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Abstract: Autonomous navigation within airport environments presents significant challenges,
mostly due to the scarcity of accessible and labeled data for training autonomous systems. This
study introduces an innovative approach to assess the performance of vision-based models trained
on synthetic datasets, with the goal of determining whether simulated data can train and validate
navigation operations in complex airport environments. The methodology includes a comparative
analysis employing image processing techniques and object detection algorithms. A comparative
analysis of two different datasets was conducted: a synthetic dataset that mirrors real airport scenarios,
generated using the Microsoft Flight Simulator 2020®video game, and a real-world dataset. The
results indicate that models trained on a combination of both real and synthetic images perform
much better in terms of adaptability and accuracy compared to those trained only on one type of
dataset. This analysis makes a significant contribution to the field of autonomous airport navigation
and offers a cost-effective and practical solution to overcome the challenges of dataset acquisition and
algorithm validation. It is thus believed that this study lays the groundwork for future advancements
in the field.

Keywords: autonomous vehicles; airport markings recognition; computer vision; object detection;
hybrid dataset; game engine

1. Introduction

The aviation industry is undergoing a constant transformation, spurred by an unceas-
ing drive for technological innovation and the escalating demands for operational efficiency,
safety, and environmental sustainability. In this evolving landscape, the development and
integration of autonomous navigation systems in airport environments have captured
significant interest due to their potential for resource optimization and reduction in the
ecological footprint of airport operations.

The integration of artificial intelligence (Al) in automating airport navigation tasks
needs to address the complex challenges arising from the increasing traffic and the diversi-
fication of air fleets. This diversification includes not only traditional crewed aircraft but
also unmanned aerial systems (UAS) and emerging urban air mobility (UAM) vehicles.
Automated taxiing, the process of guiding aircraft autonomously on the ground between
hangars or designated aircraft stands and runways, has already been identified as a relevant
but still poorly explored area that could benefit from further research, according to the
European RPAS Steering Group [1]. The seamless integration of these varied vehicles into
the existing airport infrastructure needs innovative Al-driven methodologies, tools, and
systems. These are essential for capturing and interpreting environmental data to make
efficient autonomous decisions. Furthermore, the automation of ground support vehicles,
such as passenger, cargo, and maintenance vehicles, would benefit significantly from Al
integration, thereby improving the efficiency and safety of airport ground operations, mini-
mizing human errors, and optimizing resource allocation. Indeed, over 26% of aviation
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incidents occur on the ground, underscoring the operational complexities and associated
risks [2]. These incidents have an estimated annual economic impact of approximately
eleven million euros. Thus, automation is poised, not only to improve the flexibility and
execution of tasks but also to yield considerable savings in time and operational costs.

Despite the strong practical and commercial interest, the fulfillment of autonomous
airport navigation faces two significant obstacles: the scarcity of publicly available and
adequately labeled datasets for machine learning applications, and the challenges associ-
ated with accessing heavily regulated airport facilities for capturing data and validating
models. These hurdles significantly hamper research efforts, explaining the small number
of publications addressing the development of robust and accurate models for navigating
the complex and dynamic airport environment.

This paper aims to evaluate whether vision-based object detection models, trained
on synthetic data from the Asobo video game flight simulator [3], known for its advanced
rendering technology and high-resolution data integration, can be effectively generalized
for real-world scenarios. This innovative approach not only addresses the issues of data
scarcity and limited access but also facilitates the safe and realistic validation of autonomous
navigation systems within a controlled simulation environment. A comparative analysis
of object detection models trained on synthetic, real, and hybrid datasets is conducted,
employing various performance metrics to assess the equivalence of simulated and real
datasets for perception tasks, and the efficacy of algorithms trained on these mixed datasets.

The paper is organized as follows: Section 2 reviews related work in the field of
autonomous navigation in airports and synthetic datasets. Section 3 details the method-
ology used for dataset acquisition, preparation, and preliminary comparison. Section 4
presents the experimental setup, evaluation metrics, and model training and discusses
the findings. The Section 5 concludes the paper with a summary of the results and future
research directions.

It is believed that this research bridges the gap between computer-based and real-
world data. As the threshold of widespread adoption of autonomous vehicles is approached,
the findings of this study are poised to play a crucial role in shaping the future of airport
operations, illustrating the interplay between technological innovation, regulatory frame-
works, and the practical challenges of implementation.

2. Related Work
2.1. Airport Autonomous Navigation

Over the last decade, the capabilities of Al-based systems have made autonomous
systems increasingly attractive across various fields, including aviation. However, despite
the potential for this technology to significantly enhance autonomy in airports, which
are more controlled environments than urban traffic, there has been less interest than in
other areas. Airport autonomous navigation is a growing field of research, focused on the
integration of crewed airplanes, UAVs (Unmanned Aerial Vehicles), and ground support
vehicles with the existing infrastructure of civil aerodromes. Recent contributions from
various researchers have begun to address these unique challenges, aiming to enhance
operational safety and efficiency.

Safe transit requires two main conditions: knowing the vehicle’s correct position
and preventing any collisions during maneuvers. In 2013, ref. [4] already delved into the
automated identification of airport markings by employing Hough transform methods to
support self-guided taxiing. Their strategy, aimed at rectifying inaccuracies in GNSS sig-
nals via image analysis, highlighted the feasibility of merging visual indicators with GNSS
information to enhance the precision of UAV navigation. However, navigating the complex
and dynamic airport environments needs advanced sensing and autonomous technologies
for improved situational awareness and adaptability. Suder et al. [5] further improved
automating taxi operations by enhancing the reliability of lane detection across various
environmental conditions, utilizing light photometry systems to detect multi-colored lines
and navigational aids. The integration of additional sensors, like LIDAR and camera sen-
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sors, also improves object detection and classification, thereby facilitating safer operations
of autonomous baggage tractors on airport ramps [6]. However, adding extra sensors to
flying vehicles could increase weight, power consumption, and certification challenges,
which is why Coombes et al. [7] advocated for a machine vision-only approach as the most
practical solution for enabling automated taxiing. Their solution was based on semantic
segmentation combined with a Bayesian Network classifier using a single monocular cam-
era, an instrument that nearly all vehicles possess, thereby representing a streamlined and
efficient way to reach the direct sensing capabilities necessary for autonomous navigation.

Lu et al. [8] established a precedent by incorporating self-learning techniques into
lane detection. Deep learning has also been used as an effective method to improve object
detection and recognition as demonstrated by [9], who showed that CNNs effectively
identify four categories of relevant horizontal signs within the airport environment, using
high-resolution aerial and satellite imagery. Further contributions have been made by [10],
who developed a novel dataset captured by cameras mounted on an actual support vehicle
to enhance the autonomy of logistics vehicles and improve their ability to identify both static
and dynamic objects, such as other vehicles, equipment, and personnel. Self-supervised
learning techniques and collision avoidance have also provided significant contributions.
For instance, ref. [11] discussed the use of autoencoders to detect anomalies, addressing
critical challenges such as aircraft separation through the integration of computer vision
and millimeter-wave radar technologies.

Finally, ref. [12] identified both the challenges and inherent advantages of the safety
and efficiency of an autonomous aircraft taxiing system and proposed a software archi-
tecture tailored to derive a low-level list of taxiways from high-level air traffic control
instructions. They emphasized the critical need for robustness in such systems, especially
those using adaptive algorithms. They detail the implementation of a route planner and
controller, validated within the X-Plane® flight simulator. Although their current work
does not incorporate vision-based control and relies solely on simulated GNSS data, the
authors pinpointed vision technology as a promising avenue for future exploration.

2.2. Synthetic Dataset

Accessing high-quality, large-scale datasets is crucial for developing vision-based
deep learning models. In recent years, the evolution of computer vision technologies has
underscored the growing importance of synthetic datasets. Although simulations offer
numerous advantages, their applicability to real-world scenarios is not always fully assured
due to differences in sensor behavior, including noise and failure patterns, compared to
actual applications. Furthermore, replicating the precise color reproduction, as well as the
quantity and distribution of objects in simulations, poses significant challenges. Never-
theless, simulators and synthetic datasets are invaluable tools, both as alternatives and
complements to real-world data across various fields [13,14]. This is especially evident in
the self-driving car sector, in which simulation platforms, like CARLA [15], SYNTHIA [16],
and LGSVL [17], are extensively used.

These collections are frequently evaluated against real-world data to determine their
effectiveness in enhancing algorithmic outcomes. Talwar et al. [18] explore the use of these
simulated datasets for perception tasks in self-driving vehicles, investigating how models
trained on these resources fare in real-life conditions. Their findings underscore the critical
importance of dataset diversity, suggesting that while synthetic data presents numerous
advantages, particularly in situations in which real data are scarce, it cannot completely
replace the need to use real data to guarantee the effectiveness of perception models in
such applications.

In the aviation domain, synthetic data and simulation technologies offer a promising
field for the safe and sustainable development and testing of machine learning algorithms.
A notable press release by Airbus Defense and Security [19] highlights how computer-
generated data has enhanced the precision of machine learning algorithms in satellite
imagery-based aircraft detection and identification by 20%. These observations correlate
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with the results obtained by [20] in their work RarePlanes, a dataset that merges real images
with those crafted through simulation. Their findings reveal that a mix of 90% generated
images and 10% real data can generate results comparable to those based entirely on real
datasets in aerial surveillance tasks.

Ducoffe et al. [21] introduced LARD, a dataset that primarily consists of synthetic
images generated via Google Earth Studio®, supplemented with manually labeled images
from actual videos for autonomous aviation landings. This approach not only addresses
the shortage of open datasets for specific aerial image-based runway detection but also
facilitates automated annotation generation for the images.

The automotive industry has integrated synthetic data and readily accessible simula-
tors to bridge gaps in real-world data collection, particularly for modeling rare or hazardous
scenarios. In contrast, in the aerospace field, there remains a notable absence of large-scale
public datasets and easily accessible simulation tools specifically tailored for autonomous
airport navigation. This gap underscores a critical area for future development, which
could facilitate more sophisticated, efficient, and reliable Al-driven solutions in airport
operations and beyond.

3. Methodology

Following dataset generation, annotation, and initial quality assessment using the
online tool Roboflow [22], a comparative analysis of seven deep learning object detection
models, all based on YOLOVS [23], was conducted. This analysis was performed against
a synthetic and a real test set, each containing entirely unseen images. Each model was
trained on a unique dataset type, including purely synthetic, purely real, and hybrid
datasets that blend different proportions of both. The use of Roboflow facilitated the
tagging process and provided a comprehensive health check of the datasets, ensuring the
robustness and reliability of the data prior to model training.

3.1. Dataset Acquisition and Instance Annotation

The cornerstone of any robust machine learning model is the quality and diversity of
its training data. This section outlines the methodology for collecting and refining both
real-world and synthetic datasets—essential for developing precise object detection models.

Most airports adhere to the International Civil Aviation Organization (ICAO) stan-
dards for safety and operational efficiency, which dictate signage and movement protocols
for aircraft and vehicles. In alignment with these standards, and as depicted in Figure 1,
seven key classes for detection and classification have been identified, all essential for
encapsulating airport operations and navigational aids: “Taxiway Lane”, to guide aircraft
movement; “Vertical Sign”, providing navigational guidance; “Person”, to detect individ-
uals and assure their safety; “Airplane”, to detect both moving and stationary aircraft;
“Horizontal Sign”, providing navigational guidance; “Runway Limit”, marking safety
boundaries; and “Ground Vehicle”, to represent the diversity of vehicles in airport logistics.

Figure 1. Classes to be detected: (a) “Taxiway Lane”, (b) “Vertical Sign”, (c) “Person”, (d) “Airplane”,
(e) “Horizontal Sign”, (f) “Runway limit”, and (g) “Ground vehicle”. Source: Author composition.

The dataset includes roughly 10% of images as background or null examples to mini-
mize false positives. Label consistency has been ensured with manual and semi-automated
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annotation, accurately identifying and classifying all relevant instances, including those that
are distant, small, or partially obscured. Strict verification of labeling enhances annotation
precision, which is crucial for object detection and the effectiveness of the models.

3.1.1. Real Dataset: Acquisition and Characteristics

Acquiring real-world airport imagery posed significant challenges. However, a dataset
was assembled that, although not exhaustive, fulfills the research needs. A substantial part
of the real dataset is composed of a limited collection of pilot’s perspective air-crew-shared
cockpit footage during taxiing, offering a rich variety of operational conditions, while
adhering to ethical and legal standards. A smaller proportion, which enriches the under-
standing of ground vehicle dynamics in airport aprons and enhances category breadth, has
been obtained from [10] and from online sources. Variability in image dimensions within
datasets is critical, as many neural networks require square images to meet the architectural
demands of fully connected layers. Images that are nearly square can be easily adjusted,
whereas excessively elongated images (“too tall” or “too wide”) may need to be removed
to prevent biases in model training. Figure 2 clearly illustrates this image size dispersion.
The shaded areas on the left side of the figure emphasize the extreme cases where images
are disproportionately tall or wide, which could lead to significant distortion if resized to a
square format. The median image size, depicted as a purple rectangle, indicates the central
trend of image dimensions, guiding the resizing strategy to be applied across the dataset.
As depicted in Figure 2a, the dataset includes 1645 images, with 185 as null examples to ensure
diversity, and contains 6233 annotations over seven classes, showing a skewed distribution
that reflects typical airport scenarios. Despite size variations of online images, an average
resolution consistent with benchmarks was maintained, ensuring dataset uniformity.

645 6,233 207 mp 19201080

@ 10 17.92mp

Class Balance

all | tain  valid  test

192000

645 6,252 207mp 19201080
S GRGROEEERERERE Class Balance

all | train  valid  test

(b) Synthetic

Figure 2. Comparative summaries of main characteristics (right) and image size dispersion (left) for
real (a) and synthetic (b) datasets. Source: Authors using [22].

3.1.2. Synthetic Dataset: Generation and Features

The synthetic dataset, crafted for accurate comparison with the real dataset, leverages
Microsoft Flight Simulator 2020®’s (MSFS2020) advanced rendering to simulate a wide
range of airport environments. Developed by Asobo Studio and distributed by Xbox Game
Studios®, MSFS2020 uses photorealistic 3D modeling to capture the essence of global
landscapes, infrastructure, and weather conditions, supported by an SDK for tailored
environment modeling. This dataset comprises 1645 images, manually captured using the
video game, including 180 null examples to enhance diversity, and features 6252 annotations
across seven key classes, ensuring uniform class representation and image size consistency
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with the real dataset. Detailed insights into the dataset’s main characteristics and image
size variance are presented in Figure 2b.

3.2. Dataset Quality Analysis

A direct visual comparison, as depicted in Figure 3, showcases the remarkable realism
of synthetic images, closely mirroring real-world scenarios. However, a deeper study by a
quantitative analysis could identify intricate details that might influence neural network
perceptions, potentially unnoticed by the human eye.

(a) Real (b) Synthetic

Figure 3. Visual comparison of real-world scenarios (a) and synthetic images (b). Source: Authors.

An example of this quantitative analysis is shown in Figure 4, where histograms at the
top of the figure measure the occurrence of all classes across both datasets, showing similar
distributions. Below these histograms, heatmaps for two of the classes from each dataset
illustrate the spatial distribution of annotations. This visualization is crucial as it influences
the predictive capabilities of the neural network. Properly designed datasets that reflect
true environmental conditions—where certain classes (e.g., horizontal signs) appear only in
specific locations—enhance accurate identification. Conversely, datasets that fail to account
for class instances appearing in alternative locations could lead to misclassification errors.

In the heatmaps, color coding qualitatively depicts the dispersion of class instances
across the dataset. Yellow areas highlight regions with a higher frequency of annotations,
indicating common locations for class instances, while blue areas indicate comparatively
fewer annotations, and uncolored zones show the absence of annotations for that class in
those areas.

The application of the Uniform Manifold Approximation and Projection (UMAP)
technique, alongside a Feature Pyramid Network, is fundamental to the analysis. This
method transforms images into embeddings, numerical vectors that encapsulate key at-
tributes such as color, texture, shape, and composition. These embeddings facilitate a
granular comparison across datasets. The 3D visualization in Figure 5 demonstrates the
coherent clustering of both real and synthetic datasets, underscoring the fidelity of the
feature representations. In this visualization, the axes x, y, and z represent the principal
components of the embedded space derived from the dimensionality reduction process.
These dimensions are not physical units but are scales that capture the most significant
variances within the dataset, essential for illustrating underlying data relationships.
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Figure 4. Top: Histograms comparing object appearances per image in real (left) and synthetic
(right) datasets. Bottom: Heatmaps for “Taxiway” (a,c) and “Airplane” (b,d) classes in real (a,b) and
synthetic (c,d) datasets. Source: Authors using [22].

810 113 14-16 17-19 20-22

-

Figure 5. UMAP 3D visualization showcasing clustering of real (blue) and synthetic (orange) datasets,
illustrating embedding representation coherence. Source: Authors using [24].

The analysis confirms substantial coherence at the levels of visual detail, object distri-
bution, and embeddings between the datasets.

3.3. Hybrid Datasets: Merging Real and Synthetic Data

To enhance dataset diversity, real and synthetic images were merged, creating hybrid
datasets with variable proportions of the two. A base of 1645 images was augmented with
either 185 or 411 images from the other dataset to achieve a 10 or 20% mixture. This resulted
in two datasets of 1830 and 2056 images, respectively. This approach produced four distinct
hybrid datasets, as depicted in Figure 6. These datasets, designed for balanced comparative
analysis, maintain consistency with the original class distribution datasets and keep class
variance within a 5% error margin (see Figure 7).
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Figure 6. Composition of five distinct hybrid datasets using real and synthetic (MSFS2020) images
with 10% (*), 20% (**) and 50% mixtures. Source: Authors.
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Figure 7. Class balance between (a) initial datasets, (b) * 10% mix, (c) ** 20% and (d) 50% mix. Source:
Authors.
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4. Experiments, Results, and Discussion

After generating and assessing the similarity between real and synthetic datasets, their
efficacy in training Al models in object detection tasks was evaluated using the YOLOvVS-
Large model. This model was selected because of its proven efficiency and accuracy in
real-time object detection, which enables comprehensive end-to-end analysis for object
localization and classification within airport scenes.

The YOLOVS architecture integrates a ResNet-50 model backbone for feature extrac-
tion, and head layers for output predictions. Initially pre-trained on the extensive ImageNet
dataset, the backbone is further refined on the COCO dataset, a rich object detection dataset
encompassing images from everyday scenarios with 80 object classes, including ‘airplane’,
‘car’, and ‘person’.

The study aims to compare vision-based models trained on synthetic, real-world,
and hybrid datasets, rather than optimizing a specific object detection model. Optimal
hyperparameters were explored to improve model metrics, but the aim was not to fine-tune.
Rather, a balanced approach was chosen for all models, ensuring uniform application and
enabling coherent comparisons across the seven models. The models have been named
according to mathematical functions, in uppercase and enclosed in brackets. The datasets
employed for training each model in different trials are denoted as function arguments,
indicated in lowercase (e.g., “"MODEL_A(dataset_a)”).

4.1. Evaluation Metrics

Object detection faces two primary challenges: classifying the presence of objects and
determining their precise locations within images. To address these challenges, two metrics
are commonly used: (1) precision, which measures the accuracy of object detections by
indicating the proportion of correct ones among all detections made, and (2) recall, which
assesses the model’s ability to identify all instances of objects, reflecting its overall detection
capability. Together, these metrics evaluate both the accuracy of classification and the
precision of localization.

Mean Average Precision (mAP) extends this evaluation across multiple object classes
by averaging precision and recall, utilizing Intersection over Union (IoU) to compare
the overlap between predicted and actual bounding boxes. An IoU threshold of 0.5 is
considered for easy detection, whereas mAP50-95 calculates the average precision across
IoU thresholds from 0.50 to 0.95, providing a comprehensive view of model performance
across various levels of detection difficulty.

Understanding these metrics is key to diagnosing the performance of the model. A
low mAP indicates that the model may require broad refinements. A low IoU suggests chal-
lenges in precise object localization, possibly needing alternative bounding box strategies.
Low precision points to an over-detection of non-existent objects, which could be mitigated
by adjusting confidence thresholds. Conversely, low recall indicates missed detections of
actual objects, suggesting that improvements in feature extraction or the inclusion of more
data might be beneficial. Class-specific AP scores reveal which classes the model struggles
with, guiding focused enhancements.

The evaluation prioritizes precision, recall, and particularly the mAP50 and mAP90
metrics. These metrics provide comprehensive insights into the models’ accuracy, their
effectiveness in minimizing false negatives, and their overall efficacy in object detection
across diverse scenarios.

4.2. Objects Detection Models Training

Seven deep learning models were trained, each on a distinct dataset configuration,
as depicted in Figure 7. To mitigate overfitting, the datasets were randomly divided into
70% for training, 20% for validation, and 10% comprising images never seen before by the
models and reserved exclusively for testing. For standardization, images were resized to
640 pixels on each side, and data augmentation techniques were applied, including noise
addition (1%), brightness adjustment (+14%), and rotation (+12%).
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The training was conducted on Google Cloud Platform™ virtual machines [25], utiliz-
ing NVIDIA® Tesla T4 and Volta V100 GPUs. AdamW optimization with a linear learning
rate of 0.001 and a batch size of 16 was used, starting with pre-trained weights. The optimal
model for each dataset configuration was determined from 100 training epochs based on
validation performance, ensuring low stable losses. The comprehensive training process
for all seven models spanned around 40 h.

Figure 8 shows the graphs of the metric curves as training progresses for one of the
models, serving as an example. Loss functions are crucial for training object detection models.
They measure the difference between the model’s predictions and the actual data, showing
how effectively the model is learning. Key metrics monitored during training included:

*  Box Loss (box_loss): evaluation of bounding box coordinate precision against ground
truth, essential for accurate object localization.

*  C(lass Loss (cls_loss): assessment of the accuracy in object classification within bound-
ing boxes, critical for precise object identification.

*  Defocus Loss (dfl_loss): specialized metric to enhance detection in unfocused or blurry
images, improving performance under challenging imaging conditions.

train/box_loss train/cls_loss 16 train/dfl_loss metrics/precision(B) 0.9 metrics/recall(B)
—e— results 0.9
1.4+ smooth 0.8 0.81
154 14
1.2 4 0.71 0.7
1.04 0.6 1
1.0 1.2 | 0.6
0.81 0.59
4 0.54
0.6 051 10 0.4 i
0.34 4
0al, . It : ] L =] 03] : J o4t : :
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1-6-1 35 16 ] 097 0.7
3.0 0.8
141 } 15 0.6
2.5 14 0.7 054
1.2 2.0 1 0.6 -
1.3 0.44 5
| 1.5 0.5 1
1.0 1.2 0.34
1.04 0.4 ]
0.8 1 1.1 0.2
r T ~ 05+ r r - : ~ 034 T T : r r
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 8. Results of ‘feature extraction’ training for Real(dataset_real) model. The horizontal axis
(X) denotes the number of training epochs, reflecting the duration of training. The vertical axis (Y)
quantifies performance metrics, as specified at the top of each graph. Source: Authors.

These metrics, alongside precision, recall, and mAP, offered a detailed overview of
training performance, ensuring homogeneous and coherent behavior across all models.

Figure 9 illustrates the capability of this model to identify and classify objects ac-
curately within six validation images, highlighting practical effectiveness in real-world
applications. For a detailed analysis of the training results for each specific model, please
refer to the Supplementary Materials provided at the end of the article.

4.3. Results and Discussion

In the comparative analysis, a diverse range of test images from both real and synthetic
datasets was carefully selected. These images were previously unseen by the models,
ensuring a fair and unbiased assessment of their performance. This dual approach not only
allows for the evaluation of the performance of models developed in a virtual environment
but also tests the effectiveness of virtual images in validating pre-trained models to handle
challenging scenarios that are difficult to replicate in real life. Figure 10 presents the size
and class distribution of these test sets.
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Figure 9. The REAL(real_val) model is capable of accurately identifying and classifying objects within
six real airport images. Source: Authors.

real test msfs test
Total 139 Total 157

Horizontal sign 106 -:l 89 -:l Horizontal sign
Runaway_limit 24 I:l 39 I:l Runaway_limit
Taxiway 128 - 136 - Taxiway
Vertical sign 85 -:l 101 -:l Vertical sign
airplane 520 | s6lL | airplane
Ground vehicle 88 -:l 103 -:l Ground_vehicle
Person 31 .:l 47 .:l Person

Null 11] 19/ | Null

Figure 10. Comparative overview of the total size and class distribution within the real (left) and
synthetic (right) test sets. Source: Authors.

The evaluation process tested each of the seven models against both real and synthetic
datasets, totaling 14 evaluations. A detailed class-based analysis is available in the Sup-
plementary Materials. Figure 11 condenses these results, using color coding to highlight
superior and inferior performances for easy comparison across models and datasets.

Models trained exclusively on real or synthetic datasets exhibited robust performance
on their respective test sets, affirming their effective training. However, their efficacy dimin-
ished when applied to the opposite dataset type, underscoring the limitations of synthetic
data, in fully generalizing real-world conditions. Notably, classes associated with ground
markings (“Runway_limit”, “Horizontal_sign”, and “Taxiway”) and entities like “Airplane”
and “Person” maintained consistent performance. In contrast, the “Vertical_sign” and,
more significantly, the “Ground_vehicle” categories showed weaker results, highlighting
discrepancies in the realism between real and synthetic object representations.

Dataset:
real_test msfs_test
Precision| Recall | mAP 0.5 | mAP 0.9 | Precision mAP 0.5 [ mAP 0.9
REAL 0.858 0.822 0.86 0.711

REAL*| 085 | 082 | 0854 | o071
REAL**|  0.85 0.844 0.882 0.722 0.781

0.869 0.829 0.666

0.868 0.795 0.822 0.666
0.881 0.809 0.841 0.674
0.834 0.745 0.782 0.595

Models:

Figure 11. Performance comparison of all models on real and synthetic test sets, with superior (green)
and inferior (red) performances highlighted for clarity. Source: Authors.
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Conversely, hybrid models, trained with a mix of real and synthetic data, demon-
strated notable improvements across all evaluated metrics, with the optimal compromise
solution observed at an 80/20 data mix proportion (e.g., 80% real images, 20% synthetic).
The MSFS**(real_test) model exhibited superior performance in tests with real images, sug-
gesting that models primarily based on computer-generated data could achieve satisfactory
real-world performance with minimal inclusion of real data. This outcome supports the
feasibility of using MSFS2020 as a practical environment for model development and vali-
dation. Remarkably, the REAL**(real_test) model outperformed those trained exclusively
on real data, highlighting the potential of synthetic data to augment purely real datasets
and improve the generalization capabilities of machine learning models. Similarly, the
REAL**(msfs_test) model achieved the best performance on tests with synthetic datasets,
significantly enhancing its effectiveness with just a 20% addition of synthetic data compared
to the model trained only with real images.

5. Conclusions

This investigation addresses the critical issue of limited data availability and simu-
lation environment for autonomous airport navigation and examined the effectiveness
of synthetic data from the MSFS2020 video game in enhancing the training and run-time
validation of vision-based object detection models. Seven models were trained on distinct
datasets comprised entirely of real or synthetic data, and hybrid datasets with varying pro-
portions of both. These models were then rigorously tested against novel real or synthetic
datasets, thereby ensuring an unbiased evaluation of their performance.

The findings suggest that, while models trained exclusively on either real or synthetic
data perform adequately within their specific domains, their ability to generalize the alter-
nate type of data is limited. This highlights the synthetic data’s shortfall in fully capturing
the complexities of real-world environments. In contrast, hybrid models, especially those
incorporating a 20% real data mix, demonstrate significant performance improvements.
This indicates that the MSFS2020 video game can be relied upon as an easily accessible tool
for developing and testing object detection models, provided a minimum percentage of real
data is included, to ensure subsequent real-world applicability. Additionally, it has been
shown that adding a modest amount of synthetic data to an entirely real dataset enhances
the model’s generalization capabilities. This virtual environment has been validated as an
effective tool for the robust validation of models by facilitating the virtual generation of
scenarios that are challenging to replicate in real life, thereby enhancing the testing and
refinement process for these models.

Future work should aim at expanding and enriching the synthetic dataset, thereby
improving both its quality and diversity. This includes incorporating representations of
various airports, seasons, and daytimes, as well as expanding the number of recognizable
classes, especially those relevant to night-time scenarios. Further training and refinement of
models will be conducted on this enhanced dataset to maximize performance and advance
the development of autonomous navigation solutions in airport environments.

Supplementary Materials: The supporting materials, including videos demonstrating real-time
operation, are available for download from the public repository at https:/ /github.com/Robcib-GIT/
Synth_Airport_Taxii.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AP Average Precision

CNN Convolutional Neural Network

GNSS Global Navigation System

GPU Graphics Processing Unit

ICAO International Civil Authorities Organization
ToU Intersection over Union

LiDAR Light Detection and Ranging

mAP Mean Average Precision

MSFS2020  Microsoft Flight Simulator 2020®
RADAR Radio Detection and Ranging

UAM Urban Air Mobility
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
UMAP Uniform Manifold Approximation
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