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Abstract: The analysis of flight loads during symmetric aircraft maneuvers is an essential but
computationally intensive task in aircraft design. The significant structural elastic deformation in
modern aircraft further complicates this work, adding to the computational demands. Therefore,
improving the analysis efficiency of flight loads during maneuvers is crucial for accelerating design
interactions and shortening the development cycle. This study explores a method for analyzing flight
loads in the time domain during maneuvers of elastic aircraft by introducing a database of high-
precision rigid-body aerodynamic loads. Furthermore, it combines the gradient-enhanced Kriging
model to efficiently predict elastic flight loads during longitudinal maneuvers. The results indicate
that the proposed surrogate-based method has high fitting accuracy with significantly improved
computational efficiency, providing a new approach for efficient analysis of flight loads during
aircraft maneuvers.

Keywords: flight loads; gradient-enhanced Kriging; aeroelasticity; aircraft maneuvers; aerody-
namic database

1. Introduction

Flight loads primarily comprise aerodynamic and inertial loads, which are crucial for
structural design and have a significant influence on flight safety and performance. The
structural design of aircraft is often predicated on the loads in the most severe conditions,
primarily determined by the maneuvering flight.

The continuous development of aviation science and technology has steadily improved
aircraft maneuverability. Aircraft speed, load factors, angle of attack, and other parameters
can vary significantly. Thus, the effects of aeroelasticity cannot be neglected, and the nonlin-
earity of aerodynamic loads becomes important. In the computation of maneuvering loads,
we need multidisciplinary coupled analysis encompassing aeroelasticity, flight dynamics,
fluid dynamics, and more. In addition, this analysis requires the coverage of numerous
complex flight conditions and influencing factors. Traditional analysis methods of flight
loads encounter challenges when balancing computational efficiency and accuracy. The
aerodynamic nonlinearity during high-attitude maneuvers makes solving flight dynamic
differential equations numerically inefficient and resource-intensive. Traditional meth-
ods, such as coupling finite element method software with linear/nonlinear aerodynamic
analysis, are time-consuming when analyzing several flight loads in various states during
maneuvers, and they cannot meet the need for rapid computations in aircraft design.

Scholars worldwide have engaged in research using numerical simulations, wind tun-
nel experiments, and flight tests to develop fast and accurate flight load calculation methods.
Methods based on surrogate models and high-accuracy aerodynamic databases have also
developed rapidly to analyze flight loads efficiently. The standard surrogate models include
algebraic models [1,2], differential and integral models [3], neural networks [4–7], random
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forests, and Kriging models [8], among others [9]. Differential and integral models can be
effectively integrated with state-space methods, such as reduced-order models obtained
using the Volterra series and proper orthogonal decomposition (POD). This integration
reduces the coupled fluid–structure calculations to a lower-dimensional mathematical prob-
lem involving the modal superposition of the flow field. These models predict unsteady
aerodynamic forces by utilizing the evolution of predominant flow field modes. However,
computational capabilities are constrained when dealing with multivariate situations, and
the precision of model calculations relies on the quantity of samples. Machine learning
techniques like neural networks and random forests demand extensive sample data and
computational resources. The current research indicates that these methods focus on flight
envelope analysis and lack comprehensive consideration for analyzing flight loads during
high-attitude maneuvers.

In recent years, the Kriging method has stood out as a rapidly advancing surrogate
model, progressively finding applications in aviation and aerospace. Originating from
geostatistics, South African mining engineer Krige initially proposed the concept of Kriging
in his 1951 master’s dissertation [10]. Then, between 1963 and 1971, French mathematician
Matheron refined and developed the theory, culminating in a comprehensive mathematical
framework and set of models [11]. In 1989, Professor Sacks [12] and his colleagues extended
the Kriging theory into the deterministic design and analysis of computer experiments,
thus presenting a practical Kriging model. Because of the groundbreaking research ef-
forts of Professor Sacks and others, the application of the Kriging model has proliferated
across various natural science domains, experiencing continuous exploration, develop-
ment, and implementation in engineering sciences, particularly aviation and aerospace.
The Kriging model estimates not only the unknown function but also the error in these
predictions, a distinctive feature setting it apart from other surrogate models. The model
demonstrates excellent nonlinear function approximation capabilities and unique error es-
timation functionality. The surrogate optimization algorithms based on the Kriging model
have gradually been explored and applied in research endeavors such as aerodynamic
optimization [13–15], structural optimization, and multidisciplinary optimization [16].

The Kriging model is a semi-parametric surrogate model suitable for complex non-
linear problems. The surrogate model methods are also suitable for complex nonlinear
problems include machine learning methods, such as neural network model, random forest
algorithm, etc. The machine learning methods avoid mathematical analysis of the model
and have high computational efficiency, which can be well applied to aircraft design. The
NASA Dryden Flight Research Center used flight data to determine neural network fight
load models for the F/A-18 system research aircraft [17]. Haas has established the flight
load model of helicopter rotor system components in high-speed maneuvering flight by us-
ing a neural network according to the load data of helicopter flight tests [18]. Wallach et al.
used a neural network model to predict the aerodynamic coefficients of a general-purpose
transport aircraft [19]. The neural network models have many subjective parameters,
require multiple training and experiments. Due to the poor generalization ability and
difficult model establishment, other supplementary methods are needed to achieve faster,
convenient, and efficient modeling. He et al. established a neural network load model
for aircraft wings by using stepwise regression analysis to select input parameters and
Bayesian regularization method to determine the number of hidden layer neurons to im-
prove the generalization ability of the network [20]. The random forest algorithm has
accuracy and efficiency comparable to the neural network model. In addition, the random
forest algorithm has the advantages of parameter interpretability and variable sensitivity
analysis, and parallel algorithms can be used to improve the training speed. Li et al. [21]
studied a surrogate model for flight load analysis based on random forest. Machine learn-
ing methods such as neural networks and random forests require huge sample data and
computing resources.

The Kriging model has two distinct advantages over other interpolation methods
and surrogate models. Firstly, the Kriging method can consider the spatial correlation
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characteristics of a certain point when predicting the response value of the point. According
to the correlation of random variables, the information of sample points near this point is
used instead of the information of all sample points. Secondly, containing both a linear
regression part and a correlation part, the Kriging method has two-layer fitting of global
approximation and local simulation, so it has global and local statistical characteristics
and can also give error estimates of the predicted values [14]. The existing research shows
that most of these interpolation methods and surrogate models focus on the analysis of
flight loads at discrete state points in the flight envelope, while the analysis of flight loads
changing with time in high-attitude-maneuver flight is not fully considered.

In recent years, gradient-enhanced Kriging has been developed to improve the ac-
curacy of Kriging models. This method builds upon the traditional Kriging model [22],
introducing gradient information to enhance the computational accuracy [23–26]. It exhibits
robust interpolation capabilities for nonlinear problems and effectiveness in applications
such as aeroelasticity optimization for aircraft and structural optimization for underwater
vehicles. Lu et al. established a surrogate model of a high-aspect-ratio composite wing
for static aeroelastic optimization based on the CFD/CSD coupling method and Kriging
method [27]. The gradient-enhanced Kriging model shows promising prospects in the
aerospace industry with substantial benefits [28]. The strengths of this method make it par-
ticularly well suited in combination with flight load analysis methods during maneuvers.

This study focuses on analyzing flight loads during high-attitude symmetric maneu-
vers of elastic aircraft. Initially, a high-accuracy aerodynamic database for various flight
states is introduced. Subsequently, the analysis method in the time domain based on the
database of elastic aircraft maneuvers is established. This method is further augmented
by integrating the gradient-enhanced Kriging model for aerodynamic force prediction.
Combining these approaches can realize an efficient analysis method for the flight loads of
elastic aircraft during symmetric maneuvers.

2. Methodology
2.1. Analysis Method of Elastic Flight Loads

The conditions used for the analysis of flight loads during maneuvers mainly include
symmetric maneuver flight, asymmetric maneuver flight, atmospheric turbulence, and
gusts. The symmetric case involves the pitching maneuver, and the asymmetric cases are
the rolling and yawing maneuvers. The responses, including control surface deflection and
acceleration, used in the analysis of flight loads are obtained from the time history of each
maneuver response.

The main critical states (severe load conditions) of interest usually have high-
maneuverability characteristics. The linear aerodynamic method can be directly coupled
with structural and flight dynamics equations to determine the six-degree-of-freedom ac-
celeration and angular velocity of the elastic aircraft. The calculation is fast, but the error is
large. After the elastic correction of the linear aerodynamic forces, the elastic increments of
the aerodynamic coefficients and flight loads are larger than the elastic increments of nonlin-
ear aerodynamic forces. Therefore, the maneuver loads obtained based on this calculation
leads to structural overweight. To address this, the quasi-nonlinear method has been widely
applied [29], which uses computational fluid dynamics (CFD) or experimental data as the
benchmark nonlinear rigid-body aerodynamic loads, and the increment in aerodynamic
loads caused by the structural elastic deformation is corrected using a linear aerodynamic
method such as the doublet-lattice method (DLM) and the vortex lattice method (VLM),
which can improve the accuracy and efficiency of elastic flight load predictions. Since linear
and nonlinear aerodynamic forces come from different sources, the data dimensions are
usually also different. This problem can be solved through interpolation [30]. The static
aeroelastic equation in physical coordinate system is as follows [29]:

M f f
..
u f + K f f u f − qQ f f u f = ∃

⌊〈(
Qs

f

)v∣∣∣(ux)
v, s ∈ d, p, f

〉
← ux

⌋
+ P f (1)
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where subscript f refers to the structural free degrees of-freedom. M f f , K f f , and Q f f are
n f × n f the mass matrix, stiffness matrix, and aerodynamic influence coefficient matrix
(displacement-dependent), respectively (n f is the number of degrees of freedom of the
structure); u f is the n f × 1 structural displacement vector; ux is the nx × 1 state vector
representing the deflection of the control surfaces, aerodynamic angle, angular rate, and ac-

celeration in six degrees of freedom; q is the dynamic pressure;
〈(

Qs
f

)v∣∣∣(ux)
v, s ∈ d, p, f

〉
is the n f × 1 aerodynamic forces generated by ux, obtained by interpolating state variables
from an external nonlinear database (n f is the number of trim variables); d, p, and f are the
downwash, pressure, and concentrated forces contained in the external nonlinear database,
respectively; and P f is the external forces. Other state variables can be obtained by solving
linear equations.

2.2. Simulation of Maneuvering Flight in the Time Domain

The analysis of flight loads during a maneuver uses the dynamics equations to de-
termine the aircraft’s center of mass motion. The origin of the coordinate system used in
the dynamics equations is at the aircraft’s center of mass, where the xb-axis is parallel to
the axis of the fuselage and points forward, the zb-axis is in the plane of symmetry of the
aircraft and points to the lower part of the fuselage, and the yb-axis is determined according
to the right-hand rule.

Thrust and drag are assumed to be equal, and the characteristics of the control system
are not considered. Furthermore, assuming the Mach number is constant and the altitude
does not vary much during the maneuver, the dynamic pressure is a function of veloc-
ity only, and the longitudinal maneuvering flight dynamics equations can be expressed
as follows: 

m
(

dvxb
dt + vzbωy

)
= L sin α−mg sin θ

m
(

dvzb
dt − vxbωy

)
= −L cos α + mg cos θ

Iy
dωy
dt = My

(2)

where vxb and vzb are the components of velocity of the center of mass along the xb- and
zb-axes, respectively; ωy is the angular velocity about the yb-axis; m is the mass of the
aircraft; Iy is the moment of inertia about the yb-axis; My is the moment about the yb-axis;
L is the lift; α is the angle of attack; and θ is the pitch angle. Figure 1 shows the definition of
coordinate axis, angle and force in Eqution (2).
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The lift and pitching moment can be expressed as follows:{
L = CLqs
My = Cmyqsc

(3)

where q is the dynamic pressure, s is the reference area, c is the reference chord length, CL
is the lift coefficient, and Cmy is the pitching moment coefficient.

The relationships between vxg, vzg and vxb, vzb can be expressed as follows:{
vxg = vxb cos θ + vzb sin θ
vzg = −vxb sin θ + vzb cos θ

(4)

where vxg and vzg are the components of velocity of the center of mass along the xg- and
zg-axes, respectively. The subscript g refers to the ground reference frame.

Since CL = −Cz, the expression of Cz is

Cz = Cz0 + Cα
z α + C

δy
z δy + C

ωy
z

ωyc
2V

(5)

where δy is the rudder deflection angle, and the subscripts x, y, z refer to the coordinate axes.
The expression of the pitching-moment coefficient Cm is

Cm = Cm0 + Cα
mα + C

δy
m δy + C

ωy
m

ωyc
2V

(6)

ux in Equation (1) refers to the aileron angle, angle of attack, pitch rate, and acceleration in
6 directions during symmetric aircraft maneuvers.

Using the dynamics equations and substituting the acceleration of the six degrees of
freedom, angular velocity, and initial conditions, the maneuvering flight trajectory can be
obtained using a direct integration method such as Runge–Kutta. The expression of the
fourth-order Runge–Kutta for dynamic equation

.
x = f(t, x) can be expressed as follows [31]:

x(k + 1) = x(k) + h
6 (k1 + 2k2 + 2k3 + k4)

x(0) = x0
h = t(k + 1)− t(k)
k1 = f(t(k), x(k))

k2 = f
(

t(k) + h
2 , x(k) + h

2 k1

)
k3 = f

(
t(k) + h

2 , x(k) + h
2 k2

)
k4 = f(t(k) + h, x(k) + hk3)

(7)

Pp5 Rwhere t represents time, and x represents state variables. For time-domain response

analysis of longitudinal maneuvers, x =
[
θ

.
θ

..
θ uxg

.
uxg

..
uxg uzg

.
uzg

..
uzg

]T
,

where θ is the pitching angle. uxg and uyg are the displacement of the center of mass
motion in the ground reference frame.

Based on the flight dynamics equations and the aeroelastic equations of longitudinal
maneuvers and using the Runge–Kutta method, the maneuver loads of elastic aircraft can
be analyzed, and the flowchart is shown in Figure 2.

“Straight and level flight” implies the stable flight state of the aircraft, which is the
initial state and end state of the maneuvering process.

1. Execute flight loads analysis and aeroelastic trim: calculate the corresponding aerody-
namic force distribution according to the maneuver order (deflection law of control
surface) and flight parameters (e.g., angle of attack). Obtain elastically corrected
maneuvering flight load data through aerodynamic/structural/aerostatic analysis.

2. Perform numerical integration: use the aerodynamic parameters and flight load
data at that moment and the Runge–Kutta method to solve the longitudinal dynam-
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ics equations and obtain the kinematic characteristics in maneuver flight (attitude
and trajectory).

3. Update attitude and trajectory: update data such as angle of attack, pitching rate,
maneuvering load, flight velocity and trajectory, etc.

4. Update trim condition: update maneuver instructions and flight parameters.
5. Recover: check whether the attitude has corrected the maneuver. If “yes”, the maneu-

ver process ends and returns to the straight and level flight state. If “no”, update time
and proceed to the calculation of the next time step.
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2.3. Theory of Gradient-Enhanced Kriging

(1) Universal Kriging

Kriging methods are semiparametric interpolation methods that predict information
at unknown sites using information from a series of sampled sites. Universal Kriging
assumes the model consists of two parts [32]: a global approximation (the linear regression
part) F(x) and a local deviation (the nonparametric stochastic part) Z(x):

y(x) = F(x) + Z(x) (8)

The linear regression part can be expressed as

F(x) = f1(x)β1 + · · ·+ fp(x)βp = f (x)T β (9)

where fi(x), i = 1, 2, · · · , p can be a constant, linear, or quadratic polynomial. The polyno-
mial coefficients are determined using the least-squares method, which can be viewed as
an optimization problem. Assume that the function y : Rm → R is sampled at n sites:

S =


x(1)

x(2)
...

x(n)

 =


x(1)1 x(1)2 · · · x(1)1

x(2)1 x(2)2 · · · x(2)2
...

...
...

x(n)1 x(n)2 · · · x(n)m

 ∈ Rn×m (10)

The corresponding responses are

yS =
[
y(1) y(2) · · · y(n)

]T
∈ Rn (11)

We can predict the function at untried x using the sampled datasets (S, yS).
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For the stochastic component, the covariant matrix can be expressed as

Cov
[
Z(xi), Z(xj)

]
= σ2R(xi, xj) (12)

where σ2 is the variance of Z(x) and R(xi, xj) is the spatial correlation function, which only
depends on the Euclidean distance between two sites, xi and xj (R(xi, xj) = 1 when xi and
xj coincide, and R(xi, xj) monotonically decreases toward 0 as the distance between xi and
xj increases toward infinity).

(2) Gradient-enhanced Kriging

GEK [8], a new surrogate modeling method developed in recent years, is an im-
provement on universal Kriging that utilizes gradient information to increase the model’s
accuracy. Assuming that both the function value and gradient of the function y : Rm → R
are evaluated at n sites, the sample sites are expressed as

S =
[
x(1) · · · x(n) x(1) · · · x(1) · · · x(n) · · · x(n)

]T
∈ R(n+nm)×(n+nm) (13)

The corresponding responses and gradients are expressed as

yS =
[
y(1) y(2) · · · y(n) ∂y

∂x
(1) ∂y

∂x
(2)

· · · ∂y
∂x

(n′)
]T
∈ Rn+nm (14)

where ∂y
∂x

(j)
=

(
∂y
∂xk

)(j)
, k =∈ 1, 2, · · · , m, j = 1, 2, · · · , n′, are the gradient vectors.

The GEK predictor of function y at an unknown site x is expressed as a linear weighting
of all sampled function values and the gradients:

ŷ(x) =
n

∑
i=1

ω(i)y(i) +
n

∑
i=1

λ(i)∂y(i) x ∈ Rm (15)

where ω(i) and λ(i) are weighting factors. ∂y(i) = ∂y
∂x

(i)
are the gradients.

Similarly to universal Kriging, the assumption of stationary random processes is intro-
duced:

Y(x) = β0 + Z(x) (16)

where β0 ∈ R1 is a constant and stationary random processes Z(·) have a zero mean and a
covariance of 

Cov
[

Z
(

x(i)
)

, Z
(

x(j)
)]

= σ2R
(

x(i), x(j)
)

Cov
[

Z
(

x(i)
)

,
∂Z(x(j))

∂xk

]
= σ2 ∂R(x(i),x(j))

∂x(j)
k

Cov
[

∂Z(x(i))
∂xk

, Z
(

x(j)
)]

= σ2 ∂R(x(i),x(j))
∂x(i)k

Cov
[

∂Z(x(i))
∂xk

,
∂Z(x(j))

∂xk

]
= σ2 ∂2R(x(i),x(j))

∂x(i)k ∂x(j)
k

(17)

where
∂R(x(i),x(j))

∂x(i)k

,
∂R(x(i),x(j))

∂x(j)
k

, and
∂2R(x(i),x(j))

∂x(i)k ∂x(j)
k

are the first- and second-order partial deriva-

tives of the spatial correlation function R with respect to the kth component of x. R(xi, xj)
is the spatial correlation function for any two points, whose value is only related to the
spatial distance, decreasing as the distance increases. R(xi, xj) is 1 when the distance is
zero and is 0 when the distance is infinity. Several options can commonly be used as spatial
correlation functions (e.g., Gaussian exponential model). Since the correlation function R is
an explicit function of the positional variable xi, it can be derived directly.
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Similarly to universal Kriging, the predicted values of the GEK model can be derived as
ŷ(x) = β0 + rT(x)R−1(yS − β0F)
F =

[
1 · · · 1 0 · · · 0

]T

β0 =
(
FTR−1F

)−1FTR−1yS

(18)

where R is the correlation matrix and r is the correlation vector.
The mean square error (MSE) of the predicted value can be expressed as follows:

MSE[ŷ(x)] = σ2

{
1.0−

[
r
1

]T[ R F
FT 0

]−1[r
1

]}
=

[
1.0− rTR−1r +

(
rTR−1F− 1

)2
/
(
FTR−1F

) ] (19)

(3) The comparison of universal Kriging and GEK for nonlinear function prediction

The function z = f (x, y) can be expressed as follows:

z = x2 cos
(

y2

4

)
+ e4 sin (x2) + 20 (20)

Latin hypercubic sampling was used to obtain the sample sites. The function value
and gradient are calculated at each sample site. The response surfaces of universal Kriging
and GEK, together with the original function, are shown in Figures 3 and 4. The black dots
in Figures 3 and 4 represent the sampling points. The MSEs of the predicted values are
shown in Table 1. Dong et al. showed that the Latin hypercube and uniform sampling
methods can be used to obtain a better uniform sample space [33].
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Table 1. MSE of the predicted value.

Number of Samples MSE of Kriging Model MSE of GEK Model

20 0.1549 0.0176

40 0.0559 0.0024
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Based on the curve fitting of contour lines in the contour map, the fitted curve of
GEK has a high accuracy, and its trend is very similar to that of the original function.
The accuracy of the fitted curve for the original Kriging model is slightly worse, but the
numerical error is small at the sampled sites. The fitting accuracy is closely related to the
number of samples, where more samples yield a higher corresponding fitting accuracy.

Laurenceau et al. [26,34,35] compared the accuracy of universal Kriging, direct GEK,
and indirect GEK for the prediction of aerodynamic forces, showing that both gradient-
enhanced Kriging models have a higher accuracy than that of the universal Kriging model
with the same number of training samples.

2.4. Analysis Method of Maneuvering Flight Loads Based on GEK Model

Based on elastic flight loads and the simulation of maneuvering flight in the time
domain, aerodynamic derivative corrections can be solved through fast and efficient aero-
dynamic analysis using the GEK model. The analysis process of maneuvering flight loads
based on the GEK model is summarized in the following steps, and the specific flowchart
is shown in Figure 5.

1. Calculate maneuvering flight loads using linear and nonlinear aerodynamic methods
to obtain the range of changes in aerodynamic parameters during the maneuvers.
Then, set input and output variables and prepare data for training and calibrating the
model. Finally, build the surrogate model for aerodynamic analysis based on the GEK
method and check its accuracy.

2. Set the initial flight state as straight and level, carry out the trim analysis to obtain
parameters, such as angle of attack and angular deflections of control surfaces, and
set the initial values of the aerodynamic derivatives.

3. Solve the input variables (maneuver commands) for the next moment according to
the requirements of the maneuver and perform an aerodynamic analysis using the
surrogate model.

4. Solve the flight dynamics equations with elastic corrections using the Runge–Kutta
method to obtain new aerodynamic derivatives.

5. Update the flight attitude according to the new aerodynamic derivatives.
6. Determine whether the cycle of the time step ends. If not, update the time, trim the

conditions (flight attitude), update the maneuver commands, and repeat steps 3 to 6
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in the next time step. If so, the flight trajectory and parameters of aerodynamic loads
during the maneuvering flight are obtained.
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3. Numerical Validation and Analysis

This section presents an example flight load analysis for a specific aircraft. We validate
the accuracy of predicting maneuvering loads using GEK by comparing it with the aerody-
namic/structural coupling results, in which we analyze the errors in the load predictions
obtained by the surrogate model.

3.1. Models and Flight Conditions for Analysis

The model used for flight load analysis is a high-speed, highly maneuverable flying-
wing aircraft with a takeoff weight of 20.1 tons, a wing area of 38.2 m2, and a wingspan
of 11.1 m. Its shape is illustrated in Figure 6. The aircraft model used in this paper has a
tailless configuration. The ailerons on both sides are deflected in the same direction, acting
as elevators. We define aileron deflection downward as positive.

The flight load analysis is based on the static aeroelasticity module of MSC.NASTRAN.
Further enhancement is achieved by integrating the Euler equations and incorporating
nonlinear CFD with viscous drag correction through the MGAERO softwareV3.1. The
structural mesh used in MSC.NASTRAN is a panel-bar model, the mesh number is 21,291,
and the plane aerodynamic mesh number is 2114. The mesh number of the MGAERO model
is 2,648,740 and the boundary conditions for subsonic and low supersonic are used. Figure 7
shows the structural finite element model and aerodynamic mesh grids of MSC.NASTRAN.
Figure 8 shows the aerodynamic mesh grids of MGAERO. Combining MSC.NASTRAN
and MGAERO on the flight load analysis, the aerodynamic data obtained by MGAERO
are used as an external aerodynamic database and interpolated into aerodynamic mesh
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grids of MSC.NASTRAN. According to the data of flight conditions, Nastran performs
static aeroelastic analysis by the interpolation fitting method; static aeroelastic analysis is
used as a quasi-steady aerodynamic analysis method in the steady trim calculation, which
can satisfy arbitrary overload conditions. The time effect is reflected by the Runge–Kutta
method in the maneuvering process.
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With the improvement of aircraft flight performance, the impact of the elastic defor-
mation of aircraft structures on air flow cannot be ignored. Meanwhile, as the angle of
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attack and other flight parameters increase, the nonlinear characteristics of the aerody-
namic force also increase greatly. Table 2 compares the results of rigid aerodynamics and
elastic aerodynamics based on linear aerodynamics and nonlinear aerodynamics. The flight
conditions are as follows: Ma = 0.85, flight height H = 0 km, angle of attack = 0.14 rad,
aileron angle = −0.087 rad. In this case, the longitudinal overload of the aircraft is about
9g, which is already a large maneuver. It can be seen that the use of linear and nonlinear
aerodynamic forces and the elastic correction of aerodynamic forces greatly affect the
analysis of aerodynamic parameters and the calculation results of flight loads. According
to the actual situation, the calculation results considering the effect of aeroelasticity and
nonlinear aerodynamic characteristics should be more reliable. The following analysis and
calculation are mainly carried out on the basis of considering the elastic aerodynamics
considering aeroelasticity.

Table 2. Comparison of aerodynamic parameters and flight loads under rigid/elastic aerody-
namic forces.

N
Factor Clα (rad−1) Myα (rad−1) Clδ (rad−1) Myδ (rad−1)

Shearing Force
of Wing Root

(kN)

Bending
Moment of
Wing Root

(kN·m)

Rigid linear aerodynamics 9.04 −8.31 × 10−1 −3.48 × 10−2 −2.53 × 10−1 −6.00 × 10−2 451.8 63.8
Elastic linear aerodynamics 9.89 −8.66 × 10−1 −4.06 × 10−2 −1.95 × 10−1 −4.80 × 10−2 275.1 38.8

Rigid nonlinear aerodynamics 8.72 −7.86 × 10−1 −5.59 × 10−2 −1.94 × 10−1 −4.76 × 10−2 262.6 35.3
Elastic nonlinear aerodynamics 8.83 −7.70 × 10−1 −5.59 × 10−2 −1.39 × 10−1 −3.61 × 10−2 263.8 35.1

A GEK surrogate model is built using steady-state pitch and abrupt pitch as examples
of common symmetrical aircraft maneuvering flight conditions.

The steady-state pitch surrogate model uses flight altitude H, Mach number Ma, and
N factor nz as input variables. The angle of attack α and aileron angle δ are chosen as output
variables. In the abrupt pitch surrogate model, the flight altitude H, Mach number Ma, angle
of attack α, and rudder angle δ are chosen as input variables. The N factor, pitching rate, the
bending moment and shearing force of wing root, and the partial derivatives of lift coefficients
and moments are chosen as output variables. Details are shown in Tables 3 and 4.

Table 3. Input and output variables for the steady-state pitch surrogate model.

Input Variables Output Variables

Notation Description Unit Notation Description Unit

H Flight altitude km α Angle of attack rad
Ma Mach number δ Aileron angle rad
nz N factor

Table 4. Input and output variables for the abrupt pitch surrogate model.

Input Variables Output Variables

Notation Description Unit Notation Description Unit

α Angle of attack rad nz N factor
δ Aileron angle rad ωy Pitching rate rad/s

S-WR Shearing force of wing root kN
BM-WR Bending moment of wing root kN·m
Clα, Clδ Partial derivatives of lift coefficients rad−1

Myα, Myδ Partial derivatives of moments kN·m/rad
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3.2. Prediction of Flight Loads

(1) Steady-state pitch conditions

Longitudinal maneuvering conditions are chosen for the validation, and both linear
and nonlinear aerodynamic models are used. Flight load data for 81 states within the flight
envelope were obtained as samples to build the GEK surrogate model.

The parameters of the predicted flight condition are as follows: Ma = 0.85, H = 0 km,
and nz = 9g. Two GEK surrogate models are established separately based on linear and
nonlinear aerodynamics databases. A comparison of the results of trim calculation is
presented in Table 5.

Table 5. Trim calculation results.

Linear Aerodynamic Model Nonlinear Aerodynamic Model

MSC.Nastran GEK Model MGAERO GEK Model

Angle of attack (rad) 0.1346 0.1346 0.1683 0.1683

Aileron angle (rad) −0.1126 −0.1126 −0.3370 −0.3370

(2) Abrupt pitch conditions

Flight load data for 192 states within the flight envelope were obtained using linear
and nonlinear aerodynamic models to build sample databases for the GEK surrogate
models. Two GEK surrogate models are established to predict flight loads for 100 states
during maneuvering.

The parameters of longitudinal abrupt pitch maneuver are Ma = 0.85, H = 0 km, and
nz = 1g. Assuming no lag in the control surface deflection, a trapezoidal command input
from time t = 1.0–2.2 s (T1 = 0.2 s, T2 = 0.8 s, T3 = 0.2 s) is applied to achieve a maximum
longitudinal N factor of nz = 9g. The trapezoidal control format is shown in Figure 9.

Aerospace 2024, 11, x FOR PEER REVIEW 14 of 21 
 

 

Table 4. Input and output variables for the abrupt pitch surrogate model. 

Input variables Output variables 

Notation Description Unit Notation Description Unit 

α Angle of attack rad nz N factor  

δ Aileron angle rad y   Pitching rate rad/s 

   S-WR Shearing force of wing root kN 

   BM-WR Bending moment of wing root kN·m 

   lC  , lC   Partial derivatives of lift coefficients rad−1 

   yM 
, 

yM 
 Partial derivatives of moments kN·m/rad 

3.2. Prediction of Flight Loads 

(1) Steady-state pitch conditions 

Longitudinal maneuvering conditions are chosen for the validation, and both linear 

and nonlinear aerodynamic models are used. Flight load data for 81 states within the flight 

envelope were obtained as samples to build the GEK surrogate model. 

The parameters of the predicted flight condition are as follows: Ma = 0.85, H = 0 km, and 

nz = 9g. Two GEK surrogate models are established separately based on linear and nonlinear 

aerodynamics databases. A comparison of the results of trim calculation is presented in Table 

5. 

Table 5. Trim calculation results. 

 
Linear Aerodynamic Model Nonlinear Aerodynamic Model 

MSC.Nastran GEK Model MGAERO GEK Model 

Angle of attack (rad) 0.1346 0.1346 0.1683 0.1683 

Aileron angle (rad) −0.1126 −0.1126 −0.3370 −0.3370 

(2) Abrupt pitch conditions 

Flight load data for 192 states within the flight envelope were obtained using linear 

and nonlinear aerodynamic models to build sample databases for the GEK surrogate mod-

els. Two GEK surrogate models are established to predict flight loads for 100 states during 

maneuvering. 

The parameters of longitudinal abrupt pitch maneuver are Ma = 0.85, H = 0 km, and 

nz = 1g. Assuming no lag in the control surface deflection, a trapezoidal command input 

from time t = 1.0–2.2 s (T1 = 0.2 s,T2 = 0.8 s,T3 = 0.2 s) is applied to achieve a maximum 

longitudinal N factor of nz = 9g. The trapezoidal control format is shown in Figure 9. 

 

Figure 9. Trapezoidal control input waveform. Figure 9. Trapezoidal control input waveform.

First, the linear flight load analysis is performed. Table 6 details the initial control
surface deflection used during the maneuvering process, and Figure 10 illustrates the
variations in the N factor, angle of attack, pitching rate, bending moment, and shearing
force of the wing root of the example aircraft during the maneuvering process over a
random flight time. A comparison of the peak values for various parameters in the load
during the maneuvering process is shown in Table 7.

Table 6. Control surface deflection (based on linear aerodynamics).

Model Initial
Angle of Attack (◦)

Initial
Aileron Angle (◦)

Max
Aileron Angle (◦)

MSC.Nastran 0.8567 −0.7168 −5.5759

GEK Model 0.8567 −0.7168 −5.5759
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Table 7. Comparison of peak value in flight load analysis during maneuvering process (based on
linear aerodynamics).

Model N factor Angle of
Attack (rad)

Pitching Rate
(rad/s)

Bending Moment
of Wing Root

(kN·m)

Shearing Force of
Wing Root (kN)

Flight Altitude
(km)

MSC.NASTRAN 9.001 0.1299 0.6102 360.500 248.0 0.2208

GEK model 9.001 0.1299 0.6102 360.600 248.1 0.2195
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Then, the nonlinear flight load analysis is performed. Table 8 details the initial control
surface deflection used during the maneuvering process, while Figure 11 illustrates the
variations in the N factor, angle of attack, pitching rate, bending moment, and shearing
force of the wing root of the example aircraft during the maneuvering process over a
random flight time. A comparison of peak values for various parameters in the load during
the maneuver is shown in Table 9.
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Table 8. Control surface deflection (based on nonlinear aerodynamics).

Model Initial
Angle of Attack (◦)

Initial
Aileron Angle (◦)

Max
Aileron Angle (◦)

MGAERO 1.6764 −1.7685 −8.8808

GEK Model 1.6764 −1.7685 −8.8808

Table 9. Comparison of peak value in flight load analysis during maneuvering process (based on
nonlinear aerodynamics).

Model N Factor Angle of
Attack (rad)

Pitching Rate
(rad/s)

Bending Moment of
Wing Root (kN·m)

Shearing Force of
Wing Root (kN)

Flight Altitude
(m)

MGAERO 9.001 0.1546 0.5944 298.9 227.1 219.5

GEK Model 9.001 0.1546 0.5944 297.5 226.0 214.9

3.3. Accuracy of the GEK Model

In this section, an error analysis is conducted from two perspectives—numerical error
and curve fitting—to assess the accuracy of the GEK surrogate model.

For m samples (x1, y1), (x2, y2), . . . , (xm, ym), with the predicted values from a certain
model

(
x1,

⌢
y 1

)
,
(

x2,
⌢
y 2

)
, . . . ,

(
xm,

⌢
y m

)
, we calculate the total sum of squares TSS for

the samples:

TSS =
m

∑
i=1

(yi − y)2 (21)

Next, we calculate the residual sum of squares RSS:

RSS =
m

∑
i=1

(
⌢
y i − yi

)2
(22)

We define R2 = 1− RSS/TSS, that is,

R2 = 1−

m
∑

i=1

(
⌢
y i − yi

)2

m
∑

i=1
(yi − y)2

(23)

The larger the value of R2, the better the fitting effect. Taking R2 as the curve fitting degree,
we conduct an overall analysis of the variation curve of flight maneuvering loads during
the maneuver.

In the steady-state pitching condition trim calculation, the GEK model predicts a very
high aileron deflection angle.

In the abrupt pitching condition trim calculation, Table 10 provides the fitting degree
of the predicted flight loads during the maneuver. The prediction errors for longitudinal N
factor, angle of attack, and pitching rate over time are small. In the curves of the bending
moment and shearing force of wing root over time, only a few points have relatively large
errors, typically near the turning points of the curves. Overall, the curve goodness of fit is
above 95%.

Table 11 compares the peak values of various parameters during the maneuvering
process. The relative errors are all below 1%, and the absolute errors are minimal compared
to the magnitude of the flight loads.

In the flight load analysis of the maneuver, under the requirement of recovering to
level flight after achieving the same 9g longitudinal load, the predictive accuracy of the
GEK surrogate model based on both linear and nonlinear aerodynamics is very high.
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Table 10. Fitting degree of flight load prediction curves during a maneuver.

N Factor Angle of Attack Pitching Rate Bending Moment
of Wing Root

Shearing Force
of Wing Root Flight Path

GEK model (based on linear
aerodynamics) 0.9999 0.9997 0.9999 0.9979 0.9977 0.9999

GEK model (based on
nonlinear aerodynamics) 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Table 11. Peak error of GEK model in flight load prediction during maneuvering process.

N Factor Angle of Attack Pitching Rate Bending Moment
of Wing Root

Shearing Force
of Wing Root Flight Path

GEK model (based on linear
aerodynamics) 0.001% 0.008% 0.001% 0.28% 0.40% 0.57%

GEK model (based on
nonlinear aerodynamics) 0 0 0 0.0047% 0.0048% 0.12%

From the results, we obtain the following:

1. Both the GEK surrogate models based on linear and nonlinear aerodynamics have a
high prediction accuracy, enabling accurate trim calculations and predictions of flight
load variation curves during maneuvers.

2. Directly solving aerodynamic/structural coupling results in a time expenditure on the
order of 100 s for a single load calculation, whereas using the GEK surrogate model
for a single load calculation requires less than 1 s, showing a significantly improved
computational efficiency.

3. The trim calculation results based on nonlinear aerodynamics are superior to those
with linear aerodynamics, and the difference between the two is significant. This
indicates that conducting analyses based on nonlinear aerodynamics is necessary,
especially in flight conditions with strong aerodynamic nonlinearity.

4. Conclusions

This study proposes an efficient flight load analysis method based on the GEK surro-
gate model. To validate the method, we use a numerical example to predict flight loads
during longitudinal maneuvers of a flying-wing aircraft. The following conclusions can
be drawn:

1. The proposed method exhibits a good fitting accuracy that meets the requirements of
flight load analysis and improves computational efficiency significantly.

2. The variation in loads corresponds to the maneuvering flight processes. Because of
the differences in aerodynamic force distribution, nonlinear aerodynamic forces and
their surrogate models represent significant disparities or even inconsistencies in the
variation trends of flight loads compared with linear aerodynamic forces. Hence,
employing nonlinear aerodynamics for maneuvering flight process calculations is
more rational.

3. The GEK surrogate model relies on selecting sample databases and the accuracy of
gradient calculations during model training. Compared to the Kriging surrogate
model, the GEK model is more time-consuming and requires greater computational
resources for model training and testing. However, it exhibits a higher fitting accuracy
in strongly nonlinear scenarios.

4. In future work, more complex maneuvers, such as rolling and other lateral maneuvers,
will be analyzed. The existing elastic correction methods of aerodynamic forces will
be improved, such as using the more accurate third-order surface panel method.
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