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Abstract: Bromus japonicus is a common monocot weed that occurs in major winter wheat fields in
the Huang–Huai–Hai region of China. Pyroxsulam is a highly efficient and safe acetolactate synthase
(ALS)-inhibiting herbicide that is widely used to control common weeds in wheat fields. However,
B. japonicus populations in China have evolved resistance to pyroxsulam by different mutations
in the ALS gene. To understand the resistance distribution, target-site resistance mechanisms, and
cross-resistance patterns, 208 B. japonicus populations were collected from eight provinces. In the
resistant population screening experiment, 59 populations from six provinces showed different
resistance levels to pyroxsulam compared with the susceptible population, of which 17 B. japonicus
populations with moderate or high levels of resistance to pyroxsulam were mainly from the Hebei (4),
Shandong (4) and Shanxi (9) Provinces. Some resistant populations were selected to investigate the
target site-resistance mechanism to the ALS-inhibiting herbicide pyroxsulam. Three pairs of primers
were designed to amplify the ALS sequence, which was assembled into the complete ALS sequence
with a length of 1932 bp. DNA sequencing of ALS revealed that four different ALS mutations (Pro-
197-Ser, Pro-197-Thr, Pro-197-Phe and Asp-376-Glu) were found in 17 moderately or highly resistant
populations. Subsequently, five resistant populations, QM21-41 with Pro-197-Ser, QM20-8 with Pro-
197-Thr and Pro-197-Phe, and QM21-72, QM21-76 and QM21-79 with Asp-376-Glu mutations in ALS
genes, were selected to characterize their cross-resistance patterns to ALS inhibitors. The QM21-41,
QM20-8, QM21-72, QM21-76 and QM21-79 populations showed broad-spectrum cross-resistance
to pyroxsulam, mesosulfuron–methyl and flucarbazone–sodium. This study is the first to report
evolving cross-resistance to ALS-inhibiting herbicides due to Pro-197-Phe mutations in B. japonicus.

Keywords: Bromus japonicus; ALS-inhibiting herbicides; resistant population screening;
cross-resistance; target-site mutation

1. Introduction

Bromus japonicus is an annual weed of the Poaceae family, a troublesome weed for
winter wheat (Triticum aestivum) and widely distributed in the Huang–Huai–Hai Plain of
China [1]. B. japonicus usually germinates in early autumn and overwinters in the field
as “rosettes” and restores vigorous growth in the next spring with the onset of warmer
weather. It begins to flower in early May, and then seeds mature in late June or early
July [1]. A plant of B. japonicus growing normally can produce 8.2 tillers and 1885 seeds on
average [2]. B. japonicus and wheat grow at the same time and are difficult to distinguish. B.
japonicus has stronger fecundity and tiller ability and may reduce yield by at least 30% in
wheat fields seriously infected by B. japonicus [1]. Acetolactate synthase (ALS)-inhibiting
herbicides have been used for more than 15 years to control B. japonicus in wheat fields.
Recently, there have been four reports of resistance to ALS inhibitors in B. japonicus [3–6].
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ALS inhibitors have been commonly applied to control weeds in wheat fields because
they provide broad-spectrum effective weed control and safety to crops combined with
low environmental toxicity [7]. The target of these herbicides is ALS, which can control
weeds by inhibiting the biosynthesis of the branched-chain amino acids leucine, isoleucine
and valine, ultimately resulting in weed death [8]. The typical symptoms of herbicide after
the application of ALS inhibitors are as follows: the top buds or new leaves of the plant die,
the leaves lose their green color or turn purple, the internodes are shortened and finally
the whole plant dies [9]. According to their different chemical structures, ALS inhibitors
mainly include five classes: sulfonylureas (SU), imidazolinones (IMI), triazolopyrimidines
(TP), pyrimidinylthiobenzoates (PTB) and sulfonylamino–carbonyl–triazolinones (SCT).
Unfortunately, following the frequent and extensive use of ALS inhibitors in the past few
decades, 170 weed species in locations worldwide have been reported to be resistant to
these herbicides [10].

There are two mechanisms of weed resistance to herbicides: target-site-based resis-
tance (TSR) and nontarget site-based resistance (NTSR) [11]. In most cases, resistance
to ALS inhibitors is caused by a point mutation in the ALS gene, which is a TSR gene.
To date, 30 naturally occurring ALS gene mutations causing amino acid substitutions
have resulted in nine resistance-related sites of ALS, Ala-122-Asn/Val/Ser/Thr/Tyr, Pro-
197-Leu/Ser/His/Ala/Thr/Arg/Tyr/Glu/Gln/Asn/Ile, Ala-205-Phe/Val, Phe-206-Leu,
Asp-376-Glu, Arg-377-His, Trp-574-Gly/Arg/Leu/Met, Ser-653-Ile/Asn/Thr and Gly-654-
Asp/Glu, in about 70 weed species [10,12], including downy brome (Bromus tectorum) [13],
catchweed bedstraw (Galium aparine) [14] and ryegrass (Lolium multiflorum) [15]. Increased
herbicide metabolism is certainly the most reported aspect of NTSR, the major families of
herbicide metabolism enzymes that have been reported in resistant weeds, including cy-
tochromes P450, glutathione-S-transferases, glycosyltransferases and ABC transporters [16].
In addition, in several weeds, resistance to ALS inhibitors was caused by both TSR and
NTSR, as previously reported in a chlorsulfuron-resistant Palmer amaranth (Amaranthus
palmeri) population [17] and an iodosulfuron-resistant perennial ryegrass (Lolium perenne)
population [12].

Pyroxsulam has been applied in winter wheat fields in China since 2012. Long-term
application of a single herbicide, pyroxsulam, has led to resistance to pyroxsulam in wheat
weeds, including black grass (Alopecurus myosuroides) [18], Japanese foxtail (Alopecurus
japonicus) [19] and Italian ryegrass (Lolium multiflorum) [20]. When weeds exhibited resis-
tance to different chemical types of ALS inhibitors, it indicated that the weeds showed
cross-resistance to different ALS inhibitors. Cross-resistance of weeds to ALS inhibitors
can be caused by target resistance, such as ALS gene mutation, or nontarget resistance,
such as metabolic resistance [21]. Cases of cross-resistance to ALS-inhibitor herbicides
based on target site mutations have been found in many resistant weeds [22]. For example,
flixweed (Descurainia sophia) with the Pro-197-Thr mutation exhibited cross-resistance to
halosulfuron–methyl (SU), flumetsulam (TP) and flucarbazone–Na (SCT) herbicides [23]. A
false loosestrife (Ludwigia prostrata) population with the Pro-197-Ser mutation evolved resis-
tance to bensulfuron–methyl and pyrazosulfuron–ethyl [24], while a wild radish (Raphanus
raphanistrum) population for Asp-376-Glu was cross-resistant to chlorsulfuron (SU), meto-
sulam (TP) and imazamox (IMI) [25]. In addition, a nontarget resistance mechanism in
three leaf arrow heads (Sagittaria trifolia) led to cross-resistance to bensulfuron-methyl
(SU), penoxsulam (TP),and bispyribac–sodium (PTB) [26]. A water starwort (Myosoton
aquaticum) biotype, with none of the known ALS mutations, displayed cross-resistance to
tribenuron–methyl (SU), pyrithiobac–sodium (PTB), florasulam (TP) and flucarbazone–Na
(SCT) [27].

Recently, ALS inhibitor-resistant B. japonicus populations has been found in Hebei
Province, Shandong Province and Tianjin municipality, and the Pro-197 and Asp-376
mutations in the ALS gene are associated with resistance to ALS-inhibiting herbicides in
B. japonicus [3–6]. In China, control failures of B. japonicus have recently been observed in
wheat fields where ALS-inhibiting herbicides are constantly used. In the present study,
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208 B. japonicus populations were collected from the Anhui, Hebei, Henan, Hubei, Jiangsu,
Shandong, Shanxi and Shaanxi Provinces of China, where wheat is the main grain crop.
This study aimed (1) to monitor the resistance situation and determine its distribution in
B. japonicus in eight provinces of China; (2) to obtain the complete sequence of the ALS gene
and identify target site mutations of 17 pyroxsulam-resistant B. japonicus populations; and
(3) to evaluate the cross-resistance for different mutations based on whole-plant response
assays with three ALS inhibitors in B. japonicus.

2. Results
2.1. Resistant Population Screening and Distribution

The level and geographical distribution of 208 B. japonicus populations’ resistance to
pyroxsulam are shown in Figure 1 (levels and geographical distribution of pyroxsulam
resistance in Bromus japonicus populations in China). The susceptible population preserved
and identified by the laboratory was selected as the control, and the GR50 value of the
susceptible population was 3.0 g a.i. ha−1. Resistant population screening assays indi-
cated that 59 of 208 populations showed different resistance levels to pyroxsulam, and
149 populations were sensitive to pyroxsulam. Among the 59 resistant populations,
42 had low resistance levels (1 < RI ≤ 3), 9 had moderate resistance levels
(3 < RI ≤ 10) and 8 had high resistance levels (RI > 10) to pyroxsulam. A total of
149 susceptible populations had no surviving plants under the recommended dose of pyrox-
sulam, which was 12 g a.i. ha−1 in the field. The plant survival rate of the
42 low-resistance populations was about 90%, but the plant growth was significantly
inhibited at 12 g a.i. ha−1, and there were no surviving plants at 24 g a.i. ha−1. The
plant survival rate of the nine moderately resistant populations was about 90%, but
the plant growth was significantly inhibited at 24 g a.i. ha−1, and the plant survival
rate was about 40% at 96 g a.i. ha−1. The plant survival rate of the eight highly re-
sistant populations was about 90%, but the plant growth was significantly inhibited at
96 g a.i. ha−1, and the plant survival rate was about 30% at 192 g a.i. ha−1.
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Figure 1. Levels and geographical distribution of pyroxsulam resistance in Bromus japonicus popula-
tions in China.

The pyroxsulam GR50 values of 208 Bromus japonicus populations from different
provinces are shown in Figure 2. A total of 99 populations were collected from Anhui,
Henan, Hubei, Jiangsu and Shaanxi Provinces, and the results showed that 87.9% of the
populations were at the sensitive level and 12.1% of the populations were at the low-
resistance level. The moderately or highly resistant populations were mainly distributed in
Hebei, Shandong and Shanxi Provinces, accounting for 15.6% of the total samples in the
three provinces. There were nine moderately resistant populations in Shanxi Province, four
highly resistant populations in Hebei Province and four highly resistant populations in
Shandong Province.
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2.2. Amplification and Sequencing of the ALS Gene Fragment

To determine whether the presence of any known target-site mutation in B. japonicus
confers resistance to ALS inhibitors, targeted sequence results were acquired from the
amplification products obtained from three pairs of primers. In this study, three fragments
of the amplified ALS gene, with lengths of 593 bp, 1440 bp and 598 bp, were assembled into
the complete ALS sequence with a length of 1932 bp.

The alignment of each ALS gene sequence from the susceptible population (QM21-14)
and seventeen resistant B. japonicus populations revealed that nucleotide mutations at the
Pro-197 codon were detected in seven highly resistant populations (QM21-41, QM22-18,
QM22-19, QM22-20, QM20-7, QM20-8, QM20-9 and one moderately resistant popula-
tion (QM21-73), and an Asp-376-Glu substitution (GAT to GAA) was detected in one
highly resistant (QM22-49) and nine moderately resistant populations (QM21-71, QM21-72,
QM21-73, QM21-74, QM21-75, QM21-76, QM21-77, QM21-78 and QM21-79). Three differ-
ent mutation types were detected at the Pro-197 codon of the ALS gene, namely, Pro to Ser
(QM21-41, QM22-18, QM22-19 and QM22-20), Pro to Thr (QM20-7, QM20-8, QM20-9 and
QM21-73) and Pro to Phe (QM20-8). Furthermore, the ALS gene sequences of 15 plants in
the QM20-8 population were all Pro-197 mutations, and the Pro-197-Thr and Pro-197-Phe
mutations were identified in 11 plants and 4 plants in the QM20-8 population, respectively.
The ALS gene sequence of 15 plants was detected in the QM21-73 population, among
which the Pro-197-Thr and Asp-376-Glu mutations were identified in 1 plant and 14 plants,
respectively (Table 1).

Table 1. Collection site RI values and the mutation types of ALS gene in Bromus japonicus populations.

Populations Collection Sites RI a Mutation Types of ALS Gene b

197 (Pro) 376 (Asp)

QM21-14 Dongleitou, Anxin, Baoding, Hebei - - - 15/15
QM21-41 Liguizi, Wuji, Shijiazhuang, Hebei 38 Ser - 15/15
QM22-18 Zhongtong, Xinle, Shijiazhuang, Hebei 54.8 Ser - 15/15
QM22-19 Tongyizhuang, Xinle, Shijiazhuang, Hebei 53.8 Ser - 15/15
QM22-20 Hejiazhuang, Xinle, Shijiazhuang, Hebei 49.7 Ser - 15/15
QM20-7 Beiguo, Gaoqing, Zibo, Shandong 25.1 Thr - 15/15

QM20-8 Xiaohexi1, Gaoqing, Zibo, Shandong 26.7 Thr
Phe - 11/15

4/15
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Table 1. Cont.

Populations Collection Sites RI a Mutation Types of ALS Gene b

197 (Pro) 376 (Asp)

QM20-9 Xiaohexi2, Gaoqing, Zibo, Shandong 29.5 Thr - 15/15
QM22-49 Jijiang, Zhanhua, Binzhou, Shandong 27.1 - Glu 15/15
QM21-71 Nanqin, Hongdong, Linfen, Shanxi 6.6 - Glu 15/15
QM21-72 Shiqiao, Hongdong, Linfen, Shanxi 9.3 - Glu 15/15

QM21-73 Yanjiazhuang, Hongdong, Linfen, Shanxi 8.5 Thr
-

-
Glu

1/15
14/15

QM21-74 Beizhuang, Hongdong, Linfen, Shanxi 7.9 - Glu 15/15
QM21-75 Houhetou, Hongdong, Linfen, Shanxi 10.0 - Glu 15/15
QM21-76 Shitun, Hongdong, Linfen, Shanxi 9.3 - Glu 15/15
QM21-77 Gaochi, Hongdong, Linfen, Shanxi 6.8 - Glu 15/15
QM21-78 Masan, Hongdong, Linfen, Shanxi 4.7 - Glu 15/15
QM21-79 Nanduan, Hongdong, Linfen, Shanxi 5.3 - Glu 15/15

a, The RI value of the population was derived from the results of the resistance screening test. b, no mutation.

2.3. Cross-Resistance to Other ALS-Inhibiting Herbicides

In this study, five resistant populations, QM21-41 (Pro-197-Ser), QM20-8 (Pro-197-Thr
and Pro-197-Phe), QM21-72 (Asp-376-Glu), QM21-76 (Asp-376-Glu) and QM21-79 (Asp-376-
Glu), were used to assess the cross-resistance to other ALS-inhibiting herbicides. Different
resistance levels of these six populations to three ALS inhibitors were observed in the whole-
plant response assays (Table 2). The dose-response curve showed a relationship between
the herbicide doses and dry weight (Figure 3). The results indicated that the five popula-
tions were highly resistant to pyroxsulam and mesosulfuron–methyl. The RI of QM21-41
(Pro-197-Ser) and QM20-8 (Pro-197-Thr/Phe) populations to flucarbazone–sodium were
25.9 and 59.5, respectively, which were significantly higher than the resistance of the
QM 21-72 (Asp-376-Glu), QM21-76 (Asp-376-Glu) and QM21-79 (Asp-376-Glu) populations
to flucarbazone–sodium: 2.9, 5.4 and 5.9.

Table 2. GR50 and RI values of different B. japonicus populations with respect to three ALS inhibitors.

Herbicides Populations ALS Mutation GR50
a (SE) b (g a.i.
ha−1)

RI c

Pyroxsulam QM21-14 Wild type 6.11 (1.30) -
QM21-41 Pro-197-Ser 91.67 (20.30) 15.0
QM20-8 Pro-197-Thr/Phe 154.24 (21.03) 25.2
QM21-72 Asp-376-Glu 56.13 (8.62) 9.2
QM21-76 Asp-376-Glu 52.54 (11.37) 8.6
QM21-79 Asp-376-Glu 56.40 (7.44) 9.2

Mesosulfuron–methyl QM21-14 Wild type 4.94 (0.49) -
QM21-41 Pro-197-Ser 99.33 (17.56) 20.1
QM20-8 Pro-197-Thr/Phe 131.33 (27.63) 26.6
QM21-72 Asp-376-Glu 155.27 (36.08) 31.4
QM21-76 Asp-376-Glu 94.95 (23.97) 19.2
QM21-79 Asp-376-Glu 155.05 (38.69) 31.4

Flucarbazone–sodium QM21-14 Wild type 30.22 (8.18) -
QM21-41 Pro-197-Ser 782.07 (350.75) 25.9
QM20-8 Pro-197-Thr/Phe 1797.84 (312.61) 59.5
QM21-72 Asp-376-Glu 87.71 (11.42) 2.9
QM21-76 Asp-376-Glu 164.65 (23.30) 5.4
QM21-79 Asp-376-Glu 179.10 (62.98) 5.9

a GR50, herbicide dose causing 50% growth reduction in the dry weight compared to untreated control. b SE,
standard errors. c RI, GR50 (R)/GR50 (S).
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3. Discussion

Three ALS inhibitors, pyroxsulam, mesosulfuron–methyl and flucarbazone–sodium,
are important herbicides that can effectively control some weeds in the Poaceae family in
wheat fields, including Bromus japonicus, Alopecurus aequalis and Alopecurus japonicus [28].
The three ALS inhibitors in this study have been used in China for more than 10 years, which
has resulted in the rapid evolution of herbicide resistance [29]. Twenty-six species of weeds,
including Lolium perenne ssp. multiflorum, ripgut brome (Bromus diandrus), poverty brome
(Bromus sterilis) and silky windgrass (Apera spica-venti), have been found to be resistant to
pyroxsulam in countries such as the United States, Australia, France and Germany [10].
In the resistant population screening experiment, four, one and three populations with
high resistance to pyroxsulam were from Shijiazhuang City, Hebei Province; Binzhou City,
Shandong Province; and Zibo City, Shandong Province, respectively. Nine populations with
moderate resistance to pyroxsulam were from Linfen City, Shanxi Province. B. japonicus
populations moderately and highly resistant to pyroxsulam were detected mainly in Shanxi,
Hebei and Shandong Provinces, which may be closely related to the application history of
ALS inhibitors in these areas. In Hubei and Jiangsu Provinces, the number of the collected
populations was small, and these populations were all sensitive to pyroxsulam, which
could not explain the occurrence of B. japonicus resistance in these two provinces. The
B. japonicus populations collected for this study were from wheat fields across eight
provinces, where farmers commonly use ALS inhibitor herbicides to control weeds. No-
tably, in some wheat fields with a higher prevalence of resistant populations in Hebei,
Shandong and Shanxi Provinces, the use of ALS inhibitors has exceeded a decade.

Target-site mutations are often identified as the most common mechanism of resistance
to ALS inhibitor herbicides in many weeds. For example, Pro-197 and Asp-376 mutations
of the ALS gene conferring resistance to ALS inhibitors were found in many weed species,
including Raphanus raphanistrum [25], Galium aparine [14], Descurainia sophia [30], Cyperus
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difformis [31] and Monochoria vaginalis [32]. To date, four mutations (Pro-197-Ser, Pro-197-
Thr, Pro-197-Arg and Asp-376-Glu) have been reported as being related to resistance to ALS
inhibitor herbicides in B. japonicus [3–6]. In the present study, four amino acid substitutions
in the ALS gene from 17 resistant populations, including Pro-197-Ser/Thr/Phe and Asp-376-
Glu, were identified by molecular analysis. Compared with the often reported Pro-197-Ser,
Pro-197-Thr and Asp-376-Glu mutations, the Pro-197-Phe mutations reported here in
B. japonicus have been reported in only two other weed species, Sisymbrium orientale [33]
and Lactuca serriola [34]. This is the first report of Pro-197-Phe mutations in B. japonicus.
This study reveals that the resistance mechanism of 17 B. japonicus populations from Hebei,
Shandong and Shanxi to pyroxsulam is due to mutations in the ALS gene, which is the
gene targeted by ALS inhibitor herbicides. This finding suggests to local farmers that using
ALS inhibitor herbicides may be ineffective in controlling B. japonicus.

In recent years, there have been increasing reports on the mechanisms of herbicide
resistance in Bromus spp. Yanniccari et al. found that the resistance mechanism of Bromus
catharticus to glyphosate is due to reduced absorption and translocation of the herbicide [35].
Sen et al. discovered that the resistance mechanism of Bromus sterilis to pyroxsulam in-
cludes overexpression of the ALS gene and enhanced metabolic detoxification mediated by
P450 enzymes [36]. Owen et al. reported that the resistance mechanism of Bromus rigidus to
ALS inhibitors is due to its own enhanced metabolic detoxification of the herbicide [37].
Kumar and Jha found that the resistance mechanisms of Bromus tectorum with Ser-653-Asn
have evolved resistance to ALS inhibitors [13].

To date, 27 weeds with the Pro-197-Ser mutation have evolved resistance to ALS
inhibitors. Furthermore, the cross-resistance to ALS inhibitors in many weeds with the
Pro-197-Ser point mutation has been previously tested, such as in Descurainia sophia [38],
Sagittaria trifolia [39], Galium aparine [14] and Ludwigia prostrata [26]. The level of resistance
to ALS inhibitors may be different in different weeds with the same ALS mutation [40].
Beckmannia syzigachne with the Pro-197-Ser mutation exhibited high resistance to all five
ALS-inhibiting herbicides, while the same mutation in Alopecurus japonicus exhibited high
resistance to SUs, TPs and SCTs but sensitivity to IMIs [41,42]. In this study, whole-plant
response experiments showed that QM21-41 with Pro-197-Ser had evolved high levels
of resistance to pyroxsulam (TP), mesosulfuron–methyl (SU) and flucarbazone–sodium
(SCT). The Pro-197-Thr mutation was first reported in Kochia scoparia in 1990 [43]. To date,
14 weeds have evolved resistance to ALS inhibitors with the Pro-197-Thr mutation [10].
Zhao et al. found that Pro-197-Thr in Alopecurus japonicus conferred low resistance levels to
TPs, moderate resistance levels to SCTs and high resistance levels to SUs [42]. In the present
study, however, the whole-plant response experiments revealed that QM20-8 with Pro-197-
Thr/Phe was highly resistant to TPs, SUs and SCTs. Weeds with the Asp-376-Glu mutation
commonly exhibited cross-resistance to ALS inhibitors. Cyperus difformis with the Asp-376-
Glu mutation showed moderate resistance to TP, SU and IMI [31]. Raphanus raphanistrum
with the Asp-376-Glu mutation showed high resistance to TP and SU herbicides but
no resistance to imazapyr (IMI) [25]. Li et al. reported that the Asp-376-Glu mutation
was characterized in B. japonicus as conferring high-level resistance to pyroxsulam (TP),
mesosulfuron–methyl (SU) and flucarbazone–sodium (SCT) [4]. In this study, QM21-72,
QM21-76 and QM21-79 with Asp-376-Glu mutation were resistant to pyroxsulam (TP),
mesosulfuron–methyl (SU) and flucarbazone–sodium (SCT). The resistance level of the
populations for Pro-197 (25.9-59.5) mutations to flucarbazone–sodium were significantly
higher than that of the populations for Asp-376 (2.9-5.9). The cross-resistance pattern
is complex and depends on many factors, including weed species, mutation types and
specific ALS inhibitors [44]. Although in many cases, the application of ALS inhibitors is
still the most effective method for controlling B. japonicus, it will be necessary to implement
integrated weed management to reduce the risk of resistant B. japonicus development.
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4. Materials and Methods
4.1. Resistant Populations Screening

Mature seeds of a total of 208 B. japonicus populations from the provinces of Anhui,
Hebei, Henan, Hubei, Jiangsu, Shandong, Shanxi and Shaanxi were collected in wheat
fields from 2020 to 2022. A total of 208 B. japonicus populations from eight provinces were
first examined to reveal the occurrence region of resistant B. japonicus populations by a
whole-plant bioassay test.

The seeds were soaked in water for 48 h before sowing. Seeds of 208 populations
were sown into 9 cm × 9 cm × 11 cm plastic pots containing seedling matrix. A total of
twenty to 30 seeds were sown evenly in each pot and covered with a 1 cm thick layer of fine
soil. These pots were randomly placed in a greenhouse with natural light and temperature
conditions, where they were watered regularly and fertilized as needed. The seedlings of
B. japonicus were reduced to 15 plants with uniform growth and even distribution per pot
before herbicide treatment.

In the resistant population screening experiment, pyroxsulam (recommended field
dose is 12 g a.i. ha−1) was sprayed with 0, 6, 12, 24, 48, 96 and 192 g a.i. ha−1 on
208 B. japonicus populations. Two replicate pots were made for each herbicide treatment.
Pyroxsulam was applied by foliar application when the seedlings had reached the three-
leaf stage. A moving-nozzle cabinet sprayer equipped with a TeeJet® XR8002 flat-fan
nozzle (Compressed Air Cabinet Sprayer ASS-4, Beijing Research Center for Information
Technology in Agriculture, Beijing, China) was used, which delivered 450 L ha−1 at a
pressure of 0.275 MPa.

After 21 days of herbicide treatment, the survival rate and fresh weight of the above-
ground parts of each treatment were determined. The GR50 (50% growth reduction in the
aboveground biomass) was calculated by a nonlinear log-logistic regression model using
SigmaPlot version 12.5.

Y = C +
D − C

1 +
(

X
GR50

)b

C is the lower limit, D is the upper limit and b is the slope of the curve. Y is corre-
spondingly expressed as the percentage of the control at herbicide dose X. The resistance
index (RI) was calculated by dividing the GR50 value of the resistant biotype by that of the
susceptible biotype. According to the RI value, the resistance level was divided into four
grades: sensitive level: RI ≤ 1; low resistance level: 1 < RI ≤ 3; moderate resistance level:
3 < RI ≤ 10; and high resistance level: RI > 10.

4.2. Amplification and Sequencing of the ALS Gene Fragment

The plant materials used for amplifying the ALS gene were obtained from the plants
in the resistant population screening test. The leaf tissues of the susceptible population
were taken from untreated plants, while the leaf tissues of the resistant population plants
were obtained from plants that survived after treatment with a two-fold higher dose
of pyroxsulam than the recommended dose in the field. Fifteen selected plants from
each population (17 resistant and 1 susceptible) were used for DNA extraction. The
results of preliminary screening of resistance showed that the plant survival rates of the
17 resistant populations were 100% after treatment with two times the recommended dose
of pyroxsulam in the field. Approximately 100 mg of leaf tissue was collected from each
plant and stored at −80 ◦C. Total genomic DNA was extracted from the leaf tissue of each
plant using the DNAsecure Plant kit (Tiangen Biotech, Beijing, China) according to the
manufacturer’s protocol. DNA was electrophoresed on 1.0% agarose gels to check the
quality of the extraction.

Three pairs of primers (ALS-F1/ALS-R1, ALS-F2/ALS-R2 and ALS-F3/ALS-R3)
(Table 3) were designed based on the ALS genes of Bromus tectorum (GenBank MK492423.1)
and Hordeum vulgare (GenBank LOC123401036) to amplify the complete ALS sequence of
B. japonicus. Primers were designed using Primer Premier 5.0 software and were synthe-
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sized by BGI Tech (Beijing, China). Polymerase chain reactions (PCRs) were conducted in a
final volume of 25 µL and contained 1.25 µL of genomic DNA, 12.5 µL of 2 × GC Buffer
(Mg2+ plus), 1 µL of each primer (10 µM), 4 µL of dNTPs (2.5 mM), 0.25 µL of LA-Taq
DNA polymerase (5 U µL−1) and 5 µL of ddH2O (TaKaRa Biotechnology, Dalian, China).
Amplification was performed using initial denaturing for 10 min at 95 ◦C, followed by
35 cycles consisting of 95 ◦C for 30 s, 53–58 ◦C for 30 s, 72 ◦C for 1 min and 72 ◦C for
10 min for a final extension. Amplified PCR products were detected by 1% agarose gel
electrophoresis and sequenced by Sangon Biotech. The obtained sequencing chromatogram
results were aligned and analyzed with DNAMAN version 5.2.2 software (Lynnon LLC,
San Ramon, CA, USA).

Table 3. Primer pairs designed for the amplification of the complete ALS gene from Bromus japonicus.

Primer Sequence (5′→3′) Product Size (bp) Containing the Confirmed Mutation Sites

ALS-F1 CTCCCCAATTCCAACCCTCT
593 Ala-122, Pro-197, Ala-205ALS-R1 GGCTTCCTGAATGACACGGG

ALS-F2 CGTCATCACCAACCACCT
1440 Pro-197, Ala-205, Asp-376, Arg-377, Trp-574

ALS-R2 TCTTTGTCACACGAACTGC
ALS-F3 AGCCACCACAGCCGCCGTCG

598 Trp-574, Ser-653, Gly-654
ALS-R3 GTCGAACCCCTAGTAGTTGATA

4.3. Cross-Resistance Patterns to ALS-Inhibiting Herbicides

Mesosulfuron–methyl (sulfonylurea [SU] herbicide), pyroxsulam (triazolopyrimidine
[TP] herbicide) and flucarbazone-Na (sulfonylamino–carbonyl–triazolinone [SCT] herbi-
cide), representing three different chemical families of ALS-inhibiting herbicides, were
selected for the cross-resistance evaluation. Seeds of QM21-14, QM21-41, QM20-8, QM21-
72, QM21-76 and QM21-79 were planted as described above. Seedlings were thinned to
ten plants per pot with uniform growth and even distributions before herbicide treatment.
Three replicate pots were made for each herbicide treatment (30 plants per dose). At the
3-leaf stage of seedlings, the herbicides were sprayed, and the doses are shown in (Table 4).
The aboveground shoot tissue of the seedlings in each pot was harvested 21 days after
treatment (DAT), placed in envelope paper bags and dried at 70 ◦C for 72 h, and the dry
weight was measured. The GR50 was calculated as above. The resistance index (RI) was
calculated by dividing the GR50 value of the resistant biotype by that of the susceptible
biotype (QM21-14).

Table 4. Details of the herbicides used for the cross-resistance whole-plant assays.

Classes Herbicides Formulation Supplier
Recommended

Field Dose
(g a.i. ha−1)

Populations Doses (g a.i. ha−1)

TP pyroxsulam 4% OD
Corteva

Agriscience,
Beijing, China

12

QM21-14 0, 0.38, 0.75, 1.5, 3, 6, 12, 24, 48

QM21-41,
QM20-8 0, 6, 12, 24, 48, 96, 192, 384, 768

QM21-72,
QM21-76,
QM21-79

0, 0.75, 1.5, 3, 6, 12, 24, 48, 96

SU
mesosulfuron–

methyl 30 g/L OD Bayer Limited,
Hangzhou, China 13.5

QM21-14 0, 0.42, 0.84, 1.68, 3.38, 6.75, 13.5, 27, 54

QM21-41 0, 6.75, 13.5, 27, 54, 108, 216, 432, 864

QM20-8 0, 27, 54, 108, 216, 432, 864, 1728, 3456

QM21-72,
QM21-76,
QM21-79

0, 27, 54, 108, 216, 432, 864, 1728, 3456
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Table 4. Cont.

Classes Herbicides Formulation Supplier
Recommended

Field Dose
(g a.i. ha−1)

Populations Doses (g a.i. ha−1)

SCT flucarbazone–
sodium

70% WDG

Arysta
LifeScience

Corporation,
Shanghai, China

32

QM21-14 0, 1, 2, 4, 8, 16, 32, 64, 128

QM21-41,
QM20-8

0, 256, 512, 1024, 2048, 4096, 8192, 16,
384, 32, 768

QM21-72,
QM21-76,
QM21-79

0, 2, 4, 8, 16, 32, 64, 128, 256

5. Conclusions

In China, 59 populations of B. japonicus with resistance to pyroxsulam were identified
across six provinces, among which 17 populations with higher levels of resistance were
mainly distributed in Hebei, Shandong and Shanxi Provinces. Within these 17 resistant
populations, four different mutations of the ALS gene were detected. The patterns of
cross-resistance to ALS inhibitors varied among populations with different mutations.
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