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Abstract: Satellite computing represents a recent computational paradigm in the development of
low Earth orbit (LEO) satellites. It aims to augment the capabilities of LEO satellites beyond their
current transparent relay functions by enabling real-time processing, thereby providing low-latency
computational services to end users. In LEO constellations, a significant deployment of computation-
ally capable satellites is orchestrated to offer enhanced computational resources. Challenges arise in
the optimal allocation of terminal services to the most suitable satellite due to overlapping coverage
among neighboring satellites, compounded by constraints on satellite energy and computational
resources. The satellite service allocation (SSA) problem is recognized as NP-hard, yet assessing
allocation methods through results allows for the application of deep reinforcement learning (DRL)
to obtain improved solutions, partially addressing the SSA challenge. In this paper, we introduce a
satellite computing capability model to quantify satellite computational resources. A DRL model
is proposed to address service demands, computational resources, and resolve service allocation
conflicts, strategically placing each service on appropriate servers. Through simulation experiments,
numerical results demonstrate the superiority of our proposed method over baseline approaches in
service allocation and satellite resource utilization, showcasing advancements in this field.

Keywords: LEO satellite network; satellite computing; satellite service allocation; deep reinforcement
learning

1. Introduction

In recent years, with the continuous reduction in the size of computing hardware,
the enhancement of computational capabilities, and the decrease in power consumption,
LEO satellites equipped with computing cards have been able to provide a certain level of
edge computing capability [1]. Satellite edge computing has emerged as a novel computing
paradigm, allowing the processing of tasks on LEO satellites [2–4]. This not only reduces
user service latency but also conserves valuable bandwidth resources from satellites to
ground-based cloud centers [5–7]. This paradigm is advantageous for LEO satellite missions
such as border surveillance and unmanned area monitoring [6–12]. Due to the typically
limited power availability of a few hundred watts for LEO satellites, with only a portion
allocated for computing purposes, the computational resources on a single satellite are
constrained [13,14]. Additionally, these resources usually cover only a limited geographical
area. Therefore, the efficient utilization of satellite computing resources in integrated satel-
lite terrestrial networks (ISTNs) is crucial for the quality of LEO satellite services [15–17].
In an ISTN, satellite networks are positioned at the edge and connected to ground networks
through ground stations [18]. However, the data link from users to satellites and then to the
cloud center is too long. For delay-sensitive services, users typically access services directly
at satellite nodes to meet their service requirements. This imposes higher demands on
satellite resource capacity. Moreover, when multiple satellites have the ability to serve the
same users simultaneously, selecting the appropriate satellites to achieve higher resource
utilization becomes a research-worthy problem.
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Many scholars have conducted research on this topic. For single satellite coverage
scenarios, Wang et al. proposed the JCORA strategy [19], which considers energy con-
sumption and latency as system costs to determine whether tasks should be offloaded
to the access satellite. The work in [20] takes into account the energy and computational
constraints of the satellite and presents a dynamic offloading strategy based on Lyapunov
theory. Wang et al. proposed a double-edge offloading mechanism in [21]. When the of-
floading capacity of ground edge servers is insufficient, the access satellite selects different
cost-matching modes based on the size or type of the tasks to schedule edge servers in
adjacent satellite nodes. For multi-satellite coverage scenario, the work by [22–24] proposes
the joint optimization problem of task offloading and computing resource allocation for
ground users and then decoupling it, while in [25], the collaborative computing offloading
method in satellite edge computing is described, in which edge satellite nodes are used
to perform tasks for the source satellite to optimize multidimensional resources. In [22],
Jia et al. adopted game theory methods to obtain offloading decisions in Nash equilibrium
solutions. After proving the resource optimization problem is convex, they solved it by
using the Lagrange multiplier method. In [23], the goal was to minimize the energy con-
sumption of the satellite while meeting task latency requirements, and in [24], the focus
is more on user service quality, with the weighted sum of user task latency and energy
consumption being used as indicators. The above works have studied various schemes to
provide computing offloading services to users but have not focused on the access choices
of users in multi-satellite coverage scenarios. Some multi-satellite computing offloading
schemes only schedule tasks and allocate resources using the access satellite’s decision.

Some authors have considered the association between users and satellites. In [26], a
joint client selection and resource allocation strategy are proposed for the multi-task joint
learning system, which selects satellite nodes based on wireless communication factors and
local task data training results. In [27–29], a correlation strategy of a three-layer architecture
that contains the satellite, base station, and user is considered. Another proposal [27] aims
to reduce end-to-end delay by developing an iterative algorithm based on approximation
and relaxation methods, which solves the optimization problem of association and resource
allocation under load balancing and demand constraints of user device. A different solu-
tion [28] focuses on the user, searching for base stations with a maximum rate and minimum
load and connecting them to the satellite through the best channel quality. In [29], Li et al.
adopted a multi-agent DRL algorithm which sets users, base stations, and satellites as
agents. The SI-R based utility function is considered when selecting the access base stations
or satellites for users. The sample is be sent to the MADDPG model for training. In [30],
the authors propose a satellite–gateway association strategy using the graph-theory ap-
proach, where a bipartite graph is established with the weight set from the channel gain and
the coverage of satellites. Accordingly, the association solution is obtained by finding the
maximum weighted matching. The satellite selection problem is considered as a potential
game in [31], where ground user equipment competes for satellite and channel resources.
In [32], the authors proposed a multi-objective satellite selection strategy for multiple
users based on reinforcement learning. The work by [31,32] both considers factors such as
remaining visible time, terminal-satellite elevation angle, and available channel numbers to
assist users in selecting satellites for decision-making. In [33,34], the GS algorithm is used
for initial matching in the user-satellite association/computation offloading subproblem
to obtain the user’s satellite selection decision results. In the design of the preference list,
communication conditions are still the main factor. Although the above papers examine the
access satellite selection of users under multi-satellite coverage, most of them only refer to
the impact of the communication environment and rarely consider the resource utilization
and service satisfaction of users in satellite systems, which is not conducive to the load
balancing of the entire satellite–terrestrial integrated network.

Some studies have considered the association between users and satellites. The work
by [26] proposes a joint client selection and resource allocation strategy for the multi-task
joint learning system, which selects satellite nodes based on wireless communication fac-
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tors and local task data training results. In [27–29], the authors consider the correlation
strategy of the three-layer architecture which contains the satellite, base station, and user.
In [27], the authors aim to reduce end-to-end delay by developing an iterative algorithm
based on approximation and relaxation methods, which solves the optimization problem
of association and resource allocation under load balancing and demand constraints of the
user device. The solution described in [28] focuses on the user, searching for base stations
which have maximum rate and minimum load and connecting them to the satellite through
the best channel quality. In [29], Li et al. adopted a multi-agent DRL algorithm which sets
users, base stations, and satellites as agents. The SINR-based utility function is considered
when selecting the access base stations or satellites for users. The sample is sent to the
MADDPG model for training. In [30], the authors proposed a satellite–gateway association
strategy using the graph-theory approach, where a bipartite graph is established with the
weight set from the channel gain and the coverage of satellites. Accordingly, the association
solution is obtained by finding the maximum weighted matching. The satellite selection
problem is considered as a potential game in [31] ,where ground user equipment competes
for satellite and channel resources. In [32], the authors proposed a multi-objective satellite
selection strategy for multiple users based on reinforcement learning. In [31,32], factors
such as remaining visible time, terminal–satellite elevation angle, and available channel
numbers are considered to assist users in selecting satellites for decision-making. Other
works [33,34] have used the GS algorithm for initial matching in the user–satellite associa-
tion/computation offloading subproblem to obtain the user’s satellite selection decision
results. In the design of the preference list, communication conditions are still the main
factor. Although the above papers above have studied the access satellite selection of users
under multi-satellite coverage, most of them only refer to the impact of the communication
environment and rarely consider the resource utilization and service satisfaction of users in
satellite systems, which is not conducive to load balancing of the entire satellite–terrestrial
integrated network.

In the literature, a major issue arises when there is an abundance of residual com-
munication resources on a satellite but insufficient computational or storage resources.
Algorithms that solely consider communication resources may erroneously allocate users
to such satellites, leading to service interruptions or unavailability. Similarly, algorithms
solely focusing on computational resources are constrained by communication, storage,
and cache resources. Thus, only by comprehensively considering all resources required
for user service can more effective services be provided to users and various resources on
satellites utilized more fully.

Unlike the background work mentioned above, we innovatively consider five types
of resources including communication, computation (CPU, GPU), storage, and cache.
To comprehensively considering both user service demands and the characteristics of
resource capacity on satellites, we utilize DRL to devise an efficient method for allocating
user services. Based on the above considerations, this work conducts a detailed modeling
of satellite resources and adopts DRL methods to achieve optimal access satellite selection
decisions for users in multi-satellite coverage scenarios with the goal of maximizing the
user service rate and system resource utilization rate. Our main contributions can be
summarized as follows:

• In accordance with the actual computational resource conditions of LEO satellites, we
have modeled the computational resources of LEO satellites. Additionally, we have
formulated the SSA problem as a Markov decision process (MDP).

• We designed an adaptive reinforcement learning model capable of adjusting service
allocation for varying numbers of users. This model outputs optimal service allocation
schemes based on the specific user demands.

• Based on the proposed model, we generated several datasets and conducted model
evaluation experiments as well as algorithm assessment experiments. These evalua-
tions were aimed at assessing the performance of our proposed model and algorithm.
The results indicate that our approach outperforms baseline methods.



Aerospace 2024, 11, 386 4 of 17

The paper is organized as follows. Section 2 describes the system model of ISTN and
introduces the satellite computing resource model. Section 3 formalizes the SSA problem
as an MDP. Section 4 models our proposed DRL algorithm. Section 5 is the experimental
part, which evaluates the performance of our work. Finally, Section 6 concludes this paper
and looks ahead to future work.

2. System Model
2.1. Network Model

As illustrated in Figure 1, this paper considers a satellite–ground collaborative network
model based on an LEO constellation. Satellites in this model allocate corresponding com-
putational resources based on the terminal’s business requirements and provide services to
the terminals. The satellite–ground collaborative system under consideration comprises
N LEO satellites and K users, where N and K represent the sets of LEO satellites and
users, respectively. In this integrated system, in addition to providing traditional satellite
communication (SATCOM) radio access services to UEs, the LEO satellites also provide
edge computing services to users for processing edge data. For convenience, we assume
that each satellite has a beam capable of serving users within its beam coverage area and
that each user can only connect to one LEO satellite.

…
User 1 User 2 User N

Satellite

Ground 
Station

Resource 
Requirements

handheld 
terminal

airplane

UAV

satellite beam
satellite beam
satellite beam

Figure 1. Network model.

We employ the homogeneous binomial point process (BPP) satellite distribution model
as provided in [35] to configure the spatial distribution of the LEO satellites. As depicted in
Figure 2, the BPP is considered a more suitable alternative to satellite networks compared
to the Poisson point process (PPP) since it is better suited for modeling a finite number
of points within a finite area. The subsequent proposition outlines the distribution of the
homogeneous BPP on a sphere.
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Proposition 1. For a point in homogeneous BPP, the azimuth angle is uniformly distributed
between 0 and 2π, i.e., ϕBPP ∼ U[0, 2π] and the cumulative distribution function (CDF) of each
point’s polar angle(of the spherical coordinate) θBPP as follows:

FθBPP(θ) =
1 − cos θ

2
, 0 ≤ θBPP ≤ π, (1)

θBPP can be generated as follows:

θBPP = arccos(1 − 2U[0, 1]), 0 ≤ θBPP ≤ π. (2)

Note that the BPP given in subsequent parts of this paper refers to homogeneous BPP
unless otherwise stated. The distribution of user terminals is modeled randomly.

Figure 2. LEO constellation architecture.

In this work, we consider that each user can only run one service at the same time
and that each service can only be provided by a single satellite. Therefore, each user can
only access one satellite at the same time while the same satellite can serve multiple users
simultaneously.

2.2. Resource Model

The transmission of operational data between the terminal and the satellite is con-
ducted through a satellite-to-ground link, where each operation utilizes a fixed communi-
cation resource in the LEO. Introducing the variable δ(t) ≜ [δn,k(t)]∀(n,k) denotes the link
connectivity status between the satellite and the user.

δn,k(t) =
{

1, UEk is connected with LEOn.
0, otherwise.

(3)

Due to the constraint that each user can only access a single satellite, the following restric-
tions are established:

∑
∀n∈N

δn,k(t) ≤ 1,∀k ∈ K. (4)
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Due to the increasing complexity of current service, the conventional approach of
measuring node resources solely based on bandwidth and CPU frequency has become
insufficient. In order to address this challenge, as shown in Figure 3, we have developed a
five-dimensional resource model, considering the capabilities of communication bandwidth,
CPU general computation, GPU mathematical computation, storage, and caching. A unified
measurement model has been constructed to account for these dimensions. We denote
communication resource quantity as bandwidth (BW), and for the standardization of
diverse resources, we map the communication resource quantity to the interval [0, α] and
represent it as B.

Resource Model

Satellite
Resources

Service 
Requirements

GPU Capacity Communication

CPU Capacity Storage

Caching GPU Capacity Communication

CPU Capacity Storage

Caching

Figure 3. Resource and requirements model.

For convenience, we define the n-th LEO satellite and k-th user as Satn and UEk,
respectively. The channel gain between the LEO satellite and the user can be expressed
as follows:

hn,k =
GSatGUEψ(µn,k)

PLn,k
, (5)

where PLn,k = (4π fcdn,k/c)2 and dn,k represent the free-space path loss between the n-th
LEO satellite and the k-th user; GSat and GUE are the maximum antenna gains for the LEO
satellite and user, respectively; and µn,k is the maximum boresight angle from Satn to UEk.
The ψ(µ) in the channel gain formula represents the beamforming pattern function and is
expressed as follows:

ψ(µ) =

{
1, µ = 0,

4
∣∣∣ J1(wa sin µ)

wa sin µ

∣∣∣ , µ ̸= 0,
(6)

where w = 2π fc/c, a, fc, and c are the antenna aperture radius, operation frequency, and
light speed, respectively; and J1(·) denotes the first-order Bessel function. Consequently,
the available communication resources for a single satellite can be expressed as follows:

BSat
n =

WSat
n

WSat
max

=
WSat

n

max
{

WSat
1 , WSat

1 , ..., WSat
N
} . (7)

The communication resource demand for a user is expressed as follows:

BUE
n,k = α

RUE
n,k

WSat
max

, (8)
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where

RUE
n,k = WUE

k log2

(
1 +

Pn,khn,k

σnWUE
k

)
, (9)

where σn represents the noise power density per Hz. Therefore, the following can be
obtained:

∑
∀k∈K

δn,k(t)BUE
n,k ≤ BSat

n , ∀(n, t). (10)

We employ a methodology similar to that used in constructing communication resource
models to establish mathematical representations for the remaining four types of resources.
For the sake of brevity, we refrain from elaborating on their actual mapping processes into
mathematical forms. Ultimately, the mapping patterns for the representations of the other
four resources also follow the method of referencing the maximum capacity of a single
satellite resource, with all resources being mapped into specific ranges.

GUE
n,k = α

GUE
n,k

GSat
max

, (11)

CUE
n,k = α

CUE
n,k

CSat
max

, (12)

OUE
n,k = α

OUE
n,k

OSat
max

, (13)

FUE
n,k = α

FUE
n,k

FSat
max

. (14)

Therefore, the resource demand for a user can be represented as follows:

D =
{

BUE, GUE, CUE, OUE, FUE
}

. (15)

The resource capacity of a satellite can be expressed as follows:

V =
{

BSat, GSat, CSat, OSat, FSat
}

. (16)

Similar to communication resources, these four types of resources also need to satisfy
the constraint that the resource requirements of a single satellite user are less than the
remaining available resources on the satellite. Therefore, it is necessary to satisfy the
overall constraint:

∑
∀k∈K

δn,k(t)DUE
n,k ≺ VSat

n , ∀(n, t). (17)

3. Problem Statement

Due to the diverse requirements of edge services for various resources and the signifi-
cant differences in the availability of resources on different satellites, there is an uneven
distribution of resources in space, which also exhibit tidal-like variations over time, and
an NP-hard problem arises in achieving the optimal match between services and resources.
The SSA problem aims to assign each service to the most suitable satellite, thereby enhanc-
ing global resource utilization efficiency. This section analyzes the SSA problem, models its
characteristics, and transforms it into a MDP, laying the groundwork for the introduction
of a reinforcement learning solution. The definitions of relevant symbols are listed in the
Table 1.
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Table 1. Variable description.

Variable Description

N = {1, 2, ..., n, ...N} Set of LEO satellites with available resources
K = {1, 2, ..., k, ...K} Set of users with resource requirements

D =
{

BUE, GUE, CUE, OUE, FUE} Multi-dimensional resource requirements for
user services

V =
{

BSat, GSat, CSat, OSat, FSat} Remaining available resources on
LEO satellites

LocUE
k = (xUE

k , yUE
k , zUE

k )
The three-dimensional coordinates of users

with service requests

LocSat
n = (xSat

n , ySat
n , ySat

n )
The three-dimensional coordinates of

LEO satellites
d Orbital altitude of LEO satellites

αn,k
The minimum communication elevation angle

between UEk and Satn

φ
Indicator for the existence of services on

the satellite

lt
n =< LocSat

n , Vn, φ >
A struct used to describe the state of a

single satellite
ek =< LocUE

k , Dn > Mathematical model of a UE

πt
The satellite assigned to the UEt in timeslot t; if

unassigned, it is indicated as 0

For the SSA problem, we primarily focus on two constraints. The first one is that UE
should be able to establish an effective communication link with LEO satellites:

−−−→
LocSat

πt ·
−−−→
LocUE

k∣∣LocSat
πt

∣∣∣∣LocUE
k

∣∣ ⩾ απt ,k , ∀t and πt ̸= 0. (18)

The second constraint is the resource constraint mentioned in formula [n], as follows:

∑
∀k∈K

δπt ,k(t)D
UE
πt ,k ≺ VSat

πt , ∀t and πt ̸= 0. (19)

Due to the presence of constrained multidimensional resources in the ISTN and vary-
ing resource utilization patterns across different services, we assume that to achieve desired
service effects, each service has specific resource requirements. Satellite resources exceeding
these requirements do not contribute to higher service quality for UE. Given the limited
resources of satellites, there is competition among different services for the utilization of
the same resources. The deployment of each service can be independently determined
based on the current satellite’s remaining resources. With a sufficiently fine-grained time
granularity, in each timeslot t, only one service is allocated to an appropriate satellite,
and the satellite resource status is updated. This process continues in the next timeslot,
with suitable resources being allocated for the service. Inspired by [36–38], we propose the
DRL-based approach in this paper.

In this scenario, akin to the edge user allocation (EUA) problem mentioned in [39],
we can model the SSA problem as an MDP as shown in Figure 4. This includes the
satellite network state S, satellite service allocation actions A, and the effectiveness of
service allocation R. Therefore, the length of the Markov chain equals the number of users
requesting services in each timeslot. S represents the satellite network state in each timeslot.
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…

MDP environment

Agent

Action

Statement
Reward

Figure 4. MDP schematic diagram.

S = {s1, s2, ..., st, ..., sN}, (20)

st =< et, lN > . (21)

Each network state st can be jointly determined by the network state from the previous
moment and the chosen action A. In our study, we set A as the satellite number n to which
the UE is currently connected in the current state.

A = {π1, π2, ..., πt, ...πn}. (22)

After the execution of action πt in each timeslot t, the state S is updated based on the
amount of resources occupied by the service. This involves updating the resource allocation
of the satellite to which the service has been assigned. When a service cannot be allocated
to any satellite, we consider the service as incomplete. In such cases, it will move on to the
next timeslot, and there is no need to update the satellite resource status.

When the MDP concludes and when all services have been allocated, the reward
calculation is based on the overall network resource allocation results. Typically, in the SSA
problem, evaluation metrics for resource allocation results include resource utilization, the
service allocation rate, and others. Our ultimate goal is to allocate suitable resources for as
many services as possible while achieving a high level of resource utilization. Therefore,
we define the reward as follows:

R = λ × RUE(A) + (1 − λ)RSat(A). (23)

where RUE represents the UE service allocation rate, and RSat represents the satellite
resource utilization rate. λ is a predefined constant used to control the weighting coefficients
of the two metrics. The calculation methods for RUE and RSat can be expressed as follows:

RUE(A) =
1
K

K

∑
t=1

πt, (24)
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RSat(A) = avg

{
M ∈ D, Z ∈ V|

∑k∈{ k|πk ̸=0} MUE
k

∑n∈N ZSat
n

}
. (25)

where M and Z refer to any element within the sets D = {BUE, GUE, CUE, OUE, FUE} and
V = {BSat, GSat, CSat, OSat, FSat}, respectively. A higher RUE value indicates that a greater
number of user service requests have been satisfied. Furthermore, a higher RSat value
signifies that satellite resources are being utilized more effectively.

Therefore, the final optimization problem can be formulated as follows:

max avg

{
M ∈ D, Z ∈ V|

∑k∈{ k|πk ̸=0} MUE
k

∑n∈N ZSat
n

}
(26)

s.t.C1 :

−−−→
LocSat

πt ·
−−−→
LocUE

k∣∣LocSat
πt

∣∣∣∣LocUE
k

∣∣ ⩾ απt ,k , ∀t and πt ̸= 0 (27)

s.t.C2 : ∑
∀k∈K

δπt ,k(t)DUE
πt ,k ≺ VSat

πt , ∀t and πt ̸= 0 (28)

4. Proposed Method
4.1. DRL-Based Method

The SSA problem is established in the context of the ISTN, where the number of
satellites in the network tends to be relatively fixed, but the fluctuation in user numbers
occurs on a smaller time scale. An effective solution should be capable of providing
allocation schemes for varying user counts. In addressing this issue, we experimented
with various traditional methods in this work, but their efficiency was relatively low.
Therefore, considering the dynamic nature of user numbers, we explored the application of
reinforcement learning to tackle this problem. For the MDP process constructed earlier, we
devised a reinforcement learning approach based on small-sample training. This method
can allocate satellite resources for users in networks of different scales, even larger than
those used in training.

We use Ω(a|s) = P(At = a|St = s) to denote the policy of the agent, i.e., the probability
of taking action a given the state s. Pπ

t (s) represents the probability of the agent being in
state s at time t under the policy Ω. Therefore, the state visitation distribution for a policy
is defined as follows:

vΩ(s) = (1 − γ)
∞

∑
t=0

γtPπ
t (s), (29)

where (1 − γ) serves as a normalization factor to ensure the total probability sums to 1.
Due to the presence of actions, we define the action-value function as follows:

Qπ(s, a) = Eπ [Gt|St = s, At = a]. (30)

Furthermore, we define the state-value function, which is the sum of the product of all
action probabilities and their respective values under the policy, as follows:

Vπ(s) = ∑
a∈A

Ω(a|s)Qπ(s, a). (31)

Therefore, when a fixed policy is employed, the value function for taking an action in a
specific state is given by the following:

Qπ(s, a) = r(s, a) + γ ∑
s′∈S

P
(
s′|s, a

)
Vπ
(
s′
)
. (32)
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We optimize L by gradient descent using the double DQN algorithm:

L = r + γQω−

(
s′, arg max

a′
Qω

(
s′, a′

))
. (33)

The procedural flowchart of the methodology we employed is illustrated in Figure 5.

Update the  action-value 
function

Begin

Initialize the network 
environment, including all 

UE and Satllite

Random action selection 
based on the policy.

Execute actions, 

Store action variables in the 
memory space.

Randomly sample from the 
memory space and proceed 

with training.

Update the state-value 
function

Evaluate based on rewards 
and the action-value function.

End

Observe changes in the 
environment and the next 
stat

and update states

Reach the final state 
of the MDP

Figure 5. Proposed algorithm flowchart.

4.2. MCF-Based Method

As a benchmark for evaluating our method, we selected an advanced algorithm in the
field of resource allocation, which is summarized in the flowchart below. This algorithm
represents the state of the art in edge user service allocation algorithms known to date.
In contrast to the algorithms described in the Introduction, this algorithm considers four
types of resources and achieves high-level efficiency in user service allocation at a relatively
low algorithmic complexity. The maximum capacity first (MCF) algorithm assesses users’
computational demands, prioritizes them based on the assessment, and strives to allocate
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users to servers with higher resource utilization [40]. This heuristic algorithm, based on a
greedy approach, has demonstrated outstanding performance in ground networks, making
it a suitable choice for comparison in our work.The scheme’s concrete steps are depicted in
Figure 6.

Begin

Initialize the sets of LEO 
satellites     and users   

Sort the user set      in 
ascending order based on 

resource requirements

Assign the user to the active 
satellite with the maximum 

remaining capacity

End

If there are available active 
satellites

If there are available 
satellites

Assign the user to the 
available satellite with the 

maximum remaining capacity

Y

Y

N

If there are 
unallocated users

Y

N

Choose the user with the 
current highest priority for 

allocation decision

N

Figure 6. MCF flowchart.

5. Results

In this section, we describe the simulation experiments and evaluate the proposed
algorithm based on numerical results. The parameters used during the simulation are
summarized in Table 2. For the simulation, we established a three-dimensional coordinate
system with the Earth’s center as the origin, based on the structure depicted in Figure 2.
We considered a LEO satellite constellation system, where the orbital altitude of the LEO
satellites was set at 1000 km above the Earth’s surface. The constellation comprised 66 LEO
satellites, and each user in the system was guaranteed to be within the coverage range of at
least one satellite.
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To initially validate the effectiveness of the satellite resource model we constructed, we
designed a common pre-experiment for simulation. Two approaches were employed, one
utilizing the five-dimensional resource representation proposed in this paper and the other
using the traditional representation considering only communication and computation
dimensions. The simulation followed the service allocation pattern of traditional cloud
data centers, where server resource amounts are fixed, and the total resource demand for
all services equaled the total server resources. The maximum clique first (MCF) algorithm
was used for simulation, and the results are shown in Figure 7.

Table 2. Variable Description.

Variable Description

LEO satellite bandwidth, WSat
n 500 MHz

LEO satellite altitude, d 1000 km
LEO satellite antenna gain, GSat 40 dBi

UE antenna gain, GUE 30 dBi
Number of UEs, K 100–1000
Number of sats, N 66
Mapping range, α 50

Minimum communication elevation angle β 60◦
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Figure 7. Service and resource match result.

The numerical results indicate that our proposed five-dimensional resource model
outperforms the traditional two-dimensional resource representation in resource allocation
service, and it exhibits superior performance in larger-scale networks.

Subsequently, we conducted simulations for the SSA problem based on the method
proposed in this paper. We generated 10,000 sets of satellite and user data for the training
the reinforcement learning model and 1000 sets for testing and validating the proposed
method and the comparison algorithm. The data during the training process are illustrated
in Figure 8, where “epoch” denotes the number of rounds during the algorithm training
process. To enhance the algorithm’s performance, we set the number of training epochs for
the DRL algorithm to 100 epochs for each training.

From Figure 8, it can be observed that during the training process, the reward consis-
tently increases and reaches convergence after 50 epochs. This indicates the reasonability
of the reward setting and the successful construction of the model. Regarding the three
metrics—user allocation rate, server occupancy, and resource utilization rate—a clear con-
vergence can also be observed in the graph, demonstrating the effectiveness of the proposed
method in addressing the SSA problem.
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Subsequently, we conducted comparative experiments. In these experiments, we used
a dataset with 100 users for training the model and datasets with user counts ranging
from 100 to 1000 for validation.For a convincing simulation, we ensured that each user
would only generate one service demand at any given moment. Additionally, we con-
ducted simulation tests under scenarios where the volume of service demands continued
to increase.
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Figure 8. DRL model training process.

From Figure 9a, it can be observed that as the number of services demand increases,
the proportion of successfully established services gradually decreases. In the range of
100 to 300 services, referred to as the “stable state”, where satellite resources are relatively
sufficient, the three methods exhibit similar success rates. As the number of services further
increases, between 300 and 700, termed the “saturation state”, the proposed method demon-
strates significant superiority, with the ability to allocate an additional 5% of services. When
the number of services exceeds 700, considered the “overload state” due to severe resource
shortages, the three methods show similar performance. Overall, the proposed method
consistently provides a higher service allocation rate relative to the comparison algorithms.

Figure 9b shows that in the stable state, the performance of the MCF algorithm is
similar to the proposed algorithm, with both significantly outperforming the random algo-
rithm. After entering the saturation state, the proposed algorithm gradually exhibits higher
superiority, achieving approximately a 10% improvement compared to the MCF algorithm.

From Figure 9c, it can be observed that in both the stable and saturation states, the pro-
posed algorithm and the MCF algorithm exhibit significant optimization in terms of server
resource utilization. Upon entering the overload state, due to resource scarcity, none of the
three algorithms can further increase resource utilization. Although the difference with
the MCF algorithm is not substantial, the proposed algorithm consistently demonstrates
performance superior to the MCF algorithm in this scenario.
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Figure 9. Experimental results for each algorithm.

6. Conclusions

In this paper, we discuss the SSA problem in the context of ISTN. In this scenario,
LEO satellites provide services to UEs with diverse resource requirements, allocating
resources based on service demands. Subsequently, we have formulated the optimal
service allocation problem under the constraint of limited satellite resources, considering
user allocation rate and satellite resource utilization rate. We model this problem as a
variable-length MDP. To address this problem effectively, we propose an optimization
algorithm based on reinforcement learning. Following the development of the algorithm,
we conducted simulation experiments, using random allocation and the MCF algorithm as
experimental benchmarks. According to the results, our proposed algorithm demonstrates
rapid convergence starting from 50 epochs with outstanding performance. Moreover,
compared to the baseline algorithm, our method exhibits significant advantages in several
aspects including service allocation rate, occupied server number, and resource utilization,
highlighting the superiority and effectiveness of the proposed approach.
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