such conditions [36]. Root growth takes precedence over shoot growth when there is
a water shortage. Notably, there is a significant disparity in the rate of sap leakage from
the root network between rice genotypes that are tolerant to drought and those that are
susceptible to it [37].

The rolling of leaves is an adaptive mechanism against water deficiency. This adapta-
tion benefits plants in times of water scarcity and low soil moisture, as it effectively reduces
transpiration rates and helps maintain a favorable water balance within plant tissues [38].
As the intensity of the drought stress increases, rice leaves often exhibit varying degrees of
leaf rolling. Broader-leafed indica rice cultivars perform better in drought conditions than
shorter, narrower-leafed varieties regarding biomass, stomatal conductance, and transpi-
ration efficiency [39]. Furthermore, to sustain turgor conditions, plant cells subjected to
drought attempt to regulate their osmotic potential by accumulating specific osmolytes.
One of the most well-known osmolytes, proline, functions as a mediator in osmotic control
to protect the cell against ROS while maintaining the integrity of the plasma membrane.
Accumulation of proline is linked to increased resistance to stress [40].

Photosynthesis, a crucial metabolic process that regulates the growth and yield of
crops, is influenced by drought and water stress. When water is scarce, the relative water
content in plants is reduced. In response, plants employ water-saving strategies such as
closing stomata, which reduces the intake of CO2, transpiration rate, and gaseous exchange
and impedes electron transport, leading to the accumulation of ROS [41–43]. Drought stress
limits the efficient operation of photosystems I and II (PSI and PSII), disrupts the function
of rubisco, and hinders the electron transport chain and ATP synthesis [26,44]. In drought
conditions, the efficiency of photosynthetic pigments such as carotenoids, phycobilin, and
chlorophyll is diminished. This leads to insufficient absorption of light, inadequate light
harvesting, and ineffective photoprotection, eventually leading to limited photosynthesis
and a decrease in the production of photosynthates [45,46]. Moreover, carotenoid also has a
role in plant signaling during stress; thereby, a reduction in their content can detrimentally
affect signal perception during drought stress [47]. Multiple studies have documented the
effects of drought stress on the structural integrity of chloroplasts, chlorophyll production,
and photosynthesis. When subjected to drought stress, chloroplasts change shape, tran-
sitioning from oval to nearly round. Additionally, they move from the cell wall toward
the center of the cell, and the thylakoids within the chloroplasts become disorganized [48].
Another study observed irregularly shaped chloroplasts with swollen thylakoids in re-
sponse to drought stress [49]. The severity and duration of the stress and the specific plant
species or genotype determine the extent to which chloroplast integrity is affected [50].
Drought stress leads to the accumulation of ROS, predominantly in chloroplasts and to
some extent in mitochondria, resulting in oxidative stress [51]. Furthermore, ROS produced
in the chloroplasts of water-stressed plants can negatively regulate the expression of genes
related to photosynthesis and chlorophyll production via retrograde signaling [52,53].
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Direct or indirect oxidative stress in water scarcity conditions causes cell membrane
lipid peroxidation in plants, which in turn stimulates a cascade of physiological and bio-
chemical changes with the potential to disrupt metabolism and negatively impact crop
yield and quality [54]. During drought stress, the plant’s ROS overproduction causes an
abnormal decrease in photosynthetic electron chains [55]. Various ROS, such as hydroxyl
radical (HO·), hydrogen peroxide (H2O2), and superoxide anion (O2

−), are generated by
multiple cell organelles. These ROS trigger oxidative damage to cellular components,
DNA fragmentation, the suppression of enzyme activity, and lead to lipid and protein
peroxidation. They also initiate programmed cell death pathways, ultimately leading to
cell death. Antioxidants are vital plant nutrients that scavenge ROS. Therefore, enhancing
the expression of antioxidants boosts the rice plants’ ability to withstand drought. Non-
enzymatic antioxidants such as ascorbate (AsA), tocopherol, and glutathione (GSH), are
different from catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX),
superoxide dismutase (SOD), and monodehydroascorbate reductase (MDHAR), which are
enzymatic antioxidants. The metabolic processes of SOD, CAT, peroxidase (POD), and
soluble sugars were elevated in drought-tolerant rice cultivars, whereas malondialdehyde
(MDA) level was reduced [56]. At the time of the filling phase, the drought would swiftly
increase the activities of POD and CAT while slightly decreasing SOD activity, reducing
AsA and GSH contents, and maintaining low levels of H2O2 and MDA. It is commonly
accepted that drought causes increased POD and CAT activities of leaves [33]. The removal
of H2O2 is significantly aided by the use of ascorbic acid, which is an essential antioxi-
dant. During the ascorbic acid-glutathione cycle, APX employs two of the ascorbic acid
molecules to catalyze the breakdown of H2O2 into water. This reaction was followed by the
synthesis of monodehydroascorbate. As rice’s drought stress increases, the AsA content
of functional leaves drops [57]. Enhancing the content of naturally occurring antioxidants
(both enzymatic and non-enzymatic) could be a tactic to lessen or stop oxidative damage
and boost plant resilience to drought. During drought, redox-sensitive flavonoids and
phenolic acids are synthesized to counteract ROS and bind transition metal ions required
for the Fenton reaction [58]. Redox-sensitive phenolic acids (protocatechuic acid, gentisic
acid, syringic acid, gallic acid, caffeic acid, salicylic acid (SA), and p-coumaric acid) and
flavonoids (rutin, catechin, kaempferol, quercetin, naringin, apigenin, and myricetin) pro-
vide drought-tolerant rice cultivars with the capacity to sustain redox homeostasis [59].
Polyamines, which are small molecules with a positive charge, affect rice’s adaptation to
stress from drought. Some polyamines identified in plants include putrescine, spermi-
dine, and spermine [60]. They can interact with several signaling networks and control
homeostasis, osmotic potential, and membrane stability. When rice plants are subjected to
drought stress, there is an elevation in polyamine levels, which is associated with enhanced
photosynthetic activity, decreased water loss, and improved ability to detoxify and adapt
to osmotic stress [61]. Carotenoids are crucial members of the antioxidant defense system
because they prevent the synthesis of singlet oxygen, stabilize triplet chlorophyll in tissues
under stress, and shield plants from oxidative damage. As a result, rice’s carotenoid content
rises to counteract oxidative stress [62].

2.1.2. Molecular Response to Drought Stress

Rice plants have developed complex mechanisms to survive different abiotic stresses.
These mechanisms allow them to adapt or avoid stress by responding optimally. Abiotic
stressors are often interconnected and cause damage to plant cells, resulting in oxidative
stress [63]. When plants encounter stress, membrane receptors detect the initial signals and
transmit them to initiate transcription. This process is controlled by hormones, transcription
factors (TFs), and transcription factor-binding proteins (TFBPs). These factors work together
to activate stress-responsive mechanisms, repair damaged proteins and membranes, and
restore homeostasis [64] (Figure 2). Inadequate response at any stage of the signaling
and gene activation process can lead to permanent alterations in cellular equilibrium,
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breakdown of functional and structural proteins and membranes, and ultimately, cell
death [65].
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leading to the activation of stress responses.

To combat water scarcity, drought stress in rice activates both abscisic acid (ABA)-
dependent and ABA-independent signaling pathways [66]. It works via extensive and
intricate signaling pathways to regulate drought stress. This involves adjusting the physi-
ological, biochemical, and molecular attributes of the rice to improve the root’s ability to
acquire more water and the stomata’s ability to lose less water. This adaptation helps the
plants cope with water scarcity stress. Plants respond to drought stress by narrowing their
stomata to reduce water loss, improve water utilization efficiency, and enhance their chances
of survival [67,68]. ABA governs the movement of stomata to lessen the transpiration rate
under drought stress [69–71]. ABA receptor, OsPYL/RCAR5, has been demonstrated to
exert a positive regulatory effect on the expression of genes that are responsive to abiotic
stress, and overexpressing the OsPYL/RCAR5 gene additionally enhanced transgenic rice’s
ability to withstand drought [72]. Research has demonstrated that rice DREB transcription
factors are essential controllers of ABA-independent drought responses. Rice cultivars
that overexpress OsDREB1F exhibited improved drought tolerance, indicating that this
gene mediates the ABA-dependent pathway [73]. When rice undergoes drought stress,
the root system improves cuticle resilience and boosts the number, density, and depth of
root hairs [74]. One key component in achieving that is DRO1, a combined quantitative
trait locus (QTL) linked to root depth, which is upregulated in response to drought stress,
promotes deeper growth of roots, and enhances tolerance against drought [75]. It also
regulates the elongation of cells of the root tip, asymmetric growth, and bending of the
root tip. When transformed with DRO1, rice cultivars with shallow roots become drought
tolerant by establishing a deeper root system [75]. Drought resistance also depends on
genes related to osmotic adjustment, equilibrium of stomatal activity, water-use effective-
ness, phytohormones, and root and shoot biomass. Various genes, like OsPYL/RCAR5 and
EcNAC67, cause delayed leaf rolling and increased root and shoot mass under drought
stress [72,76]. Drought resistance in rice is improved by EcNAC67 overexpression. When ex-
posed to water stress, in comparison to non-transgenic ASD16, transgenic plants displayed
delayed leaf rolling signs. Additionally, they revived quickly after re-watering, retained a
20% higher relative water content in the leaves, and experienced a less pronounced decline
in plant height and yield [76]. Research studies revealed that the DSM1 gene, a Raf-like
MAPKKK, might modulate ROS scavenging to mediate drought responses in rice [77].
Table 1 presents a summary of key genes associated with drought resistance in rice.
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Table 1. Identified genes linked to drought stress tolerance in rice.

Name of Genes Function Reference

DRO1 Stimulates the growth of roots, resulting in increased
length and deeper penetration into the soil [75]

EcNAC67 Enhances water content, postpones leaf curling, and
increases the mass of roots and shoots [78]

DsM1
Assists in removing reactive oxygen species and

enhances drought resistance during the early growth
(seedling) phase

[77]

OsPYL/RCAR5 Causes the closure of stomata and controls the weight
of leaves [33]

OsDREB2B Length of roots and the amount of root growth [73]

OsNAC5 Increases the size of the roots and improves the
amount of grain produced [79]

SNAC1 Enhances spikelet fertility [80]

OsLEA3-1 Enhances grain yield [81]

OsbZIP23 Increase grain yield [82]

OsbZIP72 Enhancing tolerance to drought and increasing
sensitivity to ABA (upregulating ABA) [83]

AP37 Improves the process of seed filling and increases the
weight of the grain [84]

OsNAC10
Enhances resistance to drought during the vegetative

phase, enhances root size, and enhances crop
productivity

[79,85]

EDT1/HDG11
Increases water use efficiency, the buildup of

compatible osmolytes, heightened antioxidant
enzymatic activity, and improves photosynthesis

[86]

AtDREB1A
Osmolytes accumulation, maintenance of chlorophyll,
increment in relative water content, and reduction in

ion leakage
[87]

OsCPK9 Enhances drought tolerance in transgenics through
improved stomatal closure and osmoregulation [88]

ADC Enhances resistance to drought by synthesis of
polyamines such as putrescine and spermine [61]

OsOAT Enhances resistance to drought and promotes higher
seed production [89]

OsTPS1 Enhances rice seedling’s tolerance to drought, cold,
and salinity stress [90]

P5CS Enhances biomass production under salinity and
drought stresses [91]

HVA1 Plasma membrane stability, increases leaf relative
water content (RWC) and growth under drought stress [92]

Hrf1 Drought resistance via antioxidants generation, ABA
signaling, and regulating stomata closure [93]

JERF1 Enhances drought resistance [94]

OsRDCP1 Improves drought stress tolerance [95]

OsSDIR1 Regulates stomata under drought stress [96]

OsSRO1c Regulates stomatal closure and enhances oxidative
stress tolerance [97]
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It has been noted that seed priming is an effective strategy to reinforce the antioxida-
tive defense system and enhance plant stress responses. One study observed a notable
increase in antioxidant activity, total phenolic content, and expression of RD1 and RD2, rice
drought-responsive genes belonging to the AP2/ERF family in two different rice genotypes,
Nagina-22 (known for its drought tolerance), and Pusa Sugandh-5 (known for its drought
sensitivity). This upregulation was observed when the seeds of these genotypes were
primed with different plant hormonal or chemical elicitors, such as methyl jasmonate,
SA, and paclobutrazol, under drought stress [98]. Rice that has been colonized by Tri-
choderma harzianum isolates is drought tolerant, grows faster, and experiences a delay in
the effects of drought [99]. Colonization boosts rice’s ability to acquire and store water
and root growth. In colonized plants, there is a lesser increase in the concentration of
stress-induced metabolites.

2.2. Heat Stress

Global food security is now seriously threatened by heat stress brought on by a fast-
changing climate. When the temperature rises above a specific point and continues for
a while, it is said to be under heat stress, which can permanently harm plant growth
and development [100]. Without effective adaptability, CO2 fertilization, and genetic
development, it is predicted that every one-degree rise in the global mean temperature will
result in lower worldwide yields of wheat, rice, maize, and soybeans [101]. Rice can grow
normally at temperatures between 27 and 32 ◦C. Above 32 ◦C, all phases of growth and
development of plants are negatively affected. The flowering stage, however, required a
temperature of 33 ◦C. Heat damage occurs when rice is exposed to air temperatures above
35 ◦C [102].

2.2.1. Morphophysiological and Biochemical Responses to Heat Stress

Rice has three types of heat stress resistance: defense, avoidance, and tolerance. Heat
defense is the mechanism of controlling morphological development and transpiration of
leaves to lower the temperature of the panicles and avoid deterioration from scorching tem-
peratures [103]. Heat avoidance includes adjusting spikelet flowering time by shortening
the flowering period and early blooming, which is a desirable characteristic for developing
heat-resistant rice cultivars [104]. Heat tolerance is the ability to continue generally living
in hot temperatures. In response to heat stress, rice adjusts its physiochemical processes,
which comprises growth retardation, leaf rolling, the senescence of leaves, and changes to
fundamental physiological functions such as photosynthesis, respiration, the permeability
of membranes, and ROS, that minimize the pollen sterility [105].

In addition to the hormone synthesis that influences the growth and development of
shoots, the roots play essential roles in water intake and nutrients [106]. Although root
systems are crucial in helping plants adapt to high temperatures, their thermotolerance
mechanism has been less explored. Most of the research has focused on studying the aerial
parts of plants [107,108]. Root growth is more susceptible to high temperatures than shoot
growth, due to its lower optimal temperature [109]. Typically, when soil temperatures are
elevated, a decrease in root growth and physiological activity occurs before the cessation
of shoot growth [110]. A study showed that the rice plant roots failed to elongate and
divide at a temperature of 43 ◦C [111]. Heat stress can affect rice plants during most of
their vegetative growth stages. When temperatures are consistently high, the potential for
seed germination decreases, resulting in a lower germination rate and weaker seedling
growth [112]. When exposed to heat stress (42–45 ◦C), the seedlings experience increased
water loss, wilting and yellowing of leaves, hindered growth of roots and seedlings, and
in severe cases, death of the seedlings [102,113]. Similarly, rice seeds failed to germinate
upon continuous exposure to a constant temperature of 43 ◦C [114]. In addition, another
study found that rice plants died in the initial vegetative phase when exposed to a constant
air temperature of 40 ◦C and high levels of CO2 (700 ppm) [115]. Furthermore, when
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a sequence of distinct heat stress treatments was applied to rice seeds, young seeds, in
particular, were the most vulnerable in the initial two days following flowering [116].

Rice plants are more vulnerable to heat stress during the reproductive stage than
the vegetative stage, including initiation of panicle, development of male and female
gametophytes, anthesis, pollination, and fertilization [117,118]. Under heat stress (40 ◦C
day/35 ◦C night) for 15 days, rice output per plant was 86% lower overall, and the panicle
number was roughly 35% lower [119]. In japonica rice, compared to indica rice, heat stress
significantly impacts the number of tillers and panicles [120]. When the rice plant enters
the flowering stage, it becomes highly vulnerable to elevated temperatures. The second-
most vulnerable stage appears around nine days before blossoming. Significant rises in
temperatures during anthesis cause a high proportion of spikelets to be sterile. During the
grain-filling stage, heat stress has been observed to impact the quality of rice negatively.
This is evident through a decrease in palatability, an unfavorable grain appearance, and an
increase in grain chalkiness [121–124]. The presence of chalky kernels is considered the most
prominent indication of heat stress during this particular phase of rice development. During
the panicle-initiation stage, heat-stressed plants experience a decrease in non-structural
carbohydrates, underdeveloped vascular bundles, and smaller glumes, ultimately reducing
grain weight [125]. The total grains and rice production percentage declines as nighttime
temperatures rise. White immature kernels are formed when rice plants endure exposure to
high temperatures at the ripening stage, disrupting the carbohydrate sink–source balance.
The increased rhizosphere temperature causes the total dry weight of super rice to decrease
by 16.26% [126].

A reduction in the stomatal aperture size, the xylem in the leaves, and an increase
in the trichome density on both surfaces are additional examples of common adaptive
responses to heat stress [127]. Photosynthesis is a crucial biochemical function in plants
that is most susceptible to heat. The main sites of injury at high temperatures in chloroplast
are light-dependent reactions in the thylakoid membrane and carbon fixation reactions
in the stroma [128]. High temperature has a strong affinity for the thylakoid membrane.
Significant changes in chloroplasts include changed thylakoid structural arrangement, loss
of grana stacking, and grana swelling during heat stress. Heat shock decreases the number
of photosynthetic pigments. At extreme temperatures, the enzymatic activities of invertase,
ADP-glucose pyrophosphorylase, and sucrose phosphate synthase are diminished, leading
to a substantial decrease or complete cessation of the function of PSII [129,130].

Heat stress-induced imbalance in metabolic activities, including photosynthesis and
respiration, results in a rise in ROS or a fall in the cell’s efficiency to scavenge oxygen
radicals. When exposed to high temperatures, rice anthers produce much more ROS,
decreasing floret fertility and pollen viability [131]. MDA, a reliable indication of free
radical damage to cell membranes, is produced when membrane lipids under heat stress
undergo peroxidation. Increased lipid peroxidation demonstrated that oxidative stress
frequently developed in rice leaves following exposure to high temperatures [132]. Various
enzymes and metabolites take part in the antioxidant defense framework. The antioxidant
enzymes, such as SOD, APX, CAT, GR, glutathione peroxidase (GPX), and peroxiredoxins,
assist in shielding the cells from an accumulation of ROS. Furthermore, Phenolic chemicals
can remove ROS, neutralize singlet and triplet oxygen, or break down peroxides. Moreover,
the GSH molecule has a crucial function in protecting the photosynthetic system [133].

2.2.2. Molecular Response to Heat Stress

Heat stress signals are sensed through numerous heat shock transcription factors
(HSTFs) and proteins. Various genes related to Ca2+ homeostasis, ROS, lipid metabolism,
and phytohormones are activated to trigger the response against heat stress [134]. In rice,
a large number of high-temperature-related genes, including stress-related transcription
factors (TFs), HSTFs, and heat shock proteins (HSPs), have been cloned. These genes are in-
volved in heat stress-related temperature sensing and response [135] (Table 2). OsHSP26.7,
for instance, encodes an HSP that shields chloroplasts from oxidative damage brought on
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by extreme heat and ultraviolet radiation [136]. Similarly, under the HSP101 promoter, Os-
WRKY11 encodes a TF with a WRKY domain that can dramatically increase rice’s tolerance
towards heat and drought [137]. Furthermore, a NAC TF called SNAC3 mediates ROS
metabolism, and OsMYB55 TF in rice significantly improves tolerance to high-temperature
and increases grain yield [138,139]. The HYR gene is a crucial regulator that can directly
activate photosynthesis and can control downstream genes involved in carbon metabolism
as well as morphology and physiology during drought and heat stress, maintaining the
yield of rice [140]. The cytoskeleton plays a vital role in the ability of organisms to tolerate
and adapt to stressful conditions. In the case of rice, a specific intermediate filament called
OsIF has been identified as being particularly important in mitigating the implications
of heat and salinity stress on the photosynthetic apparatus and overall crop yield [119].
Additionally, several enzymes, including glutamate decarboxylase and glutamine synthase,
are some of the additional key factors that produce stress-related amino acids that aid rice
in tolerating extreme heat [139,141]. A mitochondrial lipase known as EG1 can activate the
expression of floral organ genes during high temperatures, thereby preserving the consis-
tency of floral organ growth [142]. Table 2 presents a summary of key genes associated
with heat stress tolerance in rice.

Table 2. Identified genes linked to heat stress tolerance in rice.

Name of Genes Function Reference

OsMYB55 Enhances amino acids’ metabolic process, enhancing
the ability to withstand high temperatures [139]

OsAREB1 Controls abiotic stress-responsive gene expression
utilizing an ABA-dependent mechanism [143]

OsHSF7
Increases the expression of HSPs and other genes that

protect against exposure to high temperatures,
resulting in enhanced resistance to heat

[144]

HSP101
The effects of heat training in rice seedlings are

prolonged by post-transcriptional interactions of
HSA32/HSP101 after heat treatment

[145]

GAD3 Participate in the ability to withstand
high temperatures [139]

OsHTAS Improves rice’s ability to withstand heat by mediating
stomata closure caused by H2O2

[146]

TCM5
Plays a vital role in the development of chloroplasts

and the maintenance of PSII function in
high temperatures

[147]

EG1

Enhances homeostasis in floral organs and the ability
to withstand temperature changes by activating a

pathway involving mitochondrial lipase in response to
high temperatures

[147]

OsTT1 Breaks down poisonous denatured proteins while
preserving the high-temperature response process [127]

TOGR1

Plays a role in the normal processing of rRNA
precursors at high temperatures and acts as a

chaperone for the nucleolar SSU complex, crucial for
cell growth in high-temperature environments

[148]

OsHES1 Plays a crucial part in adjusting to heat stress and
ensuring the proper functioning of chloroplasts. [149]

OsAET1
Plays a dual function in regulating the response to
high temperatures through tRNA modification and

control of translation
[150]
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Table 2. Cont.

Name of Genes Function Reference

OsNTL3 Plays a crucial role in thermotolerance by interacting
with OsbZIP74 [151]

OsHsfA2c Involved in regulating the transcription of the HSP100
gene in the cytoplasm of rice [152]

OsHCI1 Facilitates the nuclear export of target proteins, and its
heterologous expression enhanced thermotolerance [141]

OsNSUN2

Controls the mRNA modification of 5-methylcytosine
(m5C), which improves mRNA translation efficiency

and sustains normal development at
higher temperatures

[153]

OsTT3.1
TT3.2 is ubiquitinated by TT3.1 for vacuolar

degradation, and TT3.1 may function as
a thermosensor

[154]

OsTT3.2 Chloroplasts rely on mature TT3.2 proteins to protect
thylakoids against the detrimental effects of heat stress [154]

OsANN1
Enhances SOD and CAT activity, controls H2O2
content and redox homeostasis, to provide cell

protection against abiotic stress
[155]

As a key defense against heat stress, plants accumulate soluble carbohydrates like
glucose and fructose as well as non-soluble sugars like starch [156]. Under acute heat stress,
the expression of OsSUT1, a sucrose transporter, is elevated, which results in increased
sugar buildup and reduced photosynthesis [157]. Tolerance to high temperatures in plants
is greatly influenced by the accumulation of certain metabolites. Under intense heat, the
MYB55 TF in rice controls the expression of downstream glutamate dehydrogenases GAD3
and glutamine synthase OsGS1.2, thus promoting the buildup of stress-related amino acids
like gamma-aminobutyric acid (GABA) and L-glutamic acid [139]. The analysis of the
temporal transcriptome of germinating seeds subjected to heat stress at 35 ◦C reveals that
the early response to heat stress is mediated by the Inositol-requiring enzyme 1 (IRE1)-
mediated endoplasmic reticulum (ER) stress response and the jasmonic acid (JA) pathways.
As JA promotes the spliced form of OsbZIP50, a gene marker linked to the IRE1-specific
pathway, it is hypothesized that the rise in JA concentration levels during heat stress
may happen before the ER stress response [116]. Numerous genes associated with high-
temperature responses have been documented, leading to a better understanding of the
signaling pathways in which they participate. Nevertheless, the precise molecular processes
and regulatory systems underlying sensing of high-temperature signaling and transmission
to downstream components remain inadequately recognized, thus necessitating further
investigation as the critical area of prospective studies.

Ethylene, a crucial plant hormone, significantly regulates biotic or abiotic stress sig-
naling. In the case of heat stress in rice seedlings, ethylene-mediated signaling has been
found to mitigate oxidative damage, preserve chlorophyll levels, and enhance thermotoler-
ance [158]. Specifically, under heat stress conditions, ethylene-mediated signaling controls
the mRNA transcripts of certain heat stress transcription factors (HSFs) and genes related to
ethylene signaling [125]. Phytohormones are also crucial in controlling how rice yield qual-
ities react to heat stress. Specifically, cytokinin and abscisic acid (ABA) regulate the number
of spikelets per panicle under high-temperature conditions. Additionally, gibberellin and
indole-3-acetic acid may be associated with spikelet fertility, while indole-3-acetic acid,
ABA, gibberellin, and cytokinin regulate grain weight [100].

When exposed to heat stress, foliar sprays of boric acid (25, 50, or 100 mg L−1) or
sodium borate (50 mg L−1) substantially boosted net photosynthetic rates in comparison
to untreated plants [159]. The use of foliar borate compounds on seedlings experiencing
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heat stress led to a decrease in oxidative damage, as indicated by the reduction in the levels
of leaf MDA and proline synthesis and an enhancement in the photochemical efficiency
of PSII.

2.3. Cold or Low-Temperature Stress

Rice is sensitive to cold, especially during the germination process, which causes
significant economic losses. The dynamics of the crop’s growth are negatively impacted
by cold stress in temperate and high-altitude rice-growing regions in the tropics and
subtropics [160]. Cold stress has detrimental consequences on rice, such as decreased
seedling growth, poor germination, constrained leaf expansion, chlorosis, and wilting.
Necrosis, or tissue death, is the final impact of these factors [161].

2.3.1. Morphophysiological and Biochemical Responses to Cold or Low-Temperature Stress

In circumstances of cold stress, the growth of rice shoots and roots is hindered in
terms of length, fresh and dry weight, and protein content [162]. A research study found
that when exposed to cold stress, the root growth and developmental characteristics of
various genotypes of rice decreased, ranging from 2% to 87% [163]. Furthermore, when
rice is subjected to cold stress during the vegetative stage, the leaves begin to yellow, the
plant grows shorter, and the number of tillers decreases [164]. Rice’s ability to germinate,
as well as its coleoptile and radicle growth, is significantly reduced by low temperatures.
Inhibition of seed germination and growth retardation or death of the seedlings cause a
decline in crop yield [165]. The reproductive phase of rice, specifically in the post-meiotic
stages of anthers, has a pronounced impact on pollen production due to cold stress [166].
In addition, cold temperatures during the immature microspore stage of rice anthers lead
to heightened protein degradation. Other effects of cold stress comprise damage to the
photosynthetic apparatus, including modifications to the number of chloroplasts, ultrastruc-
ture, light-harvesting chlorophyll antenna complexes, modified grana arrangement, and
lamellar structures [164,167]. Thus, there is a shortage of plant energy resources since cold
temperatures generally slow photosynthetic processes. This is due to the reduced activity
of several enzymes involved in tetrapyrrole metabolism and the down-regulation of gene
expression, which affects chlorophyll production [164]. The circadian clock is crucial for
rice’s reaction to chilling stress. Night chilling stress affects leaf chlorophyll metabolism
and PSII more severely than its daytime equivalent [168]. Additionally, nitrogen intake has
often been found to be restricted by chilling stress in rice [169]. Numerous studies have
shown that stress caused by low water temperature reduces nitrogen absorption [170,171].
This could be attributed to the decreased activity of enzymes and transporters in the roots
under such conditions.

Plants have developed advanced mechanisms to prevent damage caused by cold
temperatures. One such mechanism is cold acclimation, where plants exposed to mild cold
temperatures for a short period become more resistant to following freezing stress [172,173].
During cold acclimation, various physiological, biochemical, and molecular transforma-
tions take place. These include the activation of antioxidant systems, the production
and buildup of cryoprotectants, and the implementation of mechanisms that safeguard
and stabilize cell membranes [174]. To keep the cell membrane stable, the content of
unsaturated phospholipids in the membrane increases. Additionally, cells store osmotic
molecules rich in sucrose and proline, as well as antifreeze proteins, which help to retain
water molecules [175]. Plants synthesize various proteins such as late embryogenesis
abundant (LEA), anti-freezing proteins (AFP), and cold shock proteins (CSP) to increase
their tolerance to cold stress [176,177]. Lower molecular-weight solutes, soluble sugars,
and proline act as osmoprotectants to shield plants from cold-induced damage. Similarly,
the accumulation of protective proteins like LEA, AFPs, and CSPs during cold acclimation
is crucial for enhancing cold tolerance in plants [178]. The acclimation mechanism is crucial
for improving the ability of plants to withstand cold temperatures. Even plants that are
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sensitive to cold, like rice, can adapt to chilling conditions [179,180]. Freezing-resistant
plants also adapt through cold acclimation, where they are exposed to temperatures slightly
above freezing. Under these conditions, aquaporins play a key role in regulating the water
uptake mechanism and the permeability of cell membranes [181–184]. Various studies have
shown that aquaporins are functionally important in controlling the hydraulic conductivity
of roots (Lpr) [180,185,186]. It has also been demonstrated that the decrease in water uptake
in rice under cold stress is associated with a decrease in aquaporin expression [187].

Furthermore, the presence of low temperatures can result in the buildup of ROS
and H2O2. This accumulation can subsequently lead to leakage of electrolytes, lipid
peroxidation, and damage to the cell membrane [188]. This can be observed through the
rise in levels of MDA. The breakdown of polyunsaturated lipids to MDA is one possible
way ROS can damage cells and tissues [188,189]. Plants contain a variety of antioxidant
systems to prevent catastrophic breakdown of protein and lipid components when under
stress. Antioxidants like CAT, POD, 2,2-diphenyl-1-picrylhydrazyl, and SOD can compete
against ROS generation in rice under cold stress due to their high stability and pace of
rising [164]. A study on rice cultivars under cold stress found that cultivars with a faster
growth rate had greater H2O2 levels in the shoots but lower levels in the roots. However,
this was reversed in the case of rice cultivars with a low growth rate. Moreover, the roots
had higher MDA concentrations and electrolyte leakage due to cell damage than the shoots
under cold stress. Cold stress boosts SOD and CAT activities in the rice roots [162]. These
biochemical characteristics can be used as a selection marker for breeding and adjusting
rice crops with enhanced cold tolerance.

Glutamic acid (Glu) is essential in the amino acid metabolism of plants and is involved
in vital metabolic processes during abiotic stress [190]. These functions include the pro-
duction of proline and gamma-aminobutyric acid (GABA), which are essential for plants’
defense systems [191]. Under cold stress, GABA, proline, and soluble carbohydrates like
glucose and sucrose buildup in rice and work as osmoprotectants to prevent damage from
dehydration and freezing [192,193]. The findings suggest that GABA and proline could
improve plants’ ability to withstand cold temperatures.

2.3.2. Molecular Response to Cold or Low-Temperature Stress

Rice plants must maintain the stability of their cell membranes, their levels of chloro-
phyll and fluorescence, the initiation of ROS defense mechanisms, and the accumulation of
osmolytes to withstand cold stress [194]. During cold stress, COLD1 and CIPK sense cold-
related stress signals, and several genes relating to osmoprotectants and phytohormones
are modulated. To facilitate cold sensing and extracellular Ca2+ influx at low temperatures,
COLD1 has been demonstrated to interact with the rice G protein α subunit 1 (RGA1) [195].
Rice CBL-interacting protein kinase 7 (OsCIPK7), in addition to COLD1, is believed to
recognize cold stress cues by controlling the configuration of its kinase domain and the
influx of Ca2+ [196].

At low temperatures, endogenous ABA levels rise, and expression of ABA-responsive
genes is activated, strengthening plant tolerance to cold stress. Overexpression of the
OsPYL9 (an ABA receptor), which positively modulates ABA signaling, can dramatically
increase rice’s ability to withstand low temperatures [197]. In addition to the fundamental
component PYL-PP2C-SnRK2-ABF, the ABA signaling pathway also involves nitric oxide
(NO), ROS, Ca2+, phospholipid molecules, and other kinases, like MAPK [198]. The
mitogen-activated protein kinase OsMAPK3 elevates trehalose content and strengthens rice
adaptation against cold stress [199]. Table 3 presents a summary of key genes associated
with cold stress tolerance. Although there has been a significant advancement in cold stress
tolerance, little is known about single-cell responses in rice plants.
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Table 3. Identified genes linked to cold stress tolerance in rice.

Name of Genes Function Reference

OsLTPL159

Reduces the toxic effects of ROS, increases cell wall’s
cellulose deposition, and increases osmolyte

accumulation in rice, which increases the plant’s
ability to withstand cold temperatures in its early

seedling stages

[200]

qPSST6 Long-chain fatty acid production, involved in rice’s
cold-tolerance during the booting stage [201]

OsCOIN Protein induced by cold enhances cold, drought, and
salt tolerance [202]

Osa-MIR319a Increased leaf blade width [203]

OsGH3-2 Regulates ABA and auxin levels during cold and
drought stress [204]

OsMYB3R-2 Regulates cell cycle (especially G2/M phase) to
mediate cold tolerance in rice [205]

SNAC2 Enhances cold and salt tolerance in rice [206]

OsDREB1F Enhances cold tolerance in rice [207]

ASR3 Enhances cold/draught tolerance mediated by
hormonal/sugar signaling [208]

OsFAD2
An essential enzyme that raises grain yield and
germination rate under LTS (low-temperature

stress conditions)
[209]

OsLti6b Produces hydrophobic protein in the ovaries and
stamens of flowers undergoing cold treatment [210]

OsWRKY45
Has a significant role in the signaling of ABA and

serves as a means of communication between abiotic
and biotic stresses

[211]

OsRAN2 GTPase that enhances cold tolerance through cell
cycle regulation [212]

OsSPX1
Participates in phosphate signaling as well as the
interplay between the oxidative and cold stress

tolerance mechanisms.
[213]

OsDEG10
Produces RNA-binding protein and has a key role in

cold tolerance as well as response to other stresses
(anoxia, photooxidative, and salinity)

[214]

Oscrr6 It has a key role in rice growth/photosynthesis at
colder temperatures [215]

OsPIP2 Participates in water homeostasis during cold
stress tolerance [216]

OsPRP3 Involved in the enhancement of cold tolerance in rice [217]

OsAsr1 Involved in both vegetative and reproductive stages of
cold tolerance [218]

MYBS3 Modulates cold tolerance signaling pathways [219]

OVP1
Involved in lowering malondialdehyde levels and

increasing proline accumulation to increase tolerance
to cold

[220]

Abiotic stressors can be effectively reduced using nanoparticles. Zinc oxide nanoparti-
cles (ZnO NPs) applied topically considerably reduce the chilling stress experienced by rice
seedlings, resulting in increased plant height and root length and enhanced dry biomass.
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With the decreased concentration of H2O2 and MDA, in addition to higher activities of
the key antioxidative enzymes like SOD, CAT, and POD, ZnO NPs further restore chloro-
phyll accumulation and markedly mitigate chilling-induced oxidative stress [221]. Plant
melatonin, an organic molecule, has also been demonstrated to be crucial for plant stress
adaptation. Melatonin pretreatments boost the non-enzymatic antioxidant content and
upregulate the antioxidant enzyme activity in rice. The application of exogenous mela-
tonin reduces rice seedling development inhibition, formation of ROS, MDA, inhibitions
of photosynthesis and PSII activities, and cell death brought on by cold stress in rice [222].
Similarly, Teixeira et al. found that rice seed priming with carrot extract greatly speeds
up germination and raises the final germination percentage while reducing the damage
caused by cold [223].

2.4. Submergence Stress

Submergence is a major concern for rice cultivation in lowlands subjected to rainfall
and flood-prone regions globally. It is expected to become more common as climate
change increases flood threats, particularly in regions impacted by monsoon rains in
Asia [224]. Rice plants possess a partially aquatic characteristic, enabling them to thrive
in waterlogged or submerged environments for extended periods [225]. Nevertheless,
prolonged submersion exposes rice plants to various stresses, such as reduced access
to light, decreased gaseous exchange, physical damage, and increased vulnerability to
pests. In addition, submergence typically lowers the photosynthesis process, depleting
carbohydrate stores and eventually causing the death of the plant [226]. Rice usually comes
to be affected by two different types of flooding. The initial type is flash flooding, which
arises when the crop is flooded for 1–2 weeks due to a sudden rise in water levels. Another
kind of flooding is stagnant flooding, in which the water level rises above 100 cm and stays
there for several weeks [227].

2.4.1. Morphophysiological and Biochemical Responses to Submergence Stress

Rice is extremely sensitive to submersion during the germination and early seedling
growth stages. When rice seeds are entirely submerged in water, they suffer from hypoxia
or anoxia, resulting in poor germination and seedling mortality [228]. The rice plant
undergoes numerous morphological and physiological changes as a result of submergence.
Rice withstands submersion by growing longer leaf sheaths and blades during the seedling
stage and internodes during the vegetative growth stage [229]. Even submergence-tolerant
types attempt to expose their leaf tips above the water’s surface if the flooding lasts longer
than two to three weeks to ensure their survival [230,231]. When fully submerged, the
leaves and stems of the rice plant grow moderately longer to reach the water’s surface.
However, there are negative effects from this elongation process that are necessary for
post-submergence plant growth [232]. Turbid water reduces the amount of light that may
pass through floodwater, which lowers photosynthesis and, as a result, the submerged
plant uses its reserve carbohydrate to sustain its metabolism [233]. However, if the depth of
flooding is significant and the duration of flooding is prolonged, the plant’s limited ability
to perform photosynthesis causes its energy reserves to deplete rapidly, ultimately leading
to the plant’s death [234]. The amount of carbohydrates found in plant sections determines
a variety’s capacity to withstand submersion [235]. Submergence-tolerant rice cultivators
benefit from limited shoot elongation because they preserve carbohydrate reserves, which
aid in resuming development after de-submergence. For recovery from submergence shock,
carbohydrate availability following flooding is crucial [236]. During periods of flooding,
plants are entirely or partially immersed in water. However, when the floodwater recedes,
the plants are suddenly exposed to oxygen again. This reoxygenation process can harm
plants after being submerged. MDA, O2−, and H2O2 were found to increase in rice plants’
leaves after being submerged for seven days as a sign of oxidative damage [237]. Rice
leaves began to dry out when exposed to air oxygen again after being submerged for 7
to 10 days [238]. Due to conserving glucose metabolism during submersion, tolerant rice
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cultivars on de-submergence exhibit an ascent in fresh biomass. On the other hand, the non-
tolerant cultivars’ reserves undergo hydrolysis and are incapable of regeneration. These
findings suggest that resistance to several stresses, including submersion, re-oxygenation,
and dehydration, is necessary for a plant to survive a flood [239]. Due to frequent oxygen
deprivation and low light intensity, submerged plants develop ROS, which, if unchecked,
can adversely harm the cellular structure and end in plant death. [240]. The antioxidant
defense mechanism is crucial to detoxify ROS and lessen their harmful effects. SOD, APX,
and GPX are the substances that are crucial in ROS detoxification [241].

To thrive in submerged environments, rice cultivars employ two growth control
techniques: quiescence and escape strategies, both of which rely on ethylene-responsive
transcription factors (ERFs). In the quiescence strategy, shoot prolongation is postponed for
quite some time (10–14 days) during flash flooding to save carbohydrates [242]. Utilizing
conserved carbohydrates, cultivars that can withstand submersion can resume their growth
after de-submergence. The escape strategy is adopted by deepwater rice genotypes and
involves rapid internode extension to climb above the water level [243]. To implement
these strategies, rice has evolved specific anatomical and morphological characteristics.
These include the development of adventitious roots, aerenchyma formation, radial oxygen
loss (ROL) barrier, and the ability to create a thin film of gas on its leaves. Furthermore,
rice plants generate ventilated tissues and ethylene to aid in gas exchange and regulate the
programmed death of specific cells in the cortex and epidermis [244,245]. In addition, the
growth of adventitious roots regulates the death of epidermal cells utilizing the mechanical
energy they produce [246]. When submerged, rice plants rapidly accumulate gibberellic
acid (GA), which leads to the elongation of internodes [247]. To protect their roots from
oxygen loss, rice plants form an ROL barrier. This barrier extends from the base to the
tip of the roots and is located outside the aerenchyma [248]. Various Asian rice cultivars
have developed additional characteristics to adapt to prolonged submergence. These traits
include aerobic germination and dormancy of leaf elongation during flash floods, and
internode elongation during periodic flooding. Certain rice cultivars can withstand being
submerged for around 15 days by limiting elongation growth, carbohydrate consumption,
and chlorophyll degradation [249,250].

One of the significant regulators of rice’s submergence reactions is ethylene. Owing
to physical confinement and active production during stress, this gaseous phytohormone
quickly builds up in tissues of submerged plants, inducing various acclimation reactions,
such as shoot elongation, development of adventitious root, and glucose metabolism. Deep-
water rice encourages internode growth during submersion to project the photosynthetic
parts of the plant above the air–water contact [242]. High production rates of ethylene and
sensitivity to the hormone mediate this flight response. Lowland rice that can withstand
submersion, in contrast, limits the number of carbohydrates it consumes, which encourages
underwater elongation and is used for cell division and elongation. Limited ethylene
production and sensitivity are the causes of this tolerance [251]. Aerenchyma, which allows
for relatively unimpeded movement of O2 from well-aerated shoots to buried roots, is
another way lowland rice adapts to soil waterlogging [252]. Inducing a barrier to radial
O2 loss (ROL) that reduces O2 loss to the surroundings can further boost longitudinal O2
diffusion along the root apex. Under flooded conditions, these characteristics are used by
both lowland and upland different rice species [253].

Unlike flood-sensitive rice types, flood-tolerant rice cultivars utilize energy stores more
effectively and maintain higher non-structural carbohydrate (NSC) concentrations in stems
and leaves. Additionally, they use anaerobic respiration as a different energy-producing
method. Submergence-tolerant rice cultivars decrease shoot prolongation to preserve
energy for survival and recuperation following de-submergence. Complete submersion-
tolerant rice genotypes maintain their chlorophyll and embrace a strategy of modest growth,
shown by reduced elongation when submerged. Because of this, plants can save enough
glucose reserves to maintain metabolism while submerged and after the floodwaters have
receded [250].
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2.4.2. Molecular Response to Submergence Stress

Rice plants implement passive approaches for adapting and avoiding recurring floods.
SUB1A is a crucial modulator of submergence tolerance, which activates transcriptional
modulation of other ERF response factors and SLR1 [250]. In deepwater rice, the ERF
OsEIL1 is stabilized by ethylene accumulation. OsEIL1 binds to the SD1 promoter to
boost gene expression. SD1 participates in GA synthesis and affects internode elonga-
tion [254]. The GA then increases the expression of the Accelerator of Internode Elonga-
tion 1 (ACE1), while DEC1, a protein that prevents internode elongation, sees a decrease in
expression [255]. In addition, OsEIL1 also activates the expression of other downstream
genes as a result of submergence stress by binding to the promoter sites of SNORKEL1
(SK1) and SNORKEL2 (SK2) [247,256]. Table 4 presents a summary of key genes associated
with submergence stress tolerance in rice.

Table 4. Identified genes linked to submergence stress tolerance in rice.

Name of Genes Function Reference

OsACS1 Involved in ethylene production and the rapid
elongation of the stem in submerged rice [257,258]

OsACS5 Involved in ethylene production and the rapid
elongation of the stem in submerged rice [257,258]

SNORKEL1 (SK1) ERFs that modulate the internode elongation of
deepwater rice during submergence [247]

SNORKEL2 (SK2) ERFs that regulate the internode elongation of
deepwater rice during submergence [247]

Submergence 1A
(SUB1A)

Plant quiescence and plant survival under
complete submergence [249]

SDI Involved in internode elongation [254]

OsHSD1 Involved in underwater photosynthesis in
submerged rice [259]

OsTPP7 Involved in anaerobic germination [260]

AGPPase
Promotes increased non-structural carbohydrate

(NSC) buildup, which is accessible for a quick
recovery after submersion

[261]

EREBP1 enhances resistance to submersion and facilitates
better recovery from extended submersion [262]

CIPK15 Involved in the regulation of sugar and energy
production enabling growth of rice under floodwater [263]

A study found that SK1 and SK2 respond during flood stress by encoding response
factors associated with ethylene signaling [264]. During submergence, ethylene levels
in rice rise, and the expression of SK1 and SK2 elevate, ultimately promoting internode
elongation via GA [265–268]. Functional assessment of ERF-type TFs indicated that they
play a role in regulating several physiological and morphological responses to submersion.
SUBMERGENCE-1 (Sub1) and SK are TF genes that belong to the ERF class [247,249]. Three
clusters of related genes, SUB1A, SUB1B, and SUB1C, expressing ERF-like TFs, are found in
the Sub1 region of submergence-tolerant cultivars, with SUB1A being the most investigated.
Systematic genetic analyses showed that SUB1A introgression with SUB1B and SUB1C
imparts a strong endurance against submergence and does not alter rice grain quality or
production [234,249,250,269]. Additionally, SUB1A prevents the development of proteins
that loosen and expand cell walls in response to flooding stress, preserving high levels of
chlorophyll a and b [270]. Furthermore, SUB1A also promotes resistance to oxidative stress
by controlling genes that encode ROS-detoxifying enzymes [237].
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In soil, silicon (Si) is the second most prevalent element. According to Debona et al.,
silicon significantly increases plant resilience to various biotic and abiotic stressors [271].
Si treatment improves rice root morphological features and chloroplast ultrastructure to
counteract the inhibitory effect of submergence stress by boosting Si absorption, accumu-
lation, and plant biomass. Si also lessens oxidase damage by increasing POD and CAT
activity and decreasing MDA concentration, which helps rice recover from submersion
stress-related damage [272,273].

2.5. Salinity Stress

Salinization is becoming an ever-worsening problem resulting from poor agricultural
practices and environmental changes. Salinity is characterized by excessive levels of various
salts in the soil, including sodium chloride, magnesium sulfates, magnesium bicarbonates,
calcium sulfates, and calcium bicarbonates. When it is young, the rice crop is considered a
salt-sensitive cereal, and as it matures, salinity limits the yield’s efficiency [274,275]. Salt
stress is particularly detrimental to rice during its early vegetative and reproductive phases.
Water, along with toxic ions from the soil, enter the vascular section of the root system
via two pathways: apoplastic and symplastic. Through the apoplastic pathway, salt stress
causes shoots to accumulate more Na+, primarily in mature leaves. A Na+/K+ symporter
called the high-affinity potassium transporter (HKT) controls the movement of Na+ and
K+ within plant cell membranes [276,277]. The potassium uptake is hampered by sodium
ions overloading the root’s surface. Na+ interferes negatively with K+ uptake because it
shares the same molecular characteristics as K+. When plants come under salt stress, a
considerable quantity of Na+ enters the plant, elevating the intracellular Na+ levels. This
has detrimental impacts since Na+ competes with K+ to activate enzymes and synthesize
proteins [278].

2.5.1. Morphophysiological and Biochemical Responses to Salinity Stress

Rice plants exhibit various morphological, physiological, or biochemical changes and
symptoms when exposed to high salinity. In extreme cases, they may even perish. Direct
accumulated salts interfere with metabolic functions and all key morpho-physiological
and yield-related traits, comprising photosynthesis, plant height, root length, tiller number,
length of panicle, spikelet count per panicle, filling of grains, and plant biomass. As a
result, yield is significantly reduced [279–281]. In a salt-sensitive plant, exposure to salinity
stress results in pericycle shrinkage and physical damage. Salt stress exposure at the early
seedling stage raises the mortality rate of rice leaves [282]. The productiveness of the rice
crop under salt stress is greatly impacted by panicle sterility [283].

Salinity generally induces two types of stress in plants: osmotic and ionic stress.
Osmotic stress arises when the salt concentration around the plant’s roots exceeds the
threshold tolerance level. On the other hand, ionic stress develops when there is a large
Na+ inflow into the plant, which raises the salt concentration in older leaves to a toxic
level. This leads to higher Na+ concentrations in the vacuole and cytoplasm, disrupting
metabolic processes and causing cell death [284]. In the beginning, osmotic stress caused
by soil salinity restricts plant growth, and later, ionic stress follows. A significant amount
of salt in the soil contributes to the first phase, characterized by reduced plant water intake
and the subsequent induction of several cellular metabolic processes [285]. Enlargement of
cells, cell wall protein synthesis, net photosynthesis, photosynthetically active radiation,
stomatal conductance, relative water content, transpiration rate, and pigment degradation
are all inhibited during the initial phase whereas the accumulation of compatible solutes
and ABA increased [286]. According to research by Cha-umi et al., salt stress caused a
significant drop in carotenoid and chlorophyll in rice leaves [287]. During the latter phase,
the accumulation of ions (Na+ and Cl−) is linked to changes in the ions ratio of Na+/K+

and Na+/Ca2+. The subsequent increase in ions promotes the synthesis of ROS. The extra
ROS generation increases cellular oxidative stress, which upsets the equilibrium between
generating and eliminating ROS [288].
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Like the majority of plants, rice has developed several defense strategies against salin-
ity stress, such as (i) antioxidant generation for ROS detoxification (ii) ion homeostasis and
compartmentation, (iii) osmoprotection through osmolyte regulation, and (iv) programmed
cell death [289]. Plants have devised an exquisite antioxidant defense mechanism to scav-
enge and detoxify ROS to shield the cells from oxidative damage. According to studies,
the salt-tolerant rice cultivar Pokkali performed better under salinity stress than the Pusa
Basmati (salt-sensitive rice cultivar) in terms of ROS scavenging enzymes like CAT and
content of antioxidants like AsA and GSH [290]. In rice plants, the basal area of the leaf
can scavenge H2O2 by boosting the activity of CAT and maintaining higher constitutive
levels of APX and GPX than those in the apical region under salinity. Under salt, the GR in
the basal area might inhibit O2 generation. The apical area can, however, scavenge O2 by
boosting SOD activity, whereas, under salinity, the activity of H2O2 scavenging enzymes,
including APX and CAT reduced [291]. To prevent the rice from oxidative stress brought on
by salt, both enzymatic and non-enzymatic ROS scavenging machinery must work together.
A transcriptional cascade in rice roots, which is regulated by the transcription factor SERF1,
is responsible for salt tolerance and is dependent on ROS [292].

To maintain ion homeostasis during salinity stress, plants employ different mecha-
nisms. One of the mechanisms for tolerating salinity stress involves the transport of Na+

and Cl− in the roots to prevent their excessive accumulation in the leaves. This process in-
cludes removing Na+ from the xylem and releasing ions back into the soil. If Na+ exclusion
fails, it can have toxic effects on older leaves, leading to their premature death [293]. The
concentration of Na+ in the rice leaves is linked with the salinity stress tolerance level in
both japonica and indica rice varieties [294]. Maintaining a low cytosolic Na+/K+ ratio is
important for maintaining ionic homeostasis and improving photosynthesis and overall
plant growth [295,296]. During salinity stress, the accumulation of Na+ in the leaves and
shoots of salt-tolerant varieties of rice is lower compared to salt-sensitive varieties [297,298].
It was also reported that the salt-tolerant cultivar Pokkali can reduce Na+ uptake into the
cytosol and maintain lower cytosolic Na+ content by temporarily taking up Na+ into the
cytoplasm and quickly extruding it into vacuoles. However, the salt-sensitive rice variety
BRRI Dhan29 was unable to perform this function [299].

Due to osmotic stress, most organisms, including bacteria and plants, accumulate
specific organic solutes, especially proline and sugars which are referred to as osmoprotec-
tants [300,301]. Trehalose, a non-reducing sugar, stands out for having a unique property
that protects biological molecules from dehydration stress. According to Garg et al., the
production and accumulation of trehalose in transgenic rice can give the grain some re-
sistance to the negative impacts of salinity and drought [302]. Glycine betaine, a potent
solute containing quaternary ammonium, is found in several organisms. Though rice plants
generally do not store glycine betaine, it has been shown that they may absorb exogenously
and store it in their leaves to aid in sustaining PSII quantum yield when subjected to salt
stress [289,303]. If the plant’s several defense strategies against salinity stress fail, it will
implement programmed cell death (PCD) as a last-ditch effort to survive [304]. According
to Liu et al.’s [305] findings, rice roots under salt stress had a well-regulated progression of
cell death. This raised the possibility that the dead cells prevented salt exclusion by block-
ing the inflow of extra Na+ ions into the interior of roots and shoots. Another possibility
is that the plant sheds cells to avoid unregulated cell death and the release of toxins to
safeguard and maintain the growth of other cells [306].

2.5.2. Molecular Response to Salinity Stress

Various proteins are involved in activating the tolerance mechanism against salt stress.
They play different roles in the accumulation of MDA, antioxidants and osmoprotectants,
ROS and Na+ homeostasis, and electrolyte leakage [289]. Certain WRKY TFs restrict the
expression of DREB1B and OsNAC1, contributing to salt susceptibility [307].

TFs influence salt tolerance positively or negatively. OsCOIN, OsbZIP71, OsbZIP23,
OsDREB2A, and OsMYB2 are some of the salt-responsive TFs that may cause a variety of
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alterations in rice, such as a buildup of osmoprotectants and antioxidants and an upsurge
in the activity of the Na+ and K+ transporters [308]. In rice, overexpression of these salt-
responsive TFs promotes a higher survival rate of seedlings, reduces oxidative damage, and
improves osmotic regulation [309,310]. On the contrary, OsWRKY13, one of the negative
regulatory TFs, prevents the expression of the salt-responsive genes SNAC1 and ERD1,
thereby delaying the rice plants’ growth and development [311]. The expression of genes
including SNAC1, NCED4, Rab16D, and DREB1B was suppressed by the transcriptional
repressor OsWRKY45-2, and as a consequence, overexpression of OsWRKY45-2 drastically
lowered the survivability of rice cultivars under salt stress [312]. Liu et al. revealed
two newly discovered genes (LOC Os02g49700, LOC Os03g28300) and five known genes
(OsMYB6, OsGAMYB, OsHKT1;4, OsCTR3, and OsSUT1) connected with grain production
and its associated attributes in rice cultivars exposed to saline stress conditions [313].

According to Rahman et al., maintaining lower shoot Na+ buildup is a standard
method for preserving salt tolerance in rice [78]. These methods include sodium exclusion,
effective toxic salt sequestration into older leaves and roots, compartmentalization of Na+

into vacuoles, and extrusion from cells. According to Wang et al., OsHKT1;1, OsHAK10, and
OsHAK16 were shown to be elevated in the leaves of old rice under salt stress [314]. These
genes are integral to Na+ transport from the roots to the shoot. OsHKT1;5 and OsSOS1,
which promote Na+ exclusion from xylem vessels of roots, thereby lowering accumulation
in the shoot, were downregulated, resulting in large quantities of Na+ in older leaves rather
than young ones. Rice’s class 1 HKT transporter eliminates extra Na+ from the xylem,
shielding the photosynthesis-dependent leaf tissues from the harmful effects of Na+. By
mediating K+ absorption and transfer to sustain a high K+/Na+ ratio under salt stress, the
K+ transporter genes OsHAK1 and OsHAK5 are stimulated by salt stress in rice [315]. When
there is a higher concentration of Na+ in the cytosol, it is transported into the vacuole to
prevent it from reaching toxic levels for enzyme reactions. Na+/H+ antiporters control this
process. An increase in salt content activates the Na+/H+ antiporter action [316]. Two pro-
ton pumps, vacuolar H+-ATPase, and vacuolar H+-translocating pyrophosphatase, control
the interchange of Na+/H+ in the vacuole. Modifying the vacuolar transporter levels can
enhance rice’s tolerance to salinity [317]. According to a study, elevated CYP94C2b expres-
sion and concurrent jasmonate inactivation in rice are associated with salt tolerance [318].
Table 5 summarizes the key genes associated with salt stress tolerance in rice.

Table 5. Identified genes linked to salt stress tolerance in rice.

Name of Genes Function Reference

OsCPK12 Increases resistance to high salt levels by decreasing
ROS buildup [319]

OsLOL5 Enhance ROS scavenging and rice tolerance under
salinity stress [320]

OsMAPK44 Participates in ion homeostasis under salinity stress [321]

OsJRL40

Increases antioxidant enzymatic activities and
maintains the balance of Na+/K+ during salinity
stress. Manages rice’s salt stress by regulating the
expression of genes responsible for transporting

Na+/K+, as well as genes involved in salt-responsive
transcription factors and proteins

[322]

OsSAPK4 Modulates ion homeostasis as well as the growth and
development of rice in a salinized environment [323]

OsKAT1 Enhances rice’s salinity tolerance by enhancing K+

uptake and thus decreasing Na+ accumulation [324]
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Table 5. Cont.

Name of Genes Function Reference

OsTPS8

Controls the ability of rice to tolerate salinity stress by
managing the levels of soluble sugars and regulating
the activity of genes related to ABA signaling through

the regulation of SAPK9

[325]

OsBADH1 Enhances salinity stress tolerance by positively
regulating osmoprotectant biosynthesis [326]

OsMYB91 Manages the growth of rice and its ability to tolerate
salt stress. [327]

OsVP1 and OsNHX1
Enhances the tolerance of salt by decreasing the

accumulation of Na+ in leaves, photosynthesis activity,
and increase root biomass

[328]

OsHKT1;1, OsHKT1;4
and OsHKT1;5

Enhance the tolerance of salt by decreasing the
accumulation of Na+ in shoots when exposed to

salt stress
[329–331]

OsHAK5 Enhance rice’s salinity tolerance by contributing to
cation homeostasis [332]

Arbuscular mycorrhizal fungus (AMF) symbionts aid the host plant development and
ameliorate stress caused by abiotic factors. Under salt stress, the upland pigmented rice
cv. Leum Pua (LP) infected with Glomus etunicatum produced total soluble sugars and free
proline, which worked as osmolytes to preserve the flag leaf’s photosynthetic capacities,
chlorophyll pigments, Chla fluorescence, and stomatal function. Leum Pua rice infected
with Glomus etunicatum maintained yield characteristics and showed high anthocyanin
content in the pericarp [333].

2.6. Heavy Metal Stress

Heavy metal pollution is a major contributor to harmful effects on plants, ecosystems,
soil, and water. It is a significant factor in reducing the quality and yield of crops. Rice
grown in paddy soils contaminated with heavy metals like arsenic (As), cadmium (Cd),
lead (Pb), and mercury (Hg) is a major source of heavy metal intake for humans in many
countries. This gradual buildup of heavy metals in rice grains and their subsequent entry
into the food chain poses a severe risk to agriculture and public health [334]. Heavy metals
have the potency to modify reactions that aid in generating ROS, ˙OH, and H2O2 within
living cells. Nevertheless, when highly reactive radicals come into contact with water, they
produce ˙OH, which can harm essential biomolecules within cells such as carbohydrates,
lipids, amino acids, and DNA [335–337]. Therefore, it is necessary to comprehend how
heavy metals interact with rice crops at all levels, from the cellular to the entire plant, and
to develop effective strategies to reduce these stress reactions [338,339].

2.6.1. Morphological and Physiological Responses to Heavy Metals

i. Arsenic

Arsenic can exist in various oxidation states in soil, the most prevalent of which are
arsenides (As3−), arsenites (As3+), and arsenates (As5+). Depending on the species, arsenic
can harm rice, with inorganic species being far more toxic than organic ones. As5+ and
As3+ are the most prevalent inorganic species found in the rice plant, whereas monomethy-
larsonic acid (MMA) and dimethylarsinic acid (DMA) are the most occurring organic
species [340]. As3+ is thought to be more mobile and hazardous than As5+ among inorganic
entities. It can react with methyl groups in any oxidation state to create organic arsenic
species. However, compared to inorganic arsenic species, the presence of organic species in
paddy soil is substantially lower. The reduced form (As3+) predominates in anaerobic soil
types, such as submerged rice fields, whereas As5+ (oxidized counterpart) predominates in
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aerobic soil environments, such as highland rice fields [341]. An increase in arsenic absorp-
tion will have a detrimental impact on plant development. Poor and lower germination
rates of seeds, impaired plant growth, lower photosynthetic rates, sterility-related yield
loss, low biomass production, and a physiological condition known as straight head disease
are just a few of the symptoms that are brought on by arsenic toxicity in rice plants [342].
Reduced floret/spikelet sterility, decreased grain production, and, in severe cases, the
absence of panicles or heads are some signs of this disease. Arsenic toxicity damages the
chloroplast and photosynthetic processes by deteriorating the membrane structure. Arsenic
affects the metabolism of proteins, lipids, and carbohydrates. More crucially, arsenic can
increase the production of ROS that is greater than what can be scavenged, damaging plants
through oxidative stress. Exposure of rice seedlings to As5+ promotes the formation of
H2O2, whereas As3+ was shown to induce the formation of O2

− and H2O2, thereby causing
lipid peroxidation [343]. When seedling roots are grown in an As5+ solution, APX activity
is increased, reducing H2O2 through the ascorbate-glutathione cycle [344]. Similarly, the
enzymatic antioxidants CAT, SOD, guaiacol peroxidase, chloroplastic ascorbate peroxidase,
GR, and monodehydroascorbate reductase concentrations were raised for scavenging ROS
developed in the presence of As3+ conditions [345].

ii. Cadmium

Cd is a trace element that is not necessary for plants but is widespread in the envi-
ronment. Different anthropogenic operations such as smelting, mining, usage of synthetic
phosphate fertilizers, and disposal of urban wastes lead to a rise in the levels of Cd in the
environment that pose serious health risks to humans [346]. Recently, it has been found
that Cd pollution in paddy soil poses a danger to rice quality [347]. Rice plants absorb
Cd from the soil, eventually building up in the grains after several transit steps. Rice
plant absorbs Cd from the ground through its roots, moves it to the shoots via xylem flow,
reroutes it at nodes, and remobilizes it from the leaves. According to Huijie et al. [348],
citrate, tartaric acid, and histidine were found to participate in root-to-shoot Cd transfer
in the xylem actively. Indica cultivars often accumulate more significant amounts of Cd in
their shoots and grains than japonica cultivars. Stomatal conductance, transpiration rate,
leaf water content, vital minerals, water-soluble proteins, and enzyme- and non-enzyme-
based antioxidants are all decreased due to Cd toxicity [349,350]. Cd poisoning reduced
rice yield and grain quality by inducing changes in yield components (such as panicle
number, spikelets per panicle, and spikelet setting percent). Excessive Cd has a deleterious
impact on photosynthesis as it affects the photosynthetic pigments and disrupts electron
transport mechanisms, interfering with chloroplast structure and Chl-protein complexes.
This disruption causes a disturbance in Chl biosynthesis enzymes, the Calvin cycle, and
water balance [351]. Cd prevents the formation of chlorophyll by inhibiting the enzyme
δ-aminolevulinic acid dehydratase, which is present in rice seedlings. An increase in Cd
concentration in the medium led to a higher accumulation of Cd in the seeds and the
thiobarbituric acid reactive substance amount. It also caused a drastic decrease in the
germination rate, shoot elongation, biomass, and water content of the rice [352].

Despite not being a direct cause, Cd can cause exorbitant accumulations of ROS
when its concentration surpasses the plant tolerance level. This can occur through several
mechanisms, comprising the exhaustion of ROS-scavenging enzymatic and non-enzymatic
components, metabolic abnormalities during respiration, displacement of redox-active Fe
from proteins, photorespiration, and CO2 assimilation [351,353].

iii. Lead

Pb is a non-essential element that may disrupt plant metabolism if taken up by the
plant. In addition to interfering with roots’ ability to absorb minerals from the soil solution,
Pb2+ ions also passively penetrate the roots of rice plants by following water streams that
are moving through the soil. Pb is carried into the root epidermal cells from the soil and
loaded into the root xylem vessels before being distributed to other plant organs [354]. In
rice cultivars, a high Pb concentration (1.2 mM) results in a considerable decrease in plant
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height, tiller count, panicle count, and spikelet count per panicle [355]. Lead poisoning
negatively affects photosynthetic activity by altering chloroplast structure, slowing the
production of carotenoid, plastoquinone, and chlorophyll, and breaking up the electron
transport chain. Additionally, it causes a CO2 shortage, which causes the stomata to close
and Calvin cycle’s enzymatic activity to decrease. According to a study by Khan et al. [356],
Pb poisoning does not affect root development but drastically reduces shoot length and
biomass of rice in nitrogen or phosphorus-deprived seedlings. ROS are overproduced, and
antioxidant enzyme activity fluctuates due to Pb toxicity in plants.

iv. Mercury

One of the environment’s most hazardous elements is Hg. Hg is a strong phytotoxin
to plant cells at high concentrations and can cause injury and physiological disturbances.
Hg preferentially accumulates on the roots of several plant species. As a result, the most
toxic effects are observed at the roots. Under Hg stress, rice roots bind to proteins of
15–25 kDa, which results in irreparable harm to root development. Under Hg stress,
rice roots altered the expression levels of the associated proteins [357]. When rice is
grown on Hg-contaminated land, a significant amount of Hg is enriched into the grain,
which is terrible for the rice’s consumers [358]. There are three different types of mercury:
methylmercury (MeHg), inorganic mercury (Hg2+), and elemental mercury (Hg0) [359]. Hg
is most bio-accumulative in the form of methylmercury MeHg. MeHg is the most harmful
type of Hg to human and animal health [358]. The generation of MeHg in the rhizosphere
soil and its buildup in rice are greatly influenced by moderate soil Hg content (3 mg kg−1).
MeHg production in rhizosphere soil increases significantly at the blooming or filling stage,
but rice leaves’ antioxidant systems show little impact [273]. The bulk of an individual
rice grain’s Hg2+ by mass is found in the hull and bran. Conversely, white rice contains a
large proportion of the more dangerous form of MeHg. Proteins contain MeHg, which is
primarily coupled to cysteine in bran. This MeHg-cysteine relationship acts as a mobile
nutrient during seed ripening and is actively transferred to the endosperm [360]. ROS,
MDA content, and lipoxygenase activity are all considerably enhanced with increasing Hg
levels in rice roots, which disturbs numerous cellular processes and hinders growth and
development in rice plants [359].

2.6.2. Biochemical Responses to Heavy Metals

An increased quantity of heavy metals like As, Hg, Pb, and Cd triggers ROS genera-
tion, leading to oxidative stress. This stress damages the plasma membrane and disrupts
rice plants’ metabolism and physiological response. To combat oxidative stress, rice plants
develop various defense strategies, such as activating the antioxidant defense system, ion
homeostasis, osmolyte accumulation, osmoregulation, and excess production of signaling
molecules [361,362]. In addition, in response to stress caused by heavy metals and met-
alloids, rice plants produce phytochelatins (PC), which are thiol-rich peptides [363]. For
instance, rice leaves containing As-PC complexes reduce the amount of As3+ that may be
transferred to the grain [364]. Similarly, under Cd stress, rice roots and leaves showed
increased SOD, POD, CAT, GPX, and APX activity. Under Cd toxicity, rice also has higher
levels of non-protein thiols like PCs and GSH to scavenge harmful free radicals [353]. In
another experiment, rice showed an increase in the activity of CAT and POD under Pb
poisoning. There was also an increase in the accumulation of proline and the content of
sucrose with the rise in Pb concentration [355]

Recently, glutamate (Glu) has been found to participate in a signaling role in responses
developed by plants toward abiotic stress [365]. In a study, glutamate supplementation
was found to dramatically improve Cd-induced oxidative stress in rice with decreased
levels of MDA, H2O2, O2

−, proline, γ-aminobutyric acid, arginine, and higher activities of
CAT, POD, and glutathione S-transferase. Roots of Cd-treated plants showed decreased
expression of Cd-induced metal transporter genes OsNramp1, OsNramp5, OsIRT1, OsIRT2,
OsHMA2, and OsHMA3 when supplemented with Glu [366]. According to Ahsan et al.,
21 proteins were demonstrated to be engaged in defense and detoxification, antioxidant,



Plants 2023, 12, 3948 24 of 41

protein biosynthesis, and germination activities in rice under Cd toxicity [367]. Hg stress
raises the free Phe and Trp content and upregulated numerous genes related to aromatic
amino acids. Chen et al. found that applying Phe and Trp to rice roots exogenously
increases their tolerance to Hg and significantly decreases the concentration of ROS that
Hg induces [368]. Additionally, research has shown that the formation of iron plaque on
the roots of rice may serve as a protective barrier, reducing the absorption of Cd and As
into the roots of the rice plant [369,370].

2.6.3. Molecular Responses to Heavy Metals

Heavy metal stress-related signal transduction is triggered by the recognition of stress
signals by receptors/ion channels and then carried on by non-protein messengers such as
calcium, hydrogen ions, and cyclic nucleotides (Figure 3).
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Figure 3. A schematic diagram showing a heavy metal stress signaling cascade that enhances
stress-responsive gene expression in rice.

The stress signals are relayed by several kinases and phosphatases, which in turn cause
the expression of multiple TFs and the generation of metal-detoxifying peptides [371–373].
Heavy metals initiate various distinctive signaling pathways in plants, which include
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ROS signaling, calcium-dependent signaling, MAPK signaling, and hormone signaling
that promote the expression of TFs and stress-responsive genes [344,372]. Calmodulins
(CaM), calmodulin-like proteins, calcineurin B-like proteins, and CDPK are some of the
calcium signaling sensors that monitor, process, and transmit changes in cytosolic Ca2+

content for the stress response. Individual sensors respond differently depending on the
Ca2+ content [374,375]. Likewise, the MAPK signaling cascade also phosphorylates several
TFs, including NAC, MYC, MYB, bZIP, DREB, and ABRE, which alters the expression of
metal stress response genes [376,377]. For instance, Cd activates rice’s myelin basic protein
(MBP) kinase and OsMAPK2 genes [378]. Additionally, numerous research studies have
displayed that the activation of MAPKs by heavy metals in rice is caused by ROS production,
accumulation, and modification [372,379]. Furthermore, several phytohormone signaling
pathways, especially ethylene, auxin, and JA, are affected by ROS. According to Singh and
Shah, JA treatment enhanced rice’s ability to withstand Cd stress via improving antioxidant
response [380]. When As3+ was applied to rice seedlings, comparative transcriptome
analysis revealed modification in signal transduction, defensive responses, and hormonal
signaling pathways, including ABA metabolism [381]. The results above strongly imply that
changes in phytohormone levels alter how plants react to metal stress. Hence, it is crucial
to comprehend the complex pathways through which metal stress is signaled in plants
and the interconnections between them. This understanding is essential to unravelling the
networks that plants employ to respond to stress. Numerous molecular research studies
have examined how rice plants react to elevated levels of heavy metals. These research
studies aim to enhance the ability of current rice cultivars to withstand heavy metal toxicity
and offer valuable insights for incorporating these specific genes/traits into future breeding
initiatives. Table 6 summarizes key genes associated with heavy metal tolerance in rice.

Table 6. Identified genes linked to heavy metals stress tolerance in rice.

Name of Genes Function Reference

OsHAC1;1 and OsHAC1;2 Drastically influence limiting the accumulation
of As in both the shoots and grains of rice [382]

OsNRAMP5 Enhances resistance to the toxicity of Cd [383]

OsHMA3 Enhances resistance to the toxicity of Cd [384]

OsABCG31 Enhances resistance to the toxicity of Cd and Pb [385]

OsLCT1 Enhances resistance to the toxicity of Cd Al [386]

OsSIZ Enhances resistance to the toxicity of Cd [387]

OsZIP1 Enhances resistance to the toxicity of Cd, Zn, [388]

OsNAC5 Enhances resistance to the toxicity of Cd and Pb [79]

OsMT1e Encodes a metal-detoxifying protein [389]

OsIRO2 TF that modulates the activity of genes related to
Fe balance in rice [390]

OsIRT1 Participates in Cd absorption in rice. It is
involved in Cd stress tolerance [391]

OsPCS1 It is involved in detoxifying heavy metals and
involved in Cd stress tolerance [392]

OsLCD Involved in Cd compartmentation [393]

OsSUV3 Improved Cd and Zn stress tolerance [394]

OsSRK Increases the uptake and transfer of Cd [395]

OsHMA2 Improves transfer of Cd from roots to shoots [395]

OsMYB45 Improves Cd stress tolerance [396]

OsHB4 Improves Cd accumulation and tolerance [397]
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3. Conclusions

Abiotic stress is a significant factor restricting rice crop yield in many places of the
world. Under the current climate change scenario, abiotic factors such as drought, heat,
cold, submersion, salinity, and heavy metals are responsible for the sharp decline in rice
yields. These abiotic stressors have a detrimental impact on various stages of plant growth
and development, including germination, seedling establishment, lengths of root and
shoot, plant height, blooming time, and ripening time. These stressors during both the
vegetative and reproductive stages hinder the development of the plant’s panicles and
the filling of grains, decreasing overall grain production and posing a risk to global food
security. The combined application of genomics and QTL-based techniques has aided in
identifying genes and loci that contribute to adaptation to abiotic stress in rice. These
recently discovered molecular candidates have the potential to enhance rice physiological
growth, reproductive development, and crop yields in challenging environments. However,
in the future, research employing high-throughput phenotype determination and next-
generation sequencing technology will help identify innovative potential genes responsible
for regulating grain development under varied stress situations, paving the way for the
breeding of climate-ready crops. In this review, we have discussed the developments in the
current understanding of the defense mechanisms that rice employs to counteract various
environmental stresses. Despite our vast knowledge in this area, there are still gaps in our
understanding. Bridging these gaps will allow researchers to design plants that respond
better to environmental stimuli such as drought, heat, cold, submersion, salinity, heavy
metals, etc.

Author Contributions: Conceptualization, B.S., H.K., T.L.T. and Y.K.M.; validation, P.N.B.; resources,
B.S., H.K., T.L.T. and Y.K.M.; data curation, B.S., H.K. and T.L.T.; writing—original draft preparation,
B.S., H.K., T.L.T. and Y.K.M.; writing—review and editing, P.N.B., Y.K.M. and K.-H.B.; supervision,
Y.K.M. and K.-H.B.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1F1A1060297).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yadav, G.S.; Lal, R.; Meena, R.S.; Babu, S.; Das, A.; Bhowmik, S.N.; Datta, M.; Layak, J.; Saha, P. Conservation tillage and nutrient

management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India.
Ecol. Indic. 2019, 105, 303–315. [CrossRef]

2. Mahanta, K.; Bhattacharyya, P.N.; Sharma, A.K.; Rajkhowa, D.; Lesueur, D.; Verma, H.; Parit, R.; Deka, J.; Medhi, B.K.; Kohli, A.
Residue and soil dissipation kinetics of chloroacetanilide herbicides on rice (Oryzae sativa L.) and assessing the impact on soil
microbial parameters and enzyme activity. Environ. Monit. Assess. 2023, 195, 910. [CrossRef] [PubMed]

3. Hanafiah, N.M.; Mispan, M.S.; Lim, P.E.; Baisakh, N.; Cheng, A. The 21st century agriculture: When rice research draws attention
to climate variability and how weedy rice and underutilized grains come in handy. Plants 2020, 9, 365. [CrossRef] [PubMed]

4. Mohapatra, P.K.; Sahu, B.B. Diversity of Panicle Architecture and Traits Influencing Grain Filling. In Panicle Architecture of Rice
and Its Relationship with Grain Filling; Springer International Publishing: Cham, Switzerland, 2022; pp. 107–128, ISBN 978-3-030-
67897-5.

5. Pickson, R.B.; He, G.; Boateng, E. Impacts of climate change on rice production: Evidence from 30 Chinese provinces. Environ.
Dev. Sustain. 2022, 24, 3907–3925. [CrossRef]

6. Dar, M.H.; Bano, D.A.; Waza, S.A.; Zaidi, N.W.; Majid, A.; Shikari, A.B.; Ahangar, M.A.; Hossain, M.; Kumar, A.; Singh, U.S.
Abiotic Stress Tolerance-Progress and Pathways of Sustainable Rice Production. Sustainability 2021, 13, 2078. [CrossRef]

7. Saud, S.; Wang, D.; Fahad, S.; Alharby, H.F.; Bamagoos, A.A.; Mjrashi, A.; Alabdallah, N.M.; AlZahrani, S.S.; AbdElgawad,
H.; Adnan, M.; et al. Comprehensive Impacts of Climate Change on Rice Production and Adaptive Strategies in China. Front.
Microbiol. 2022, 13, 926059. [CrossRef] [PubMed]

8. Aguilar-Rivera, N.; Michel-Cuello, C.; Cárdenas-González, J.F. Green Revolution and Sustainable Development. In Encyclopedia of
Sustainability in Higher Education; Leal Filho, W., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 833–850,
ISBN 978-3-030-11352-0.

9. Iqbal, J.; Zia-ul-Qamar; Yousaf, U.; Asgher, A.; Dilshad, R.; Qamar, F.M.; Bibi, S.; Rehman, S.U.; Haroon, M. Sustainable Rice
Production Under Biotic and Abiotic Stress Challenges. In Sustainable Agriculture in the Era of the OMICs Revolution; Prakash, C.S.,

https://doi.org/10.1016/j.ecolind.2017.08.071
https://doi.org/10.1007/s10661-023-11513-1
https://www.ncbi.nlm.nih.gov/pubmed/37392291
https://doi.org/10.3390/plants9030365
https://www.ncbi.nlm.nih.gov/pubmed/32188108
https://doi.org/10.1007/s10668-021-01594-8
https://doi.org/10.3390/su13042078
https://doi.org/10.3389/fmicb.2022.926059
https://www.ncbi.nlm.nih.gov/pubmed/35875578


Plants 2023, 12, 3948 27 of 41

Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 241–268,
ISBN 978-3-031-15568-0.

10. Yang, Y.; Yu, J.; Qian, Q.; Shang, L. Enhancement of Heat and Drought Stress Tolerance in Rice by Genetic Manipulation: A
Systematic Review. Rice 2022, 15, 67. [CrossRef]

11. Hussain, S.; Khaliq, A.; Ali, B.; Hussain, H.A. Temperature Extremes: Impact on Rice Growth and Development. In Plant Abiotic
Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2019. [CrossRef]

12. Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.; Kolapo, K. Drought
Resistance in Rice from Conventional to Molecular Breeding: A Review. Int. J. Mol. Sci. 2019, 20, 3519. [CrossRef]

13. Fahad, S.; Adnan, M.; Hassan, S.; Saud, S.; Hussain, S.; Wu, C.; Wang, D.; Hakeem, K.R.; Alharby, H.F.; Turan, V.; et al. Chapter
10—Rice Responses and Tolerance to High Temperature; Hasanuzzaman, M., Fujita, M., Nahar, K., Biswas, J.K., Eds.; Woodhead
Publishing: Sawston, UK, 2019; pp. 201–224, ISBN 978-0-12-814332-2.

14. Bhattacharya, A. Effect of Low Temperature Stress on Photosynthesis and Allied Traits: A Review; Springer: Singapore, 2022; ISBN 978-
981-16-9037-2.

15. Horie, T.; Karahara, I.; Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice
plants. Rice 2012, 5, 11. [CrossRef]

16. Mahmood-ur-Rahman; Ijaz, M.; Qamar, S.; Bukhari, S.A.; Malik, K. Chapter 27—Abiotic Stress Signaling in Rice Crop; Hasanuzzaman,
M., Fujita, M., Nahar, K., Biswas, J.K., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 551–569, ISBN 978-0-12-814332-2.

17. Suwanmontri, P.; Kamoshita, A.; Fukai, S. Recent changes in rice production in rainfed lowland and irrigated ecosystems in
Thailand. Plant Prod. Sci. 2020, 24, 15–28. [CrossRef]

18. Arif, N.; Sharma, N.C.; Yadav, V.; Ramawat, N.; Dubey, N.K.; Tripathi, D.K.; Chauhan, D.K.; Sahi, S. Understanding Heavy Metal
Stress in a Rice Crop: Toxicity, Tolerance Mechanisms, and Amelioration Strategies. J. Plant Biol. 2019, 62, 239–253. [CrossRef]

19. Melo, F.V.; Oliveira, M.M.; Saibo, N.J.M.; Lourenço, T.F. Modulation of Abiotic Stress Responses in Rice by E3-Ubiquitin Ligases:
A Promising Way to Develop Stress-Tolerant Crops. Front. Plant Sci. 2021, 12, 640193. [CrossRef]

20. Das, G.; Patra, J.K.; Baek, K.H. Insight into MAS: A Molecular Tool for Development of Stress Resistant and Quality of Rice
through Gene Stacking. Front. Plant Sci. 2017, 8, 985. [CrossRef]

21. Pandey, V.; Shukla, A. Acclimation and Tolerance Strategies of Rice under Drought Stress. Rice Sci. 2015, 22, 147–161. [CrossRef]
22. Miyan, M.A. Droughts in asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23.

[CrossRef]
23. Yang, X.; Wang, B.; Chen, L.; Li, P.; Cao, C. The Different Influences of Drought Stress at the Flowering Stage on Rice Physiological

Traits, Grain Yield, and Quality. Sci. Rep. 2019, 9, 3742. [CrossRef]
24. Venuprasad, R.; Lafitte, H.R.; Atlin, G.N. Response to direct selection for grain yield under drought stress in rice. Crop Sci. 2007,

47, 285–293. [CrossRef]
25. Lafitte, H.; Ismail, A.; Bennett, J. Abiotic Stress Tolerance in Rice for Asia: Progress and the Future. In Proceedings of the 4th

International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004.
26. Upadhyaya, H.; Panda, S.K. Chapter 9—Drought Stress Responses and Its Management in Rice; Hasanuzzaman, M., Fujita, M.,

Nahar, K., Biswas, J.K., Eds.; Woodhead Publishing: Sawston, UK, 2019; ISBN 978-0-12-814332-2.
27. Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In

Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [CrossRef]
28. Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.; Chater, C.C.; Coe, R.A.; et al.

Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New
Phytol. 2019, 221, 371–384. [CrossRef] [PubMed]

29. Zampieri, E.; Pesenti, M.; Nocito, F.F.; Sacchi, G.A.; Valè, G. Rice Responses to Water Limiting Conditions: Improving Stress
Management by Exploiting Genetics and Physiological Processes. Agriculture 2023, 13, 464. [CrossRef]

30. Fukai, S.; Cooper, M. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop. Res. 1995,
40, 67–86. [CrossRef]

31. Moonmoon, S.; Islam, M. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza
sativa L.) Genotypes. Fundam. Appl. Agric. 2017, 2, 285–289. [CrossRef]

32. Ranjan, A.; Sinha, R.; Singla-Pareek, S.L.; Pareek, A.; Singh, A.K. Shaping the root system architecture in plants for adaptation to
drought stress. Physiol. Plant. 2022, 174, e13651. [CrossRef] [PubMed]

33. Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H.K.-H. Root Response to Drought Stress in Rice (Oryza Sativa L.). Int. J.
Mol. Sci 2020, 21, 1513. [CrossRef] [PubMed]

34. Champoux, M.C.; Wang, G.; Sarkarung, S.; Mackill, D.J.; O’Toole, J.C.; Huang, N.; McCouch, S.R. Locating genes associated
with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet. 1995, 90, 969–981.
[CrossRef] [PubMed]

35. Bañoc, D.M.; Yamauchi, A.; Kamoshita, A.; Wade, L.J.; Pardales, J.R. Dry Matter Production and Root System Development of
Rice Cultivars under Fluctuating Soil Moisture. Plant Prod. Sci. 2000, 3, 197–207. [CrossRef]

36. Bañoc, D.M.; Yamauchi, A.; Kamoshita, A.; Wade, L.J.; Pardales, J.R. Genotypic Variations in Response of Lateral Root Develop-
ment to Fluctuating Soil Moisture in Rice. Plant Prod. Sci. 2000, 3, 335–343. [CrossRef]

https://doi.org/10.1186/s12284-022-00614-z
https://doi.org/10.1007/978-3-030-06118-0
https://doi.org/10.3390/ijms20143519
https://doi.org/10.1186/1939-8433-5-11
https://doi.org/10.1080/1343943X.2020.1787182
https://doi.org/10.1007/s12374-019-0112-4
https://doi.org/10.3389/fpls.2021.640193
https://doi.org/10.3389/fpls.2017.00985
https://doi.org/10.1016/j.rsci.2015.04.001
https://doi.org/10.1016/j.wace.2014.06.003
https://doi.org/10.1038/s41598-019-40161-0
https://doi.org/10.2135/cropsci2006.03.0181
https://doi.org/10.1007/978-90-481-2666-8_12
https://doi.org/10.1111/nph.15344
https://www.ncbi.nlm.nih.gov/pubmed/30043395
https://doi.org/10.3390/agriculture13020464
https://doi.org/10.1016/0378-4290(94)00096-U
https://doi.org/10.5455/faa.277118
https://doi.org/10.1111/ppl.13651
https://www.ncbi.nlm.nih.gov/pubmed/35174506
https://doi.org/10.3390/ijms21041513
https://www.ncbi.nlm.nih.gov/pubmed/32098434
https://doi.org/10.1007/BF00222910
https://www.ncbi.nlm.nih.gov/pubmed/24173051
https://doi.org/10.1626/pps.3.197
https://doi.org/10.1626/pps.3.335


Plants 2023, 12, 3948 28 of 41

37. Henry, A.; Cal, A.J.; Batoto, T.C.; Torres, R.O.; Serraj, R. Root attributes affecting water uptake of rice (Oryza sativa) under drought.
J. Exp. Bot. 2012, 63, 4751–4763. [CrossRef]

38. Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants.
Cell. Mol. Life Sci. 2015, 72, 673–689. [CrossRef]

39. Farooq, M.; Kobayashi, N.; Ito, O.; Wahid, A.; Serraj, R. Broader leaves result in better performance of indica rice under drought
stress. J. Plant Physiol. 2010, 167, 1066–1075. [CrossRef]

40. Kavi Kishor, P.B.; Sangam, S.; Amrutha, R.N.; Sri Laxmi, P.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.;
Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant
growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438.

41. Zhu, R.; Wu, F.; Zhou, S.; Hu, T.; Huang, J.; Gao, Y. Cumulative effects of drought–flood abrupt alternation on the photosynthetic
characteristics of rice. Environ. Exp. Bot. 2020, 169, 103901. [CrossRef]

42. Mishra, S.S.; Behera, P.K.; Kumar, V.; Lenka, S.K.; Panda, D. Physiological characterization and allelic diversity of selected drought
tolerant traditional rice (Oryza sativa L.) landraces of Koraput, India. Physiol. Mol. Biol. Plants 2018, 24, 1035–1046. [CrossRef]
[PubMed]

43. Farooq, M.; Kobayashi, N.; Wahid, A.; Ito, O.; Basra, S.M.A. Strategies for Producing More Rice with Less Water. In Advances in
Agronomy; Elsevier: San Diego, CA, USA, 2009; Volume 101, p. e1. [CrossRef]

44. Panda, D.; Mishra, S.S.; Behera, P.K. Drought Tolerance in Rice: Focus on Recent Mechanisms and Approaches. Rice Sci. 2021,
28, 119–132. [CrossRef]

45. Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop
Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [CrossRef]

46. Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269.
[CrossRef] [PubMed]

47. Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [CrossRef]
48. Zhang, F.-J.; Zhang, K.-K.; Du, C.-Z.; Li, J.; Xing, Y.-X.; Yang, L.-T.; Li, Y.-R. Effect of Drought Stress on Anatomical Structure and

Chloroplast Ultrastructure in Leaves of Sugarcane. Sugar Tech 2015, 17, 41–48. [CrossRef]
49. Ayyaz, A.; Fang, R.; Ma, J.; Hannan, F.; Huang, Q.; Athar, H.-R.; Sun, Y.; Javed, M.; Ali, S.; Zhou, W.; et al. Calcium nanoparticles

(Ca-NPs) improve drought stress tolerance in Brassica napus by modulating the photosystem II, nutrient acquisition and
antioxidant performance. NanoImpact 2022, 28, 100423. [CrossRef]

50. Zahra, N.; Hafeez, M.B.; Kausar, A.; Al Zeidi, M.; Asekova, S.; Siddique, K.H.M.M.; Farooq, M.; Al Zeidi, M.; Asekova, S.;
Siddique, K.H.M.M.; et al. Plant photosynthetic responses under drought stress: Effects and management. J. Agron. Crop Sci.
2023, 209, 651–672. [CrossRef]

51. Lum, M.S.; Hanafi, M.M.; Rafii, Y.M.; Akmar, A.S.N. Effect of drought stress on growth, proline and antioxidant enzyme activities
of upland rice. J. Anim. Plant Sci. 2014, 24, 1487–1493.

52. Schlicke, H.; Hartwig, A.S.; Firtzlaff, V.; Richter, A.S.; Glässer, C.; Maier, K.; Finkemeier, I.; Grimm, B. Induced Deactivation of
Genes Encoding Chlorophyll Biosynthesis Enzymes Disentangles Tetrapyrrole-Mediated Retrograde Signaling. Mol. Plant 2014,
7, 1211–1227. [CrossRef] [PubMed]

53. Busch, A.W.U.; Montgomery, B.L. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the
mitigative oxidative stress response. Redox Biol. 2015, 4, 260–271. [CrossRef] [PubMed]

54. Hasanuzzaman, M.; Hossain, M.A.; da Silva, J.A.T.; Fujita, M. Plant Response and Tolerance to Abiotic Oxidative Stress:
Antioxidant Defense Is a Key Factor. In Crop Stress and its Management: Perspectives and Strategies; Springer: Dordrecht, The
Netherlands, 2012; pp. 261–315. [CrossRef]

55. Asada, K. The Water-Water Cycle In Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev.
Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [CrossRef] [PubMed]

56. Cruz de Carvalho, M.H. Drought stress and reactive oxygen species. Plant Signal. Behav. 2008, 3, 156–165. [CrossRef] [PubMed]
57. Wang, X.; Liu, H.; Yu, F.; Hu, B.; Jia, Y.; Sha, H.; Zhao, H. Differential Activity of the Antioxidant Defence System and Alterations

in the Accumulation of Osmolyte and Reactive Oxygen Species under Drought Stress and Recovery in Rice (Oryza Sativa L.)
Tillering. Sci. Rep. 2019, 9, 8543. [CrossRef] [PubMed]

58. Bhattacharjee, S.; Dey, N. Redox metabolic and molecular parameters for screening drought tolerant indigenous aromatic rice
cultivars. Physiol. Mol. Biol. Plants 2018, 24, 7–23. [CrossRef] [PubMed]

59. Dey, N.; Bhattacharjee, S. Accumulation of Polyphenolic Compounds and Osmolytes under Dehydration Stress and Their
Implication in Redox Regulation in Four Indigenous Aromatic Rice Cultivars. Rice Sci. 2020, 27, 329–344. [CrossRef]

60. Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine Function in Plants: Metabolism, Regulation on Development, and
Roles in Abiotic Stress Responses. Front. Plant Sci. 2019, 9, 1945. [CrossRef]

61. Capell, T.; Bassie, L.; Christou, P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to
drought stress. Proc. Natl. Acad. Sci. USA 2004, 101, 9909–9914. [CrossRef]
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