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Abstract: Air pollution, especially ground-level ozone, poses severe threats to human health and
ecosystems. Accurate forecasting of ozone concentrations is essential for reducing its adverse effects.
This study aims to use the functional time series approach to model ozone concentrations, a method
less explored in the literature, and compare it with traditional time series and machine learning
models. To this end, the ozone concentration hourly time series is first filtered for yearly seasonality
using smoothing splines that lead us to the stochastic (residual) component. The stochastic component
is modeled and forecast using a functional autoregressive model (FAR), where each daily ozone
concentration profile is considered a single functional datum. For comparison purposes, different
traditional and machine learning techniques, such as autoregressive integrated moving average
(ARIMA), vector autoregressive (VAR), neural network autoregressive (NNAR), random forest (RF),
and support vector machine (SVM), are also used to model and forecast the stochastic component.
Once the forecast from the yearly seasonality component and stochastic component are obtained,
both are added to obtain the final forecast. For empirical investigation, data consisting of hourly
ozone measurements from Los Angeles from 2013 to 2017 are used, and one-day-ahead out-of-sample
forecasts are obtained for a complete year. Based on the evaluation metrics, such as R2, root mean
squared error (RMSE), and mean absolute error (MAE), the forecasting results indicate that the FAR
outperforms the competitors in most scenarios, with the SVM model performing the least favorably
across all cases.

Keywords: ozone concentration; functional data analysis; forecasting; autoregressive; machine
learning

MSC: 37M10; 81T80; 46N30; 62J05

1. Introduction

Air pollution refers to the existence of detrimental materials such as gases, solids, or
liquid particles in the atmosphere, leading to harmful consequences for human health,
the environment, and ecosystems. These materials are termed pollutants and can have
diverse origins, arising from sources like industrial operations, transportation, natural
occurrences, and human activities. Typical pollutants include ozone (O3), nitric oxide (NO),
nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter
2.5 (PM2.5), and particulate matter 10 (PM10), among others. Air pollution, especially
ground-level O3, is a significant global concern affecting public health and the environment
(Seinfeld and Pandis 2016).

In the United States of America (USA), the environmental protection agency (EPA)
estimates that mobile sources such as cars, buses, planes, trucks, and trains account for
about half of the cancer risk and more than 70% of the non-cancer health effects associated
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with air toxics (Munshed et al. 2023). Stationary sources such as power plants, oil refineries,
industrial facilities, and factories emit large amounts of pollutants from particular sites
called point sources. Area sources are made up of several minor pollution contributors
that combined have a significant impact on air quality. Area sources include agricultural
areas, urban regions, and wood-burning fireplaces. Natural sources like wind-blown
dust, wildfires, and volcanic activity can also impact air quality. Figure 1 displays the
different sources described above that contribute significantly to air pollution. The collective
impact of these sources on the environment poses a serious challenge for researchers and
policymakers (Lotrecchiano et al. 2020; Mavroidis and Ilia 2012).

Figure 1. Different sources of air pollution. Source: (Suraki 2013).

Exposure to ground-level O3 can have a range of adverse effects on human health.
For example, O3 exposure is associated with an elevated risk of chronic respiratory and
cardiovascular ailments, as indicated by numerous studies (World Health Organization
2020). Even short-term exposure to O3 can perturb lung mucociliary function, consequently
weakening resistance to bacterial infections (Sujith et al. 2017). Alarming statistics reveal
that approximately 16,400 premature deaths within the European Union (EU) are attributed
to O3 pollution (Nuvolone et al. 2018). Beyond human health, O3 poses a substantial
threat to vegetation and biodiversity. Its capacity to impair crops, forests, and other
forms of vegetation manifests in the form of diminished photosynthesis, reduced carbon
sequestration, and losses in biodiversity. Moreover, it induces visible leaf injuries (Paoletti
and Manning 2007). This concern extends to various regions, including parts of southern
Europe, where a multitude of grassland areas face the risk of high O3 levels, impacting
plant composition, seasonal flowering, and seed production for diverse natural species
(Mills et al. 2016).

Ozone concentrations are important for air quality management and public health,
and accurate prediction of these concentrations can aid in decision-making processes. Due
to the importance of this topic, researchers in the past have proposed different methods
and techniques to model and forecast O3 concentrations. For example, Hong et al. (2023)
presented a novel approach for predicting hourly O3 levels using deep learning tech-
niques called the multi-order difference embedded long short-term memory (MDELSTM)
method, using a Los Angeles air quality dataset. The performance of the proposed model
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is compared with partial least squares (PLS), gated recurrent unit (GRU), long short-term
memory (LSTM), multilayer perceptron (MLP), and stationary difference embedded LSTM
(SDELSTM). Based on the results, the MDELSTM model demonstrates superior prediction
performance among the models considered. Machine learning techniques are popular for
forecasting O3 concentrations (Eslami et al. 2020; Hashim et al. 2022; Yafouz et al. 2022).
For instance, Yafouz et al. (2022) conducted a study to predict the tropospheric O3 concen-
tration using different machine learning models. These models included linear regression
(LR), support vector regression (SVR), tree regression (TR), Gaussian process regression
(GPR), ensemble regression (ER), and artificial neural networks (ANNs). Using data from
Peninsular, Malaysia, the results indicated that the LR, SVR, GPR, and ANN performed
better in terms of having a high R2.

Many researchers have investigated the performance of classical time series models
for forecasting O3 concentrations (Salazar et al. 2019). For example, Kumar et al. (2004)
studied the autoregressive integrated moving average (ARIMA) model to forecast the daily
surface O3 concentration. Using a real dataset, the ARIMA (1,0,1) model demonstrated
the best performance in predicting the maximum daily O3 concentration, with a MAPE of
13.14%. Aneiros-Pérez et al. (2004) forecast daily maximum O3 concentrations in Toulouse,
France, using nonlinear models based on kernel estimators. They also included exogenous
variables in their analysis. The study found that the functional additive model (FAM),
with its back-fitting kernel approach, produced the lowest quadratic errors and explained
the highest percentage of variability in the data compared to other models. Due to the
challenges posed by O3 to human health, researchers are actively proposing different
models to model and forecast O3 concentration time series data (Arsić et al. 2020; Gao et al.
2018; Ghoneim et al. 2017; Rahman and Nasher 2024; Su et al. 2020).

This research contributes to the literature on O3 forecasting by applying functional
data analysis (FDA) methods, which can capture the dynamic and complex features of the
O3 concentration as a function of time. FDA methods have been used in various fields
such as bio-statistics, econometrics, and environmental science, but are less explored in
the context of O3 forecasting (Jan et al. 2022; Shah et al. 2022). This study proposes a novel
time series model based on FDA, which treats each day as a single functional observation
with 24 discrete points. The performance of the FDA model is compared with classical
time series and machine learning models using standard accuracy metrics. The results
of this study provide insights into the advantages and limitations of different forecasting
methods and suggest ways to improve the accuracy and reliability of O3 forecasts. This
study also has practical implications for policymakers, environmental managers, and public
health officials, who can use the O3 forecasts to implement timely and effective measures
to mitigate the adverse effects of O3 pollution.

The rest of the article is organized in the following manner. Section 2 provides details
about the general modeling framework and the details of different models used in this
research work. Analysis and results based on empirical investigation are provided in
Section 3. Finally, Section 4 concludes the study.

2. Methodology

This section explores the predictive models used in this study to model and forecast
O3 concentration data. To this end, our proposed approach FAR is outlined in more detail.
Several parametric and non-parametric competing models like ARIMA, VAR, SVM, NNAR,
and RF are also briefly described in this section. Before going into detail, we revisit some of
the preliminaries of functional data analysis.

2.1. Functional Data Analysis

James O. Ramsay coined the term “functional data analysis” to describe this field of
study (Ramsay 1982). FDA is at the forefront of modern statistical computing, ushering
transformative changes across diverse fields. The rapid advancement of technology al-
lows for quicker and more accurate measurement equipment, facilitating the collection of
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continuous data spanning time, space, or other continua. This paradigm shift challenges
classical statistical assumptions, particularly the conventional belief that the number of data
points should surpass the number of variables in a dataset. In response to this evolution,
FDA emerged as a field treating data as functional, where each curve is regarded as a
single observation, rather than a collection of discrete data points. The FDA method lever-
ages information within and across sample units to incorporate derivatives, smoothness,
and other inherent features of the functional data structure. The process of converting
data to functional objects involves collecting information at discretized points, typically
equally spaced, and implementing suitable basis functions to eliminate common noise
while accurately representing each data curve.

Basis functions are pivotal in FDA, serving as the fundamental components for model-
ing intricate functional observations. These functions are expressed as a linear combination
of coefficients C and known basis functions ϕ. The representation of a functional observa-
tion y(j) is given by

y(j) =
K

∑
k=1

Ckϕk(j) (1)

where Ck denotes parameters, ϕk(j) represents the known basis functions, and K is the
number of basis functions used. A more simplified representation using matrix notation
can be written as

y = c⊤ϕ = ϕ⊤c

Several common basis functions, including the Fourier basis, B-spline basis, poly-
nomial principal components, and exponential basis are used to cater to different data
characteristics. The selection depends on the nature of the data, e.g., the Fourier basis is
generally suitable for periodic data and the B-spline basis is preferred for non-periodic data.
In our research, we chose the B-spline basis system for its applicability to non-periodic data.

The B-spline basis functions are polynomial segments that are joined at certain knots
or breakpoints. The compact support property, where each basis function is positive over
a limited number of adjacent intervals, increases the computational efficiency. The order
of a B-spline determines the degree of polynomial segments while the knot sequence
governs their placement. The strategic placement of knots, whether equally spaced or
tailored to data characteristics, plays a vital role in achieving accurate and meaningful
representations. Coincident knots are employed strategically, offering flexibility to induce
specific characteristics like derivative discontinuities.

2.2. Functional Autoregressive Model

The FAR model used in this study is an extension of the classical AR model for
functional data. The FAR model of order 1, FAR(1), operates within the framework of a
separable Hilbert space denoted by H. It specifically considers the Hilbert space L2[0, 1],
although the idea is applicable to other L2-spaces. An autoregressive Hilbertian process of
order 1, ARH(1), which is also called FAR(1), is identified in this context as a sequence Yt of
H-random variables. The process is strictly stationary and satisfies the AR equation:

Yt(j)− µ(j) = ψ(Yt−1(j)− µ(j)) + ϵt(j) , j ∈ J (2)

where µ(j) is the mean function, ψ is a bounded linear operator, and ϵ(j) is the shock
or innovation term. The AR operator ψ is assumed to be a compact Hilbert–Schmidt,
symmetric, and positive bounded linear operator from L2[0, 1] to itself. The compactness
property permits a decomposition using orthonormal bases and real numbers, and the
operator is said to be nuclear if certain eigenvalue conditions are met. Within the functional
framework, we will drop the compact support (j) for simplicity.
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2.2.1. Operators in the Hilbert Space (L2[0, 1])

Operators in the Hilbert space L2[0, 1] are defined by a norm and are bounded linear
operators and obtained from the inner product of the space H. This norm is the supremum
of the operator’s norm over all unit vectors y in H. It is represented by the symbol ∥ψ∥L
and written as

∥ψ∥L = sup
∥y∥≤1

∥ψ(y)∥

An operator ψ is termed compact with respect to orthonormal bases νj and f j in H and
a sequence λj approaching zero if it can be expressed as

ψ(y) =
∞

∑
j=1

λj⟨y, νj⟩ f j

If the sum of the squares of an operator’s sequence λj is finite, the operator is Hilbert–
Schmidt, i.e.,

∞

∑
j=1

λ2
j < ∞

The space of Hilbert–Schmidt operators S is separable and is equipped with an inner
product and associated norm:

⟨ψ1, ψ2⟩S = ∑
1<=i,j<=∞

⟨ψ1(gi), hj⟩⟨ψ2(gi), hj⟩

∥ψ∥S =

(
∑

j
λ2

j

)1/2

Operators are classified as symmetric if ⟨ψ(x), y⟩ = ⟨x, ψ(y)⟩, and positive if ⟨ψ(y), y⟩ ≥
0. A symmetric positive Hilbert–Schmidt operator admits the decomposition

ψ(y) =
∞

∑
j=1

λj⟨y, νj⟩νj

A compact operator is nuclear if the sum of the absolute values of its sequence λj is finite:

∑
j
|λj| < ∞

The norms of these operators follow the relationship ∥ · ∥N ≥ ∥ · ∥S ≥ ∥ · ∥L. If ψ
is an integral operator in L2 defined by ψ(x)(t) =

∫
ψ(t, s)x(s)ds, where ψ(., .) is a real

kernel, it is a Hilbert–Schmidt operator if and only if
∫ ∫

ψ2(t, s)dtds < ∞. The model is
non-parametric, as ψ represents an infinite-dimensional parameter.

2.2.2. Estimation of the Operator ψ

Estimating the AR operator ψ in the FAR model involves addressing specific assump-
tions for obtaining a stationary solution. Two assumptions are considered to ensure the
existence of a stationary solution. The first assumption requires the existence of an integer
j0 ≥ 1 such that ∥ψj0∥L < 1, while the second assumption necessitates the existence of
a > 0 and 0 < b < 1 such that ∥ψj∥L ≤ abj for all j ≥ 0. These assumptions, under certain
conditions, guarantee a unique strictly stationary solution, as proven in Bosq (2000).

It is important to note that estimating ψ cannot rely on likelihood due to the non-
existence of the Lebesgue measure in non-locally compact spaces and the concept of
density is not available for the functional data. Instead, the classical method of moments
is employed. The estimation of ψ is represented as ψ = CΓ−1, where Γ = E(Yt ⊗ Yt) and
C = E(Yt ⊗ Yt+1) are the covariance and cross-covariance operators of the process, and ⊗
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is the Kronecker product. The sample versions of these operators are denoted as Γ̂t and Ĉt,
respectively.

To simplify notation, it is assumed that the mean of the process E(Yt) = 0 is known.
The sample versions of the covariance and cross-covariance operators, denoted as Γ̂t and
Ĉt, are given by Γ̂t =

1
n ∑n−1

t=0 Yt ⊗ Yt and Ĉt =
1
n ∑n−1

t=0 Yt ⊗ Yt+1.
The covariance operator Γ is a symmetric, positive definite, and compact operator. It

can be decomposed into eigenfunctions and eigenvalues, denoted as λj and νj, respectively.
However, Γ−1 is not a bounded operator. To address this, a practical solution is proposed
involving the consideration of the first p most important empirical functional principal
components as substitutes for unknown population principal components, as given by

Γ−1
t (y) =

p

∑
j=1

λ−1
j ⟨y, ν̂j⟩ν̂j = Γ†

t (y)

From the ARH(1) equation, when multiplying by Yn we obtain the relation

Yt ⊗ Yt+1 = Yt ⊗ (ψYt) + Yt ⊗ ϵt+1 = ψYt ⊗ Yt + Yt ⊗ ϵt+1

By the definitions of the covariance and cross-covariance operators of ARH(1) and
using E(ϵ) = 0, we have C = ψΓ and ψ = CΓ−1. The estimate of ψ is then given by

ψ̂n(y) =
1

n − 1

n−1

∑
k=1

p

∑
j=1

p

∑
i=1

λ̂−1
j ⟨y, ν̂j⟩⟨Yk, ν̂j⟩⟨Yk+1, ν̂i⟩ν̂i

The last term is derived by performing an additional smoothing step on Yk+1 and
ν̂j. The empirical eigenfunctions are known to converge asymptotically to the popula-
tion eigenfunctions.

Once the estimator ψ̂ of the population parameter ψ is obtained, it is crucial to assess
its optimality in estimating the true parameter. For the FAR parameter ψ, Didericksen
et al. (2012) demonstrated that the estimator is optimal in terms of MSE and MAE, as
its prediction error is comparable to the infeasible predictor ψ(y) for an appropriately
chosen p.

2.3. Autoregressive Integrated Moving Average (ARIMA) Models

Time series data analysis is a vital tool for comprehending and forecasting temporal
patterns. The autoregressive moving average (ARMA) model combines elements of au-
toregressive (AR) and moving average (MA) models, providing a framework for modeling
univariate time series data. For a univariate time series Yt, an ARMA(p, q) model can be
written as

Yt = C +
p

∑
r=1

ϕrYt−r +
q

∑
l=1

ΦlZt−l + Zt (3)

Equation (3) contains an intercept term C, AR parameters ϕr (r = 1, 2, . . . , p), MA
parameters Φl (l = 1, 2, . . . , q), and a white noise term Zt ∼ N(0, σ2

z ). The ARMA models
are well-suited for stationary time series data. However, differencing is required to achieve
stationarity for non-stationary data, and this is where the ARIMA model comes into play.
The ARIMA model is an extension of ARMA specifically tailored for non-stationary time
series (Shumway et al. 2000). It involves differencing the data to attain stationarity, which
can be expressed as

Yd
t =

p

∑
r=1

ϕrYd
t−r +

q

∑
l=1

ΦiZt−l + Zt (4)

where Yd
t represents the dth difference of the series, ϕr (r = 1, 2, . . . , p) and Φl (l = 1, 2, . . . , q)

are the parameters of the AR and MA components, respectively, and Zt ∼ N(o, σ2
z ).
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Identifying the appropriate ARIMA model is a critical step and it involves determining
the order of differencing ‘d’ and the numbers of AR (p) and MA (q) terms. The autocorrela-
tion function (ACF) and partial autocorrelation function (PACF) plots are valuable tools in
this process. The ACF indicates the series correlation with itself at different lags, whereas the
PACF reveals autocorrelation at a lag k with intervening data deleted. For parameter estima-
tion, generally, the maximum likelihood estimation (MLE) is used (Shumway et al. 2000).
This study investigated different models and found that the ARIMA(5,0,0), which is a pure
autoregressive model with five lagged observations, fits the data well and provides white
noise errors, thus being suitable for forecasting.

2.4. Vector Autoregressive

A vector autoregressive (VAR) model is a powerful and commonly used time series
analysis method that enables us to capture the dynamic interactions between variables
over time. It extends the concept of univariate AR models to a multivariate situation.
Because of their flexibility and forecasting accuracy, VAR models are extremely useful
for understanding and forecasting complicated real-world behavior. They can effectively
express variable interdependence.

A VAR model is built on a set of equations that describe the evolution of various time
series variables. Each variable in the model is treated as a linear function of its own lagged
values as well as the lagged values of all other variables in the model. Suppose Yt is a
vector of univariate time series, then a VAR model can be written as

Yt = C + Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p + ϵt (5)

where Yt is an n × 1 vector representing the current values of n distinct response time series
variables at time t. The n × 1 vector C consists of constant offsets that serve as intercepts,
accounting for the baseline level of the variables. The Φj matrices, ranging from j = 1 to
p, are n × n matrices of AR coefficients. These matrices capture the relationships between
the variables at different time lags; specifically, the impact of past values up to lag p on the
current values. The parameter “p” defines the order of the VAR model, determining the
maximum number of past periods considered in each equation and influencing the model’s
ability to capture system dynamics. Finally, ϵt represents an n × 1 vector of “white noise”
terms, introducing randomness into the model and accounting for unexplained variability
not captured by the lagged variables, thereby enhancing the model’s accuracy in describing
the underlying time series data.

The choice of the order is a critical step and is typically determined through cross-
validation techniques and information criteria such as AIC, BIC, and HQ. As we estimate
models for 365 days, the value of the selected p can vary. However, in most cases, a VAR of
order five, i.e., VAR(5), is suitable as it generally provides whitened residuals and produces
lower AIC values compared to other orders of the model. Estimating and inferring parame-
ters in VAR models is typically achieved by using the MLE or ordinary least squares (OLS)
techniques. These methods rely on certain assumptions, such as the error terms having a
conditional mean of zero, stationary variables, and the absence of perfect multicollinearity.

2.5. Artificial Neural Networks

Artificial neural networks (ANNs) are a foundational component of machine learning,
particularly in the realm of deep learning. They mirror the human brain’s structure and
functionality, comprising interconnected nodes arranged in layers: input, hidden, and
output. These nodes, akin to artificial neurons, process information through weighted
connections, activating based on a threshold to transmit data across layers. The ANNs
are renowned for their proficiency in rapid data classification, clustering, and various
applications such as speech and image recognition, with Google’s search algorithm being a
prominent example of their implementation.

ANNs constitute a multi-layered architecture comprising essential components fea-
turing an input layer, hidden layers, and an output layer. The input layer receives diverse
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data formats while the hidden layer, functioning as a “distillation layer”, extracts pertinent
patterns to enhance network efficiency by recognizing crucial information and discarding
redundancy. The output layer processes transformed information from the hidden layers
to produce the final output. The most commonly employed ANNs for predictive tasks
are MLPs with hidden layers, utilizing a three-layered network interconnected by acyclic
connections. Nodes are considered as manufacturing components and the architecture
allows for more than one hidden layer.

Neural Network Autoregressive

The neural network autoregressive (NNAR) model is a potent deep learning structure
widely employed in various fields like natural language processing, time series forecasting,
and speech recognition. It utilizes past data to predict future values, employing a recursive
approach where each time step’s input is the prior prediction. This model handles non-
linear relationships within intricate datasets and can be constructed using feedforward or
recurrent neural networks.

The NNAR(p, k) architecture involves “p” lagged inputs for forecasting and includes
“k” nodes in the hidden layer. It shares similarities with ARIMA models but operates
without constraints for stationarity. The NNAR model equation comprises weighted node
connections, nonlinear activation functions, AR dependencies, exogenous impacts, and
error terms, and can be written as

Yit = f

(
α1

N

∑
j=1

wijYj(t−1) + λZT
i(t−1)

)
+ ϵt (6)

where Yit represents the univariate response at node i and time t, wij indicates the connec-
tion strength between nodes i and j for i, j = 1, . . . , N, λZT

i(t−1) captures the exogenous
impact, and f () is an unidentified smoothed link function. Estimation methods for the
NNAR include profile least squares estimation and local linear approximation to model the
unknown link function and optimize parameter estimates. This model iterates through his-
torical inputs to generate multi-step forecasts in time series analysis, showing adaptability
and robustness in handling intricate data patterns. In our case, a simple autoregressive of
order one with one node in the hidden layer, NNAR(1,1), is used.

2.6. Support Vector Machine

Support vector machines (SVMs) are powerful supervised learning models widely
employed for data analysis in classification, regression, and outlier detection tasks. They
excel in handling both linear and nonlinear data separations, making them versatile in
various domains such as text classification, image recognition, gene expression analysis,
and even time series prediction. Notably, these machines were meticulously designed
not only for effective ranking but also for efficiently simplifying training set outcomes.
This distinct quality has led to the widespread adoption of SVM techniques, especially in
forecasting time series.

An SVM commences with the input data, composed of labeled feature vectors, where
each vector corresponds to one of two classes. Extending beyond binary classification,
SVMs can also tackle multi-class classification problems. These feature vectors are then
transformed into a higher-dimensional space using various kernel functions, such as the
linear, polynomial, or radial basis functions. This transformation is pivotal as it calculates
the similarity between different feature vectors, allowing the SVM to address nonlinear
separable data.

Key Elements and Optimization in the SVM

• Training data and class labels:The training data contains assigned class labels (yi)
denoted within {−1, 1} for binary classification, serving as an anchor for the model’s
learning process.
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• Margin and decision boundary: The SVM aims to establish a hyperplane maximizing
the margin between classes, mathematically expressed as

wTx + b = 0,

where w denotes the weight vector and b is the bias.
• Support vectors and decision boundary: Essential in shaping the decision boundary,

support vectors are the data points lying within or on the margin. They play a defining
role in establishing the decision boundary.

• Optimization and decision function: The optimization process fine-tunes key parame-
ters like the weight vector, bias, and regularization factor to craft the decision function.

• Optimization (mathematical model): The hyperplane determination involves an opti-
mization problem:

Minimizing(
1
2
∥w∥2 + C ∑ ξi)

under the constraints yi(wTxi + b) ≥ 1 − ξi with ξi ≥ 0, where C denotes the regu-
larization parameter and ξi are slack variables permitting misclassifications within
margin boundaries.

• Decision function and prediction: The decision function anticipates the class label
for a new data point x, utilizing the transformed feature vector generated via the
kernel function. This function is represented as f (x) = sign(wTϕ(x) + b), where ϕ(x)
denotes the transformed input feature vector.

In this work, the SVM model is an epsilon-regression type with a radial basis function
kernel. It uses two lagged values of ozone concentration as inputs and is parameterized
with a cost of 1.0, gamma of 0.5, and epsilon of 0.1. The model is supported by 1191 support
vectors to ensure accurate predictions.

2.7. Random Forest

The random forest (RF) algorithm, introduced by Leo Breiman (Breiman 2001), is an
important machine learning method suitable for both classification and regression tasks.
It employs an ensemble of decision trees, each trained on a distinct subset of data created
through bagging. Bagging, or bootstrap aggregating, involves forming diverse training
sets for each tree by random sampling with replacement. A distinctive feature of the RF
is the additional randomness introduced during tree construction. Instead of opting for
the optimal feature for node splitting, it considers a random subset of features, thereby
enhancing model diversity. This unique characteristic contributes to RF’s robustness against
overfitting and its effectiveness in handling complex datasets.

Random forest constructs a “forest” of decision trees through bagging. Each decision
tree is descriptive, with a root node containing the variable of interest and leaf nodes
representing predicted outcomes. The trees grow without pruning and predictions for new
observations are made by aggregating results using f (x) = 1

K ∑K
i=1 fi(x), where f (x) is

the RF regression predictor, K is the number of trees, and fi(x) represents the individual
regression trees.

Working Principle of Random Forests

• Tree construction:

1. Random subsampling (bootstrap aggregating): The algorithm selects a subset of
training data with a replacement (bootstrap sample) and trains a decision tree on each
subset. Samples are obtained by randomly selecting observations with replacements from
the original dataset.

2. Random feature selection: At each decision tree node, a random subset of features
is chosen for splitting, reducing the correlation between trees and enhancing ensemble
diversity. The number of features considered at each node is typically the square root of the
total features for classification and one-third for regression.
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• Prediction and aggregation:

3. OOB error and feature importance: Post-training, RF provides two indices: the
out-of-bag (OOB) error and the importance value of each feature. The OOB error measures
prediction accuracy on data not included in the bootstrap sample, while feature importance
is determined using the OOB dataset, aiding in variable selection.

4. Voting: Once all decision trees are trained, predictions are made by aggregating in-
dividual tree results. Majority voting is used for classification, and averaging for regression.
The algorithm’s performance is assessed through OOB error, providing an estimate of the
RF’s generalization error by ŷ = 1

ntree
∑ntree

j=1 yj, where ŷ is the final predicted value, ntree is
the number of trees in RF, and yj is the predictive value of the jth tree.

• Introducing randomness:

The RF introduces randomness by selecting a subset of features for node splitting,
enhancing model performance and reducing overfitting. The equation for the RF regres-
sion predictor with randomness in feature selection is f (x) = 1

K ∑K
i=1 fi(x, θi) where θi

are independent random vectors with the same distribution, representing the randomly
selected features.

• Hyperparameters and feature importance:

The RF has hyperparameters such as the number of trees (nestimators), maximum
features for splitting a node max_features, and minimum samples required to split an
internal node (min_samples_leaf). These can be tuned for optimal performance. The
RF assesses feature importance by measuring the accuracy decrease using OOB error
estimation during feature selection.

Finally, our RF model uses four lagged values of ozone concentration as predictors in
this work. It was fine-tuned through 5-fold cross-validation, achieving optimal performance
with the number of variables tried at each split (mtry) set to 2.

2.8. General Modeling Framework

The main goal of this study is to forecast O3 concentrations and compare the proposed
model, FAR(1), with other traditional time series and machine learning models. To explain
in detail, for the O3 concentration series denoted by Xt,h for the tth day (t = 1, 2, . . . , n)
and the hth hour in a day (h = 1, 2, . . . , 24), the dynamics of the O3 concentration can be
modeled as

Xt,h = Dt,h + Yt,h . (7)

This means that the O3 series Yt,h is decomposed into two components. The first one
is Dt,h, which is the deterministic component that contains long-term dynamics, and the
second one is Yt,h, which is the stochastic component that captures short-term variations.
The deterministic component consists of yearly seasonality, which is modeled and forecast
using the generalized additive modeling (GAM) technique using smoothing splines. More
precisely, the yearly seasonality, which is represented by the series (1, 2,. . . , 365, 1, 2,. . . , 365,
1, 2,. . . , 365, 1, 2,. . . , 366, 1, 2,. . . , 365), is modeled using a smoothing spline, the one-day-
ahead forecast for yt+1,h = yt,h, as this component represents long-term dynamics for our
forecast horizon. Hence, the one-day-ahead forecast for the deterministic component is
obtained as follows:

D̂t+1,h = D̂t,h . (8)

To compute the stochastic component, we subtract the deterministic component Dt,h
from Xt,h. Mathematically, this is represented as

Yt,h = Xt,h − D̂t,h . (9)

The modeling and forecasting of the stochastic component is performed using FAR(1)
and five alternate competing models. To this end, the stochastic component Yt,h is converted
to a matrix of dimensions “days × hours”, where each row represents a day and each
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column represents an hour. In the case of FAR(1), this matrix is then transformed into a
functional object using the B-spline basis function given in Equation (1), that results in
Yt(j), and the FAR(1) model is applied thereafter. In the case of the VAR model, the matrix
of hourly series is considered and modeled as given in Section 2.4. Finally, for all other
models, the hourly series is modeled and forecast separately considering each hourly series
as a univariate time series.

Once both components, deterministic and stochastic, are modeled and forecast sep-
arately, the final one-day-ahead out-of-sample forecasts are obtained by combining the
forecasts of both components. In summary, the following procedure is used to obtain
one-day-ahead out-of-sample forecasts from different models.

• For an hourly time series, decompose the O3 concentration time series into determinis-
tic and stochastic components, as given in Equation (7).

• Using Equation (8), obtain a one-step-ahead forecast for each hour that will result in a
24 h one-day-ahead forecast.

• Obtain the stochastic component using Equation (9). Use the models described in
Section 2 to obtain a one-day-ahead forecast.

• Compute the final one-day-ahead out-of-sample forecasts by combining the forecasts
from deterministic and stochastic components.

• Repeat the above steps for 365 days using a rolling window to obtain the one-day-
ahead out-of-sample forecasts for the entire year.

Figure 2 shows the flowchart of the proposed modeling framework.

Deterministic 
component

Stochastic 
component

NNARVAR RFSVMARIMA

Final forecast

Data

FAR

Figure 2. Flowchart of the proposed general modeling framework.

3. Analysis and Results
3.1. Data Overview and Preprocessing

The data for this study originate from Los Angeles, an area highly prone to ground-
level O3 pollution due to its unique geography, surrounded by mountains and bordered
by the sea, resulting in a Mediterranean climate with high temperatures and minimal
rainfall. The dataset utilized for our research was sourced exclusively from O3 concentration
measurements taken at the North Main Street monitoring site (−118.22688 E, 34.06659 N) as
part of the Environmental Protection Agency’s (EPA’s) air quality system in Los Angeles1.
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This dataset spans the years from 2013 to 2017, capturing a comprehensive record of
O3 levels in the region. While the EPA’s air quality system typically collects a wide
range of meteorological and air pollution data, we have focused specifically on the O3
concentration data for our study, thereby refining our dataset to provide a precise and
specialized foundation for our research. The dataset is plotted in Figure 3, where the red
line separates the model estimation and out-of-sample forecasting periods. This figure
shows considerable variation in O3 concentration throughout the year.

year
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Figure 3. O3 concentration time series for Los Angeles. The red line divides the estimation and
out-of-sample forecasting periods.

Missing values are common in air quality datasets and we have a very small number
of missing values in our dataset. To address this, linear interpolation is applied to estimate
missing values by assuming a linear relationship between neighboring known data points.
This method calculates the value of a missing data point based on the values of the nearest
data points before and after it in the dataset. This method is commonly used in various
fields, such as time series analysis, geographic information systems, and data analysis, to
interpolate and fill in missing data points. The dataset was organized with 80% of the data,
spanning from 2013 to 2016, allocated for model estimation, while the remaining 20%, which
corresponds to the data for 2017, was reserved for one-day-ahead out-of-sample forecasts.

The descriptive statistics in Table 1 reveal that the smallest observed value is 0.0010 parts
per million (ppm), while the largest value stands at 0.1160 ppm. The mean O3 concentration
is calculated at 0.0239 ppm. Notably, the distribution appears to be slightly positively
skewed, evident from the mean being marginally higher than the median (0.0220 ppm).
Moreover, the standard deviation of 0.0180 ppm signifies a reasonable level of variability
around the mean O3 concentration value. Additionally, the first quartile, at 0.0070 ppm,
and the third quartile, at 0.0360 ppm, help us to understand where the majority of values
cluster within the dataset.



Econometrics 2024, 12, 12 13 of 21

Table 1. Descriptive statistics of O3 concentration time series.

Statistic Value

Minimum 0.0010
1st Quartile 0.0070

Median 0.0220
Mean 0.0239

3rd Quartile 0.0360
Maximum 0.1160

Standard Deviation 0.0180

3.2. Forecasting Accuracy Metrics

The accuracy of our forecasting models is measured using three standard error mea-
sures, i.e., mean absolute error (MAE), root mean squared error (RMSE), and R-squared
(R2). These error measures are common descriptive statistics that show how close the
predictions are to the actual values. Mathematically, they are described as

MAE =
1
N

N

∑
t=1

∣∣Xt,h − X̂t,h
∣∣

RMSE =

√√√√ 1
N

N

∑
t=1

(
Xt,h − X̂t,h

)2

R2 =
∑N

t=1(X̂t,h − X̄h)
2

∑N
t=1(Xt,h − X̄h)2

where

• N is the number of observations in the out-of-sample forecast period.
• Xt,h and X̂t,h represents the actual and forecast O3 values of the tth (t = 1, 2, . . . 365)

day and hth (h = 1, 2, . . . 24) hour.
• X̄h denotes the mean O3 value of the hth hour.

3.3. Results

A comparison of the forecasting accuracy and model performance using R2, MAE, and
RMSE as the evaluation criteria is shown in Table 2 and depicted in Figure 4. The results
indicate that the FAR(1) model achieved the best performance, as it had the highest R2

value and the lowest error values. The second-best model was the VAR model, followed by
the ARIMA, NNAR, and RF models. The SVM model had the worst performance among
the six models.

Table 2. One-day-ahead out-of-sample forecast results for O3 concentration.

Method MAE RMSE R2

FAR(1) 0.0066 0.0090 0.7971
ARIMA(5,0,0) 0.0077 0.0101 0.7429

VAR(5) 0.0069 0.0092 0.7827
NNAR 0.0078 0.0102 0.7375
SVM 0.0085 0.0116 0.6693
RF 0.0078 0.0106 0.7136
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Figure 4. One-day-ahead out-of-sample forecasts for O3 concentration: (top) RMSE, (middle) MAE,
and (bottom) R2 values.

The O3 concentration forecasting performance for each model for different days of
the week is summarized in Table 3 and illustrated in Figure 5. These errors represent the
average errors for the whole year when calculated for different days of the week. From
these results, one can notice that the proposed model outperforms the other models by
producing the lowest RMSE and MAE values for every day of the week. The forecast errors
are different for each day of the week, with the lowest values on Wednesday, for which
the O3 concentration is more stable than the rest of the days, and the highest values on
Saturday and Sunday. The SVM model is the worst among the six models, as it has the
highest RMSE and MAE values for every day.

Table 4 compares the hourly O3 forecasting errors of six different models using the
RMSE and MAE metrics. The results show that the FAR(1) is the most accurate for most
hours, except for the first five hours, when the VAR model performs better. The O3 levels
and the errors change throughout the day due to various factors such as weather, traffic,
and emissions. The errors are usually higher during the peak hours (14–18) and the late
hours (21–24), and lower during the off-peak hours (1–4). The VAR model is slightly better
than the ARIMA, NNAR, and SVM models, but still worse than the FAR(1) model. Again,
the SVM model has the highest errors for most hours and is the least accurate model. These
results are also depicted in Figure 6.
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Figure 5. Day-specific RMSE and MAE values for O3 concentration forecasting.

Table 3. Day-specific forecasting errors of all models.

Method Error
Day of the Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

FAR(1) 0.0086 0.0087 0.0077 0.0090 0.0091 0.0099 0.0095
ARIMA 0.0099 0.0095 0.0087 0.0103 0.0105 0.0111 0.0106

VAR RMSE 0.0087 0.0089 0.0081 0.0093 0.0092 0.0103 0.0099
NNAR 0.0101 0.0096 0.0089 0.0105 0.0108 0.0107 0.0103

RF 0.0107 0.0105 0.0089 0.0104 0.0110 0.0114 0.0113
SVM 0.0112 0.0110 0.0101 0.0110 0.0123 0.0126 0.0127

FAR(1) 0.0066 0.0063 0.0057 0.0066 0.0068 0.0072 0.0074
ARIMA 0.0078 0.0074 0.0069 0.0077 0.0078 0.0084 0.0083

VAR MAE 0.0067 0.0066 0.0060 0.0069 0.0069 0.0075 0.0076
NNAR 0.0079 0.0074 0.0069 0.0079 0.0081 0.0081 0.0081

RF 0.0082 0.0079 0.0066 0.0076 0.0078 0.0083 0.0085
SVM 0.0084 0.0081 0.0076 0.0079 0.0085 0.0090 0.0097
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Figure 6. One-day-aheadout-of-sample hour-specific RMSE and MAE for O3 concentration.

Table 4. Hour-specific forecasting errors for O3 concentration.

Hour Errors FAR(1) ARIMA VAR NNAR RF SVM

1 RMSE 0.0049 0.0108 0.0048 0.0108 0.0115 0.0124
MAE 0.0034 0.0083 0.0033 0.0082 0.0083 0.0088

2 RMSE 0.0057 0.0105 0.0057 0.0104 0.0111 0.0119
MAE 0.0040 0.0081 0.0041 0.0080 0.0080 0.0085

3 RMSE 0.0069 0.0109 0.0068 0.0109 0.0116 0.0124
MAE 0.0050 0.0085 0.0051 0.0084 0.0083 0.0089

4 RMSE 0.0075 0.0107 0.0074 0.0108 0.0114 0.0120
MAE 0.0055 0.0084 0.0054 0.0083 0.0082 0.0086

5 RMSE 0.0081 0.0106 0.0081 0.0105 0.0111 0.0116
MAE 0.0060 0.0083 0.0060 0.0080 0.0079 0.0079

6 RMSE 0.0077 0.0096 0.0078 0.0096 0.0102 0.0106
MAE 0.0054 0.0075 0.0057 0.0073 0.0071 0.0071
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Table 4. Cont.

Hour Errors FAR(1) ARIMA VAR NNAR RF SVM

7 RMSE 0.0070 0.0084 0.0072 0.0084 0.0090 0.0091
MAE 0.0050 0.0062 0.0051 0.0061 0.0062 0.0060

8 RMSE 0.0067 0.0080 0.0069 0.0079 0.0087 0.0090
MAE 0.0048 0.0060 0.0049 0.0057 0.0061 0.0062

9 RMSE 0.0070 0.0079 0.0072 0.0077 0.0085 0.0088
MAE 0.0054 0.0060 0.0055 0.0058 0.0063 0.0065

10 RMSE 0.0076 0.0082 0.0077 0.0077 0.0086 0.0094
MAE 0.0059 0.0065 0.0061 0.0061 0.0067 0.0072

11 RMSE 0.0087 0.0093 0.0089 0.0092 0.0099 0.0111
MAE 0.0068 0.0073 0.0072 0.0073 0.0078 0.0086

12 RMSE 0.0092 0.0098 0.0097 0.0097 0.0103 0.0117
MAE 0.0070 0.0074 0.0075 0.0073 0.0079 0.0088

13 RMSE 0.0092 0.0100 0.0098 0.0098 0.0106 0.0120
MAE 0.0071 0.0077 0.0077 0.0077 0.0083 0.0093

14 RMSE 0.0100 0.0105 0.0104 0.0107 0.0109 0.0124
MAE 0.0076 0.0081 0.0081 0.0083 0.0085 0.0097

15 RMSE 0.0104 0.0107 0.0106 0.0111 0.0111 0.0127
MAE 0.0080 0.0082 0.0084 0.0086 0.0087 0.0097

16 RMSE 0.0109 0.0110 0.0110 0.0117 0.0115 0.0133
MAE 0.0081 0.0083 0.0085 0.0089 0.0088 0.0100

17 RMSE 0.0106 0.0109 0.0109 0.0112 0.0113 0.0127
MAE 0.0080 0.0082 0.0083 0.0085 0.0087 0.0096

18 RMSE 0.0109 0.0110 0.0113 0.0113 0.0114 0.0127
MAE 0.0082 0.0084 0.0087 0.0087 0.0086 0.0097

19 RMSE 0.0099 0.0098 0.0104 0.0101 0.0101 0.0110
MAE 0.0078 0.0077 0.0082 0.008 0.0076 0.0085

20 RMSE 0.0097 0.0099 0.0101 0.0101 0.0102 0.0108
MAE 0.0077 0.0078 0.0080 0.0080 0.0078 0.0084

21 RMSE 0.0103 0.0104 0.0107 0.0107 0.0108 0.0115
MAE 0.0079 0.0080 0.0081 0.0083 0.0080 0.0087

22 RMSE 0.0105 0.0106 0.0110 0.0106 0.0112 0.0124
MAE 0.0079 0.0080 0.0083 0.0080 0.0080 0.0087

23 RMSE 0.0108 0.0109 0.0112 0.0109 0.0114 0.0124
MAE 0.0083 0.0084 0.0086 0.0083 0.0083 0.0090

24 RMSE 0.0109 0.0109 0.0112 0.0109 0.0115 0.0124
MAE 0.0083 0.0084 0.0086 0.0083 0.0083 0.0088

Finally, Table 5 lists the month-specific RMSE and MAE values for the models used in
the study to forecast the one-day-ahead O3 concentration, which are further depicted in
Figure 7. These errors are calculated by averaging the errors month-wise for the year 2017.
The results show that the forecasting errors are not uniform across the months. The errors
tend to be higher in February, March, April, and October, which implies that O3 is more
challenging to predict in these months. Again, the FAR(1) model performs the best in most
months, except for April, where the VAR model is slightly better, and February, where both
models have equal errors. Again, the SVM model has the worst performance in all months,
which suggests that it is not good for O3 forecasting. The ARIMA, NNAR, and RF models
have comparable performance but are inferior to the FAR(1) models. The FAR(1) model
has the lowest RMSE and MAE values in December, when the O3 level is the lowest.
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Figure 7. Out-of-sample month-specific RMSE and MAE for O3 concentration.

Table 5. Month-specific forecasting errors of all models.

Month Errors FAR(1) ARIMA VAR NNAR RF SVM

January RMSE 0.0085 0.0092 0.0085 0.0092 0.0098 0.0101
MAE 0.0064 0.0072 0.0065 0.0073 0.0074 0.0074

February RMSE 0.0106 0.0119 0.0106 0.0121 0.0126 0.0136
MAE 0.0081 0.0091 0.0081 0.0094 0.0095 0.0101

March RMSE 0.0100 0.0112 0.0107 0.0112 0.0121 0.0126
MAE 0.0075 0.0086 0.0080 0.0085 0.0088 0.0093

April RMSE 0.0111 0.0125 0.0110 0.0124 0.0136 0.0146
MAE 0.0085 0.0097 0.0084 0.0096 0.0105 0.0112

May RMSE 0.0082 0.0095 0.0089 0.0098 0.0101 0.0116
MAE 0.0064 0.0075 0.0070 0.0076 0.0078 0.0090

June RMSE 0.0090 0.0103 0.0094 0.0102 0.0103 0.0117
MAE 0.0068 0.0082 0.0072 0.0080 0.0082 0.0092
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Table 5. Cont.

Month Errors FAR(1) ARIMA VAR NNAR RF SVM

July RMSE 0.0083 0.0090 0.0086 0.0089 0.0093 0.0103
MAE 0.0061 0.0067 0.0064 0.0066 0.0070 0.0076

August RMSE 0.0091 0.0099 0.0094 0.0099 0.0102 0.0117
MAE 0.0066 0.0076 0.0069 0.0074 0.0075 0.0087

September RMSE 0.0091 0.0105 0.0094 0.0106 0.0111 0.0115
MAE 0.0070 0.0083 0.0072 0.0084 0.0087 0.0090

October RMSE 0.0097 0.0114 0.0097 0.0115 0.0119 0.0136
MAE 0.0071 0.0088 0.0072 0.0088 0.0089 0.0099

November RMSE 0.0068 0.0074 0.0071 0.0077 0.0076 0.0085
MAE 0.0052 0.0060 0.0054 0.0063 0.0056 0.0060

December RMSE 0.0061 0.0070 0.0064 0.0071 0.0071 0.0070
MAE 0.0043 0.0054 0.0046 0.0054 0.0045 0.0043

4. Conclusions

Air pollution, particularly ground-level O3, is a global issue with severe implications
for both human health and ecosystems. It reduces agricultural output, exacerbates global
warming as a greenhouse gas, and affects respiratory health, causing symptoms such as
coughing, chest tightness, and worsening asthma. Given the severity of these consequences,
accurate forecasting of ground-level O3 concentrations is crucial. This study aims to use a
functional approach to model ground-level O3 concentrations, a method less explored in the
literature. The performance of this approach is compared with traditional time series and
machine learning models, including ARIMA, VAR, NNAR, RF, and SVM. Hourly data from
Los Angeles, collected from 2013 to 2017, are used, with 80% allocated for model estimation
and the remaining 20% for one-day-ahead out-of-sample forecasting. The performance of
the model is evaluated using R2, MAE, and RMSE.

The results revealed that the FAR(1) model performs better than other models included
in the study by producing lower forecasting errors. The second-best model was the VAR
model, followed by the ARIMA, NNAR, and RF models. The SVM model performed the
worst among all models. These findings highlight the importance of choosing a suitable
model for accurate O3 forecasting, which is crucial for mitigating the impacts of air pollution.
In future research, including exogenous variables, including temperature, humidity, wind
speed, solar radiation, and other meteorological factors, may improve the forecasting
accuracy. As the current study is based on the Los Angeles dataset, the performance of the
proposed approach could be assessed by conducting a study on other site datasets.
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Note
1 https://aqs.epa.gov/aqsweb/airdata (accessed on 12 March 2023).
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