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Abstract: In the UAV swarm, the degradation in the health status of some UAVs often brings negative
effects to the system. To compensate for the negative effect, we present a fault-tolerant Multi-Agent
Reinforcement Learning Algorithm that can control an unstable Multiple Unmanned Aerial Vehicle
(Multi-UAV) system to perform exploration tasks. Different from traditional multi-agent methods
that require the agents to remain healthy during task execution, our approach breaks this limitation
and allows the agents to change status during the task. In our algorithm, the agent can accept both the
adjacency state matrix about the neighboring agents and a kind of healthy status vector to integrate
both and generate the communication topology. During this process, the agents with poor health
status are given more attention for returning to normal status. In addition, we integrate a temporal
convolution module into our algorithm and enable the agent to capture the temporal information
during the task. We introduce a scenario regarding Multi-UAV ground exploration, where the health
status of UAVs gradually weakens over time before dropping into a fault status; the UAVs require
rescues from time to time. We conduct some experiments in this scenario and verify our algorithm.
Our algorithm can increase the drone’s survival rate and make the swarm perform better.

Keywords: machine learning; swarm intelligence; UAV exploration; multi-agent system

1. Introduction

Unmanned Aerial Vehicles (UAVs) have become widely used in our daily lives and
industry applications [1]. Multi-UAV exploration [2] is one of the most important applica-
tions in the UAV industry. It can be used to measure forest cover, wildlife migration, and
natural disaster assessment. UAVs have broad prospects in the field of exploration.

In large-scale exploration, the UAV swarm plays an important role [3] in enhancing
exploration efficiency and mission reliability. However, UAV swarm exploration needs to
deal with a lot of challenges, such as Multi-UAV coordination and fault handling. Because
of the large number of UAVs, there are some UAVs that may encounter errors (like poor
battery, among others), and there are more challenges to cooperate between UAVs.

Some studies are approaching this problem with respect to the collaboration between
multiple UAVs [4,5]. For instance, reference [6] investigated aerial combat scenarios involv-
ing multiple UAV collaboration; the authors used the Ray framework to train a MAPPO
algorithm, which achieved excellent performance in aerial combat scenarios. The authors
in [7] explored the possibility of swarm cooperation in an environment where the channel
is noisy and communication is interrupted. The authors of [8] proposed a hierarchical
group communication model, which uses prior domain knowledge to schedule and control
heterogeneous agent swarms. The work of [9] investigated the impact of partial agent
loss on the collective behavior of multi-agent systems. The work of [10] investigated a
fault-tolerant approach that can deal with agents with malicious behavior in the swarm.
The work of [11] presentd a fault-tolerant control approach, which can predict actuator
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failures in UAVs and provide a control strategy. The work of [12] investigated adaptive
strategies for UAV formations when tracking targets in the event of UAV failure or loss. The
work of [13] proposed a robust control of the UAV: the controller can control the tracking
flight of a UAV in an uncertain and external disturbances environment. The work of [14]
proposed a control approach for agent swarms in extremely noisy environments. The work
of [15] proposed a multi-agent algorithm that can evaluate the credibility of an agent’s
observation and tolerate the inaccurate information observed by the agent. The work
of [16] investigated how to control a multi-agent systems when the links between agents
are lost. The work of [17] investigated the reconstruction of communication topology for
UAV swarms with a minimal cost in the case of UAV loss. The authors of [18] discussed
the methods to maintain the stability of a UAV swarm in the case of actuator failures or
communication disruption. The authors of [19] developed a fault-tolerant cooperation
framework for UAVs, which can reassign the tasks to make the swarm of UAVs more robust
to uncertainties. The work of [20] proposed a fault-tolerant cooperative control strategy
that can decrease the effects of the changed formation and reassign the faulty UAV’s tasks
to the healthy ones. The authors of [21] proposed a priority-based strategy for finding a
substitute UAV in the swarm when a UAV is lost.

The existing publications focus on how to keep the balance of the system when some
agents meet failure in the swarm. However, they designed fault-tolerant algorithms that
only focus on the healthy agents and do not use the valuable information from faulty agents.
We use the information not only from the healthy agents but also from the faulty agent to
make decisions. During the process of aggregating information, most of the algorithms
consider the type of neighboring agents, but we also consider the health status of the
neighboring agents; this makes our work more targeted in fault-tolerant scenarios. In many
designs, the faulty agents can only leave the swarm and abort the task, but in our design,
we preserve the possibility of faulty agents reverting to the missions.

In this paper, we apply our algorithm in the scenario of large-scale UAV swarm
exploration in the forest. A swarm of UAVs needs to cover a certain area and complete the
exploration mission. In large-scale UAV swarms, some UAVs would be unhealthy and meet
some malfunctions during the tasks; these kinds of UAVs would be unable to continue
executing the task. The health status of UAVs becomes weak with the consumption of
batteries in the tasks. When the energy drops below the threshold, the drone will enter a
“tired” failure state (the Error State). They need to land and repair (such as recharge) before
continuing the task. The faulty agents need the healthy agents’ help to return to the task.
The fault-tolerant multi-agent scenario with abnormal states of agents is shown as Figure 1.

Figure 1. The task of Multi-UAV ground exploration.
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We study UAV swarm exploration with heterogeneous health status. We apply ma-
chine learning to the task of Multi-UAV exploration. We propose a kind of novel network
model named Error-Resilience Graph Network (ERGN), which can tolerate the failure
status in the UAV swarm and combine it with the health status of UAVs to inspire the
collaborative capability of the UAV swarm.

The main contributions of this paper are as follows:

(1) We simulate a Multi-UAV exploration scenario in a grid world. Faulty UAVs will
occur in the scenario, which are used to verify the performance of our algorithm.

(2) We propose a novel network model named Error-Resilience Graph Network (ERGN);
it can receive the agent health status and conduct a scheduling policy to reduce the
impact that faulty agents bring to the swarm target.

(3) We integrate a temporal convolution module into the algorithm, which enables the
agents to capture the temporal information and achieve better performance.

2. Methods
2.1. Dependence
2.1.1. Multi-Agent Reinforcement Learning (MARL)

Multi-Agent Reinforcement Learning (MARL) is an active research area [22]. It focuses
on using reinforcement learning to make the agents learn to cooperate with neighbors for
the global target [23]. MARL is widely used in different areas, such as traffic management,
UAVs scheduling, etc. In different frameworks, agents adopt different decision-making
methods [24]. Some agents use a centralized decision-making approach, while others em-
ploy a distributed decision-making method. Additionally, some agents utilize a hierarchical
decision-making approach [25]. In terms of implementation, reinforcement learning can
be classified into two main categories based on different learning patterns. The first one is
Value-Based reinforcement learning, and the second one is Policy Gradient reinforcement
learning. The first one is based on the value function to learn the strategy: when you input
a state, the neural network will calculate the value for each possible selected action. Then,
the policy chooses the highest value action to execute. During the training process, the
agent will gradually learn the value distribution of selecting different actions in the states.
After training, the agent will learn an accurate value, which can help the agent to obtain
the highest reward. The second method is Policy Gradient reinforcement learning [26]; it
receives the state of the agent and outputs action for the agent. The policy network will use
the state to generate a distribution of probability for different actions; the better action has
a higher probability of being chosen. In this way, the policy can choose effective actions.
During the learning process, the policy uses the reward to optimize the probabilities of
selecting actions. Positive behaviors are more likely to be chosen in the next iteration, while
negative behaviors are less likely to be selected. After training, the probability distribution
generated by the policy will be sufficiently efficient.

Applying reinforcement learning to multi-agent systems [27] is an extension of the
learning approach for single agents. Of course, a single policy can also be used to control
multiple agents with joint actions [28]. However, this approach is less commonly applied
because of its weakness, it is difficult for the policy to make decisions independently
for different agents, and the high dimensional output of the policy makes the training
process very difficult. Multi-agent reinforcement learning is primarily based on single-agent
reinforcement learning through establishing parameter sharing or parameter-independent
mechanisms to reduce training difficulty. The parameter-independent mechanism [29,30]
allows each agent to have an independent policy. During the training process, each agent
updates its own policy until it learns how to cooperate with neighbors for the global target.
The parameter sharing mechanism [31] uses the same policy for every agent: each agent
collects the experience data and pushes them into the buffer. When the buffer has enough
experience data, the policy network optimizes the network parameters periodically. After
the training process, the policy will be distributed to different agents independently. The
centralized training with a distributed execution approach has several advantages in the
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system, where each agent has identical functions and can accelerate convergence. On
the other hand, it exhibits higher flexibility during distributed deployment, which can be
suitable for systems with different numbers of agents. Our work is based on the parameter
sharing mechanism and uses the DQN as the foundational algorithm to construct multi-
agent reinforcement learning. In order to improve the performance, some multi-agent
reinforcement learning algorithms combine with the communication mechanisms, thereby
obtaining the neighbor’s information through communication to achieve collaboration
purposes. In this aspect, our predecessors have accomplished an amount of work, which
includes the graph attention mechanism [32], soft–hard attention mechanism [33], and
GraphSAGE [34] as the aggregator. In the attention mechanism, the agent collects the
neighbor’s information and judges the importance of the information. The important
information will be given more weight, and the unimportant information will be given less
weight. GraphSAGE deals with the problem in a similar way, but it takes individual agents
as the smallest units. It uses the pooling layer to distribute different weights to different
agents. The soft–hard attention is a compromise between these two strategies; it can exhibit
better performance in some situations.

2.1.2. Deep Q Network (DQN)

DQN is a decision policy based on value functions in reinforcement learning [35]. It
can deal with continuous and complex state spaces, but DQN does not output the action
directly. DQN outputs the value of different actions that can be taken in the state, and
it selects the action to be executed based on the value of each action. DQN uses the Q
network to output the value of each action. The learning process is to optimize the Q
network and use the Q network to make decisions; the decision policy can be described
as π(s) = arg max

a
Qπ(s, a). There are two kinds of methods to optimize the Q network:

the first one is the Monte Carlo (MC) optimization method, and the other is the Temporal
Difference (TD) optimization method. In the training process, the TD method is more
popular because of its stable convergence. On the other hand, the MC method needs
to finish the episode and use the full trajectory of the agent to optimize the Q network,
which has a greater randomness and leads to unstable training. The optimization process
of the TD method can be shown like this: Qπ(st, at) ≈ rt + Qπ(st+1, π(st+1)). In ideal
cases, the left side of the equation equals the right side. However, in practice, there will
be biases in the network’s predictions; we utilize these biases to calculate the loss and
optimize the network. We use the results calculated on the right side as the optimization
objective, Qtarget = rt + Qπ(st+1, π(st+1)), and the left side is calculated as the prediction:
Qexpect = Qπ(st, at). The calculation of loss is Loss = (Qtarget −Qexpect)2.

2.1.3. Graph Attention Networks (GATs)

Graph Attention Networks are primarily used for processing information in the
spatial domain; they can be used to deal with the information data with graph topology
relationships [36]. GATs assign different weights to different nodes in the graph topology
and aggregate valuable information to form a feature vector. After that, the policy network
uses the feature vector for decision making. GATs use the attention mechanism to assign
weights to neighbor nodes; the important neighbor nodes are given higher attention
weights. GATs obtain the observation for each agent as xi and use an embedding layer
to convert them into ai. Then, the neural networks are based on ai to generate qi, ki, and
vi. The q and k are paired keys that work together to generate attention weights, which

are defined as αi,j =
qT

i ·kj√
dq,k

. In order to keep the attention weights αi,j in the range of

0–1, we also apply a softmax operation to them, which is defined as α̂i,i = Softmax(αi,i).
Then, the GAT multiplies αi,j and vj to generate the feature vector bi, bi = ∑T

j=1 α̂i,j · vj, for
decision making.
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2.1.4. Long Short-Term Memory (LSTM)

Long Short-Term Memory has widespread applications in the field of deep learning,
especially in areas such as natural language processing and time series prediction. LSTM
is a recurrent neural network used to integrate historical information in a temporal se-
quence [37]. In comparison to traditional Recurrent Neural Networks, LSTM includes an
additional temporal chain to capture long-term information. The long-term chain and
short-term chain interact with each other, thus allowing the short-term chain to modify
the content on the long-term chain based on the input information. The deletion operation
is implemented through a formula, f1 = sigmoid(w1[ht−1, xt] + b1), where ht−1 is the
output of the short-term memory chain from the previous time step, and xt is the input
at the current time step. The addition operation is implemented through this formula:
f2 = sigmoid(w2[ht−1, xt] + b2) ∗ tanh(ŵ2[ht−1, xt] + b̂2). Finally, the long-term feature
vector is generated by ct = ct−1 ∗ f1 + f2, and the short-term feature vector is generated
by ht = tanh(w3 ∗ ct + b3) ∗ sigmoid(ŵ3[ht−1, xt] + b̂3). The ct and ht will transfer to the
next inference cycle. With the help of long-term memory ct and short-term memory ht, the
policy network can make decisions considering both the current state and historical state.

2.2. System Model
2.2.1. Ground Exploration Scenario

In this section, we propose the UAV ground exploration task and detail the design of
the ground exploration scenario. Ground exploration is one of the important applications
of UAVs. UAVs equipped with sensing devices are deployed and conducted to scan the
ground areas within a limited time. This method assists the command center to obtain
the information about the terrain conditions or equipment deployment in these areas.
When carrying out these missions, the work teams dispatch UAV swarms to conduct joint
operations to ensure the efficiency of mission execution. We designed a scenario for the
exploration mission, which consists of an L*L grid area. The UAVs conduct exploration
missions in the area; when the UAV reaches a grid, it completes the exploration of the grid,
and there is no additional benefit for repeated exploration. At the same time, the UAVs
can establish communications with each other, and they can exchange information if they
are within communication range of each other. Each one has a health status that decreases
as the battery energy is consumed, and when the health status drops below a threshold
the drone will fall into a faulty status, and then the UAV needs to land and repair for the
next flight. Affected by the exploration terrain, the faulty UAV requires assistance from
other UAVs to resume flight. When the neighboring UAVs approach the faulty UAV, they
repair the faulty UAV and share the environmental information. The faulty UAV can take
off and recover to the exploration mode. In many cases, the appearance of faulty UAVs
would lead to the ineffective execution of the decision policy. How to deal with the faulty
UAVs becomes the key to improve the task completion. The exploration process is shown
in Figure 1.

2.2.2. Observation Space and Action Space

Each UAV has its own observation space and action space; the observation content
coming from the environment will be used as the input of the policy network to make
action decisions. The observation space consists of several components, including the
UAV’s health status, binary encoding of its x-axis position and y-axis position, the encoding
of observation information, and the encoding of information about the distribution of the
neighboring UAVs within the communication range. The health status refers to the battery
level of the UAV. The action space is discrete: each UAV has five action options, which
include forward, backward, leftward, rightward, and hover movements. At each time
step, the UAV can obtain a set of observational space information and a set of action space
information. What is more, we also designed a matrix to describe the communication
relationships between the UAVs and a vector to describe the health status of the UAVs. The
communication matrix is an n × n matrix (n means the number of the UAVs), and each
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element of the matrix means the connectivity. If the element is 1, these two UAVs are able
to share information with each other; if the element is 0, there is no communication channel
between these two UAVs. The health vector is an n-dimensional vector, which is used to
describe the health status of the UAVs—normal or fault. When the health status of the
UAV is dropped below the threshold, the UAV will enter into a faulty status, and the flag
in the vector will be set to 0; otherwise, the flag in the vector is 1. When the flag is 0, the
corresponding UAV will lose the ability to move, and the action space will be invalid. The
communication matrix and the health status vector are also updated at each time step.

2.2.3. Evaluation Metrics

The quality of the UAVs’ performance of exploration is decided by the efficiency of
the UAVs. In the limited time steps, the more areas that the UAV explored, the better
the performance. The exploration performance of the UAVs is determined by both the
individual reward and the global reward. Individual performance means the number of
new areas detected by a single UAV at a time step. The UAVs are encouraged to explore
new areas instead of staying in the same place. When the agent explores a new area, the
reward will increase by 10 points.

individual_reward = (new_areas) ∗ 10 (1)

At the same time, the UAV also needs to learn to consider the global benefit by exploring
more areas by cooperating with each other. In this aspect, the global performance is
considered in the reward function.

global_reward = (−total_areas + explored_areas)/100 (2)

The more explored areas, the higher the global reward. Flying out of the mission areas is
not supported, so we designed a penalty factor.

penalty_ f actor = (−hit_barriers) ∗ 10 (3)

If the UAV tends to get out of the mission areas, the agent will be punished. Over-
all, the reward of the agent consists of the individual reward, global reward, and the
penalty factors.

reward = individual_reward + global_reward + penalty_ f actor (4)

2.3. Error-Resilient Graph Network

Many existing algorithms only consider the health agents. In other words, the agents
never meet accidents throughout the whole task execution. However, in some cases, the
agent will go into the faulty status with the decline of its health status. We propose the
Error-Resilient Graph Network (ERGN). The ERGN can deal with the different status levels
of the agents, and the network model can not only receive the adjacency matrix about the
agent communication but also receive the vector about the agent health status.

The policy will adopt different behavioral strategies as the agent status changes.
The ERGN employs a novel approach to process the neighbor relationship matrix. The
relationship matrix between agents will be adjusted along with the health status of the
agent. When an agent falls into a faulty status, the neighbor agents will establish a rescue
team and pay more attention to the faulty agent. They work together to repair the faulty
agent. In the following sections, we will introduce our network from two perspectives:
the processing of spatial information and the processing of temporal information. The
framework of the ERGN is depicted in Figure 2. The h⃗_t, i in the figure means the hidden
state of agent i in step t.
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Figure 2. The framework of ERGN.

2.3.1. Spatial Information Aggregation

In our ERGN model, the spatial information is aggregated by the GAT module. In
this scenario, the UAV has the ability to communicate with its companions. The agent can
not only sense the local observations but also utilize the neighbor observations through
the communication channels. The aggregated results will be used for decision making.
The aggregator module receives information from three sources, including the observation
encoding, the communication matrix, and the vector of the agents health status, as shown
in Figure 3.

Figure 3. Graph Aggregator.

The encoder module encodes the information from the observations of agents, com-
presses observations, and extracts feature vectors to a uniform dimension as h⃗. The process
can be shown as follows, where x⃗ is the observation of agents, and W is an MLP with 32
dimensions of input and 128 dimensions of output.

h⃗i = ReLU(Wx⃗i) (5)

After that, the Graph Aggregator receives the information from three sources to
aggregate a new feature vector. When all of the elements in the status vector are 1, it means
that all agents are staying at the normal status. However, when some elements in the
state vector are 0, it means some agents fall into a faulty status; the aggregator will use
the adjacency matrix and status vector to generate a new mask matrix, and the new mask
matrix can help the normal agents within the communication range of the faulty agent to
establish a rescue team to restore the status of the faulty agent.

A = {a1, a2, . . . , an} ai ∈ f ault_agent (6)
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G = {group{ai}} ai ∈ A (7)

group{ai} = ∀aj j = {j | Nai ,j = 1} (8)

pairs{ai} = (ax, ay) ax ∈ group{ai}, ay ∈ group{ai} (9)

Rescue_Group_Matrix =M,M(x,y) = 1 (x, y) ∈ pairs{ai} (10)

This process is generated by the adjacency matrix and the status vector, which are shown
in Figure 4. For example, agent 3 is in the faulty state and it has two neighbors (agent 1 and
agent 5); thus, agents 1, 3, and 5 build up a rescue group (the shadow block in the upper left
corner of the rescue matrix), and agents staying in the same group can communicate with
each other with the help of agent 3. The rescue group matrix describes the communication
between the agents in rescue groups, which contains the multi-hop communication with
the help of agents waiting for rescue. In this way, the normal agent will abandon the
information of neighboring agents and enhance the connections with other agents within
the rescue team.

Figure 4. Formation of rescue groups.

The aggregate process between the adjacency matrix and status vector can be described
as follows: we can fetch the index of the faulty agents using a status vector and use the
adjacency matrix to find out the index of the corresponding neighbor agents for the faulty
agents to adjust the adjacency of the neighbor agents in the rescue group. The agents
staying in the same group can share their information with each other. If one agent appears
in two groups at the same time, these two groups will merge into one group, and agents
within the group establish adjacency with each other. In this way, we rebuild the adjacency
matrix through the adjacency relationship. This matrix will be used as input to the GAT
module; the GAT aggregator then outputs the feature vectors for each agent. They are used
to determine which action will be taken. The aggregate process can be shown as follows,
where W is an MLP with 128 dimensions of input and 128 dimensions of output.

q⃗i =
(

W q⃗hi

)
; k⃗i =

(
W k⃗hi

)
; v⃗i =

(
W v⃗hi

)
(11)

αi,j =
qT

i · k j√
dq,k

; α′ = α ∗mask (12)

α̂i,j = Softmax
(

α
′
i,j

)
; bi =

T

∑
j=1

α̂i,j · vj (13)

h⃗i = ReLU(W ∗ bi) (14)

2.3.2. Temporal Information Aggregation

History information is also important for agents. While an intelligent agent is moving
forward, some unknown areas along the way are discovered. However, it may not be
possible to reach them at once due to the path planning. It is necessary to return and
supplement after exploring other areas. Thus, we integrate the LSTM into our algorithm to
further improve the performance. We use the LSTM module to convolve the observation
for each step, which can help the policy to make decisions not only depending on the
current states but also using the history information. The LSTM module receives current
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states h⃗ along with the hidden state from the last time step {H⃗t−1, C⃗t−1} and outputs the
hidden state of the current step {H⃗t, C⃗t}. The current hidden state will be used for decision
making at this time step and prepared for the next convolution. This process can be shown
as follows:

f1 = Sigmoid
(

W1

[
H⃗t−1, h⃗t

]
+ b1

)
(15)

f2 = Sigmoid
(

W2

[
H⃗t−1, h⃗t

]
+ b2

)
∗ tanh

(
Ŵ2

[
H⃗t−1, h⃗t

]
+ b̂2

)
(16)

C⃗t = C⃗t−1 ∗ f1 + f2 (17)

f3 = tanh
(

W3 ∗ C⃗t + b3

)
∗ Sigmoid

(
Ŵ3

[
H⃗t−1, h⃗t

]
+ b̂3

)
(18)

H⃗t = f3; h⃗t = f3 (19)

The decision-making process of the strategy network is shown in Figure 5. Graph Ag-
gregator concats the long memory feature C⃗ and short memory feature H⃗ to produce a
new feature vector. And the MLP layer uses the new feature vector to generate the value
distribution of actions.

Figure 5. Policy network.

2.4. Training Process

During the training process of the neural network, we combine it with the simulated
annealing algorithm. As the training process progresses, we continuously reduce the noise
to reach a balance between exploration and exploitation. Our ERGN outputs deterministic
action values, and deterministic action values can lead the agent to a lack of ability to
explore, thus causing the training process to fall into a local optimum. Hence, we integrate
some noise into the algorithm, and the noise will reduce gradually. At the first time,
the probability of noise is 90%; only one in ten times will follow the action given by the
policy network. More actions are generated randomly in order to encourage the agent
exploration and collect the abandoned experience. Introducing too much noise can make
the training process of the network difficult to converge. Therefore, we adopt the simulated
annealing algorithm, and the added noise continuously decays with the training process
until it reaches a lower level. When the noise reaches a lower level, the agent follows the
instructions of the policy network, and the agent can complete the tasks effectively.

ϵ = ϵ− δ for each episode (20)

actioni =

{
random action ai if x ∼ U(0, 1); x < ϵ
maxa ERGN(obs, adj, status, hidden_state) if x ∼ U(0, 1); x ≥ ϵ

(21){
expect_Q = ERGN(obs, adj, status, hidden_state)
target_Q = ERGN′(obs′, adj′, status′, hidden_state′)

(22)

Loss = (expect_Q action − (reward + γ ∗max target_Q))2 (23)

where ϵ is the probability of not following the policy network; this probability continuously
decreases as the training process progresses. The ERGN obtains the observations, status
of agents, neighbor matrix and hidden_state combined with history information to make
decisions for each agent. obs′, adj′, status′, hidden_state′ means the next step information.
Finally, we use the Q value of the action selected in the current time step and the Q value of
the best action in the next time step to calculate the Loss and optimize the neural network.
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The training process is visualized in Figure 6. Firstly, we initialize the replay buffer,
which is used to collect the experience data generated during the interaction between
the agents and the environment. After that, we initialize the policy network; the policy
network is used to generate actions for the agent. It takes the observations and status
information of the agents as input and outputs the value weights for each action. Then,
based on probabilities, it selects one action to execute. Finally, each agent receives an
action for execution. These actions are transmitted to the environment and interact with
the environment, and agents receive the state information of the next step. This iterative
process continuously generates experience data. The experience data are pushed into the
replay buffer in order to optimize the policy network. When the buffer contains enough
data, the optimizer periodically samples some data to calculate the loss for optimizing
the policy network. After that, the new policy replaces the original one to make decisions
for the swarm. This process iterates until the policy network achieves good performance.
Algorithm 1 describes the process of the ERGN:

Algorithm 1 Error-Resilient Graph Network

1: Initialize replay buffer
2: Initialize weights for ERGN, including graph aggregator, recurrent network, and policy

networks
3: Initialize weights for target ERGN′, ERGN′ = ERGN
4: for episode epi = 1 to T do
5: Reset the environment and initialize the hidden state(Hi, Ci) for each agent i
6: for time steps t = 1 to episode length do
7: for agent i = 1 to N do
8: (Ht

i , Ct
i )← LSTM(obst

i , (Ht−1
i , Ct−1

i ))
9: mask← AGGREGATE(adj, status)

10: hi ← GAT(concat(Ht
i , Ct

i ), mask)
11: With probability ϵ select a random action at
12: Otherwise select ai = arg max

a
Qπ(hi, a)

13: Execute agent’s action ai to the environment
14: Obtain reward, obs′, adj′, status′, hidden_state′

15: end for
16: Collect the experience
17: exp = [action, reward, obs, obs′, adj, adj′, status, status′, hidden_state, hidden_state′]
18: Push the experience into the replay buffer
19: obs = obs′, adj = adj′, status = status′, hidden_state = hidden_state′

20: end for
21: ϵ = ϵ− δ
22: for update epoch epoch = 1 to update times do
23: Sample a batch of experiences from the replay buffer
24: expect_Q = ERGN(obs, adj, status, hidden_state)
25: target_Q = ERGN′(obs′, adj′, status′, hidden_state

′
)

26: Loss = (expect_Q action − (reward + γ ∗max target_Q))2

27: Update weights for ERGN network
28: end for
29: From time to time copy weights into the target network
30: end for
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Figure 6. Policy network training process.

2.5. Training Settings

We deployed our model on a Ubuntu 22.04.1 server with 1 NVIDIA GeForce RTX 4090
GPU and 1 AMD Ryzen 9 5950X CPU, and the experiment was conducted in a Python
3.7.10, Pytorch 1.12.1, and CUDA 12.0 environment. Our algorithms can be applied on
the Gazebo Garden simulation with drone model gz_x500, as shown in Figure 7, but the
training process is too slow because of some limitations of Gazebo simulation. As a result,
we trained our algorithms in a grid world as a way to be more efficient.

Figure 7. Gazebo Garden simulation with ROS2.

In our experiments, we used the ERGN as the decision-making agent for UAV mission
execution. During the execution of exploration tasks, our agents need to control the UAVs
and try to survey more ground areas in the limited time steps. Communication between the
UAVs can be established within a certain range; we consider this topological relationship
between the UAVs as an adjacency matrix. The UAV’s power situation is defined as a
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health status vector; our model can accept both adjacency matrics and state vectors to
help agents make an action decision. We included the Deep Q Network (DQN) and Deep
Graph Network (DGN) as baselines for comparative analysis. The DQN is the baseline for
Multi-UAV performance in ground exploration missions without communications, and the
DGN is a baseline for communications without fault tolerance. Then, we applied the ERGN
to the experiment to examine the difference between it and other algorithms. We designed
two sets of experiments for the ERGN: one set is the normal ERGN, and the other set is an
advanced ERGN with a time-sequential recurrent neural network—LSTM. Following the
experiments, we summarize and discuss the advantages of our proposed algorithms.

2.6. Training Scenarios

In this section, we describe the mission details for the exploration scenario. We
designed an exploration scenario with 10 UAVs. The swarm of UAVs needs to explore
ground areas with 30 × 30 units. The UAV has a communication range of four units and
an explore coverage of one unit. At each time step, the UAV can move one unit in the
playground. The more areas explored by the UAVs, the higher the UAV scores. At the
beginning of the episode, there are 10 UAVs separated in different locations. Each UAV
is randomly initialized with an energy level between 20 and 40. The UAV consumes one
unit of energy at each time step. If the UAV runs out of energy, it will drop into a faulty
status, and it is immovable. The UAV needs to wait for other companions to rescue it; when
another UAV approaches one unit of distance, the faulty one is considered to be successfully
rescued, and the successful rescue UAV will recover 20 energy units to continue the mission.
Each episode consists of 200 time steps.

3. Results and Discussion

In this section, experiments have been conducted on the ERGN algorithm proposed
above to test its efficiency in Multi-UAV exploration missions. Then, we compare with the
baseline algorithm to evaluate the performance of the algorithm. These items are included
in the analysis list, including reward convergence, the number of areas explored, and the
number of rescue occurrences.

In the experiments, we chose the DQN as the baseline and tested the performance of
the ERGN. The experimental results indicate that our algorithms had better performance
in the task. As shown in Figure 8 through the convergence of the reward curves, it can be
seen that the new algorithm exhibited better performance improvement.

We recorded the reward index every 20 episodes in the experiments; the result shows
that the DQN algorithm converged at the level of −100 points, and the DGN algorithm
converged at the level of −60 points. After that, our ERGN algorithm converged to the
level of −50 with the help of fault tolerance. At the same time, the convergence was faster,
and the convergence process was as stable as other algorithms. Beyond that, we integrated
the LSTM temporal memory into the ERGN, and the performance was better. We can
find the result in the Figure 8. The ERGN algorithm with LSTM achieved a higher level,
about −40 points. What is more, the convergence process was much faster. Moreover, at
4000 episodes, the reward temporarily exceeded the level of −40 points. It was stronger
than the ERGN alone and significantly better than the DQN and DGN.

We recorded the coverage index during the experience every 20 episodes; it can reflect
the number of explored areas in the real missions. Figure 9 depicts the coverage indexes. We
can find from Figures 8 and 9 that the exploration coverage of the UAV swarms expanded
as training progressed, and the agents gradually learned to cooperate to explore more areas
in the limited time steps. The change in coverage curves during training was consistent
with the reward curves, which confirms the effectiveness of the training process. The best
algorithm was the ERGN-LSTM, because it had the highest reward and coverage index,
and the second one was the ERGN; following them were the DGN and DQN. This indicates
that the collaborative approach of our self-organized rescue group plays a certain role in
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the joint exploration mission of UAVs. This indicates that our algorithm is effective in the
exploration tasks.

Figure 8. Reward curves.

Figure 9. Coverage curves.

In order to find out the exploration process over time, we conducted 100 repeated
experiments with the trained model and took the averages to view the exploration pro-
cess of the UAV swarm. Figure 10 shows the result of the experiments. Over 200 time
steps, the exploration area of the UAV swarm continuously expanded. We can find that
the DQN algorithm reached its maximum exploration ranges at 60 time steps, or about
300 units of area. The DGN had a better performance, thus reaching a level of 500 units
of area, but the curve was relatively flat, with little potential. The ERGN algorithm could
reach a level of about 550 unit areas when proceeding to 200 time steps. The ERGN-LSTM
algorithm expanded continuously and reached a unit level of 600 unit areas in the end.
The score was continuously expanding, and more time steps would have had a greater
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exploration potential. The curve of the ERGN-LSTM rose rapidly, which indicates that it
has greater potential.

Figure 10. Coverage with time step.

The following figures (Figures 11 and 12) represent the number of exploration areas
and the number of repaired UAVs in these 100 experiments. The ERGN-LSTM model could
schedule the UAVs to reach a level of approximately 600 units of exploration areas, show as
Figures 13 and 14; the scores may have varied depending on the initial position and health
status of the UAVs. The DQN model could only maintain the exploration level at around
300 units of areas. The performance of the other algorithms fell between these two extremes.
We can find that there is a strong relationship between the number of exploration areas
and the number of repaired UAVs through Figures 11 and 12. Models with high rescue
rates for faulty UAVs have correspondingly higher exploration efficiencies. In the DQN
model, the number of repaired UAVs numbered less than 10 in an episode, whereas our
proposed ERGN-LSTM algorithm could reach more than 50 in an episode or even higher.
This result is consistent with our intuition that the higher the number of surviving agents,
the higher the level of exploration. The performance of the algorithm is correlated with the
initialization of the scenario.

In the future, we also need to enhance the robustness of the algorithms. In our
algorithms, the initial positions of the drones will influence the efficiency of cooperation
and affect the performance of the algorithms. We initialized the agent positions randomly,
and the performance of the algorithm fluctuates when the agents initiate in different
positions. We are trying to optimize these problems. Overall, our algorithms have a better
performance compared with the DQN and other normal algorithms when the faulty agents
appear in the playground. In exploration missions, it can help the agents learn to cooperate
and go to rescue the faulty agent; they can maintain the ability of swarm and achieve
beautiful performance.
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Figure 11. Coverage with episode.

Figure 12. Repaired drones with episode.
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Figure 13. Performance before training.

Figure 14. Performance after training.

4. Conclusions

In this paper, we designed an algorithm called the ERGN. The ERGN can manage
UAVs in different states during explore missions. It can schedule the swarm toward the
mission target. We verified the performance of our algorithm in the scenario of Multi-UAV
exploration. After the training process, our algorithm learned to control the UAV swarm; it
could overcome the difficulties posed by faulty UAVs and dispatch the UAVs toward the
mission target. The UAVs learned to work together and support assistance when a partner
met a breakdown. We also integrated the temporal module to enhance the performance of
the ERGN. Our algorithm shows a clear improvement in the exploration task compared to
traditional algorithms.
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