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Abstract: Investing in stocks and shares is a common strategy to pursue potential gains while
considering future financial needs, such as retirement and children’s education. Effectively managing
investment risk requires thoroughly analyzing stock market returns and making informed predictions.
Traditional models often utilize normal variance distributions to describe these returns. However,
stock market returns often deviate from normality, exhibiting skewness, higher kurtosis, heavier tails,
and a more pronounced center. This paper investigates the Laplace distribution and its generalized
forms, including asymmetric Laplace, skewed Laplace, and the Kumaraswamy Laplace distribution,
for modeling stock market returns. Our analysis involves a comparative study with the widely-used
Variance-Gamma distribution, assessing their fit with the weekly returns of the S&P 500 Index and
its eleven business sectors, drawing parallel inferences from international stock market indices like
IBOVESPA and KOSPI for emerging and developed economies, as well as the 20+ Years Treasury
Bond ETFs and individual stocks across varied time horizons. The empirical findings indicate the
superior performance of the Kumaraswamy Laplace distribution, which establishes it as a robust
alternative for precise return predictions and efficient risk mitigation in investments.

Keywords: asymmetric Laplace distribution; capital market; exceedance probability; Gaussian
distribution; log-likelihood; Nelder–Mead optimization; variance-gamma distribution; skew Laplace
distribution; stock index; Kumaraswamy Laplace distribution

1. Introduction

Forecasting stock market returns relies on advanced financial time series analysis,
with probability distributions serving as fundamental components in statistical modeling
(Taylor 2008). The fitting of parametric distributions to the statistical characteristics of stock
indices returns is integral to econometrics, and holds practical implications for effective
risk management. The identification of an accurate distribution for stock indices returns
establishes a critical benchmark for evaluating investment success, given that decision-
making often hinges on empirical data assessments.

Within the domain of financial economics, a nuanced understanding of stock market
return behavior is pivotal. The interplay between stock prices and returns is instrumental
in determining potential profits for investors. As a result, the financial literature incorpo-
rates sophisticated analytical models that accommodate the non-linear dynamics inherent
in stock price fluctuations (Pokharel et al. 2022). Researchers spanning academia and
trading circles exhibit a pronounced interest in the statistical modeling of financial asset
returns. The initial step in any predictive analysis of significance involves the meticulous
determination of the statistical distribution characterizing the phenomenon under scrutiny.
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While historical suggestions favor normal variance models for stock market return distri-
butions (Praetz 1972), such models often fall short, given the distinctive features of stock
returns—displaying a higher peak and heavier tails than what the Gaussian probability
distribution predicts.

Some challenges within stock index research revolves around the volatility and it has
attracted attention of many scholars who have explored them through the Barndorff-Nielsen
and Shephard (BN-S) model. Both the conventional BN-S model and its generalizations
have proven instrumental in addressing diverse phenomena such as jumps, stochastic
fluctuations, and leverage effects. Interested readers are referred to the pioneering works
by Shephard and Barndorff-Nielsen (2001), Kallsen et al. (2011), and SenGupta (2016).

Furthermore, Durham (2007) emphasizes the critical understanding of volatility dy-
namics and return distribution shapes in finance, proposing the stochastic volatility model
(SV-mix model) as a discrete mixture of normals to capture the conditional distribution.
This approach provides enhanced insight into return distribution tails and demonstrates
empirical superiority over competing models like the single-factor volatility model. In em-
pirical finance, conditional distributions of financial returns are often established through
standardized error distributions within GARCH-type models. Chen (2015) introduced
the maximum entropy (MaxEnt) approach, presenting a method for moment combina-
tion and selection to tackle this distribution-building challenge. This framework proves
valuable in unifying and comparing existing distribution specifications, crafting more
fitting distribution specifications, and illuminating the significance of various moments
in the distribution-building process. This proposition is validated through an empirical
investigation on stock index returns. Nevertheless, amidst these efforts, there remains a
significant quest for precision for uncovering the exact distribution of returns for stock
indices. Finding the exact distribution of returns of stock indices could provide a useful
benchmark to measure the success of investment, since stock investment decisions always
rely on assessments of the distribution of expected stock returns, which could be obtained
from empirical data. Thus, establishing an accurate distribution of stock index returns
stands not only as a scholarly pursuit, but also as a practical necessity for investors seeking
to make informed decisions.

The Laplace and related distributions are obvious candidates to replace Gaussian
models and processes in modeling financial asset returns, because traditional Gaussian
distribution models are frequently not supported by real-world data due to fat tails and
asymmetry prominent in financial data (Franczak et al. 2013). Laplace distributions are
used to fit the marginal distribution function, which will then be employed in a copula
function because they can account for leptokurtic and skewed data (Kotz et al. 2001).
Compared to the Gaussian distribution, it typically better describes stock return behavior
while capturing the greater peak and heavy tails (Nadaf et al. 2022). Recognizing the rarity
of stock market data adhering strictly to a standard Laplace distribution, introducing the
generalized Laplace distribution enhances flexibility for modeling real-life data.

Empirical research underscores the appropriateness of the skew Laplace distribution in
modeling asset returns data, offering a parametric solution to control skewness (Aryal and
Nadarajah 2005). The Kumaraswamy Laplace distribution finds application across diverse
fields, including medicine, environmental science, economics, engineering, and finance,
among others, due to its adaptability (Aryal and Zhang 2016). The asymmetric Laplace
distribution exhibits general asymmetry, high peaks, and heavier tails than the normal
distribution, is used to model data, and has applications in communication, economics,
engineering, and finance (Kotz et al. 2012). The class of asymmetric Laplace distributions
is well suited for modeling phenomena where the variable of interest is the result of a
significant number of independent, random observations, and the empirical distribution
appears to be asymmetric, with a steep peak and heavier tails than those permitted by the
normal distribution (Jayakumar and Kuttykrishnan 2007).

The four-parameter Variance-Gamma (V-G) distribution, proposed by Madan and
Seneta (1990), occupies a prominent position in finance literature as a potent model for
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stock returns. The V-G is a continuous statistical distribution, referred to as the generalized
Laplace or Bessel function distribution. The V-G distribution’s significant characteristic is
that its tails decelerate more slowly than the normal distribution. As a result, it is thought
to be exceptionally well-suited for simulating returns on financial assets and turbulent
wind speeds.

This article delves into the potential of probability distributions within the Laplace
family for modeling stock return predictions, supported by empirical evidence derived
from real market data spanning various indices. Acknowledging the absence of a universal
probability distribution applicable to all financial data types, our objective is to discern
the most suitable distribution for predictive modeling of stock returns. Evaluating the
performance of the Variance-Gamma distribution against four-parameter distributions
like Kumaraswamy Laplace across eleven S&P 500 business sectors and the index as a
whole, our study, based on log-likelihood and AIC criteria, reveals Kumaraswamy Laplace
as a superior alternative to Variance-Gamma for modeling stock index returns in eleven
out of twelve indices, including the S&P 500 index. The Variance-Gamma distribution
marginally performs better than the Kumaraswamy Laplace distribution in fitting the
Consumer Discretionary index. Our research suggests that Kumaraswamy Laplace is a
potent alternative substitute for Variance-Gamma distribution when modeling stock index
returns. This significant finding not only encourages further exploration, but also sparks
discussion within the realm of applied finance.

The remaining part of the manuscript is organized as follows. Section 2 describes vari-
ous generalizations of Laplace distributions, which are used to model the stock return data.
Section 3 discusses the data description and methodology used to derive the conclusion.
Section 4 discusses the analysis of data. This section is further divided into eleven subsec-
tions: each subsection is dedicated to individual business sectors of S&P 500 index and the
index itself. Section 5 outlines the ranking of distributions for modeling stock returns, while
Section 6 explores exceedance probability and return level prediction. Section 7 includes
parallel inferences and some discussions, and Section 8 offers concluding remarks.

2. Generalization of Laplace Distribution

It is of great interest to many investors, portfolio managers, and others to model the
returns of their investments, especially stocks. Like any financial modeling problem, fitting
a model to stock returns (daily, weekly, or monthly) is difficult, as the returns patterns
can drastically change due to many internal and external influences on the stock price
or the market more generally. Probability distribution plays a key role in describing and
predicting real-world phenomena. Probabilistic modeling and statistical analysis of the
behavior of stock market returns are important in finance and economics for assessing risk
analysis and providing a means to identify the pattern from the existing data. There are
hundreds of discrete and continuous probability distributions in the literature. The data
under study may guide us in the choice of distribution among parametric distributions.
For example, choice among symmetric versus asymmetric distribution, long-tailed vs.
short-tailed distribution, distribution with threshold parameter, among others. Among the
prominent probability distributions, the Laplace distribution holds a special place in the
modeling financial data.

The Laplace family distribution, with its heavier tails compared to the normal distri-
bution, better captures extreme events such as market crashes or sudden spikes in stock
market that influence stock returns. Its robustness to outliers, such as corporate scandals
or geopolitical events, enhances modeling reliability. Additionally, its symmetry around
the mean accommodates both positive and negative returns without assuming skewness,
unlike some traditional distributions. With flexibility in modeling various parameters, it
can tailor distributions to fit specific data characteristics. In this article, we will explore the
statistical modeling of stock index data using Laplace and some generalized distributions
that are derived using the genesis of Laplace distribution.
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2.1. Laplace Distribution

The Laplace distribution is named after the French astronomer, mathematician, and
physicist Marquis Pierre Simon de Laplace (1749–1827), and is one of the earliest dis-
tributions introduced in the probability theory. Laplace distribution is also known as
double-exponential distribution, as well as the two-tailed distribution. It is a symmetric
distribution whose tails fall off less sharply than the Gaussian distribution and has a cusp,
discontinuous first derivative at the mean. The Laplace distribution has been quite com-
monly used as an alternative to the normal distribution in robustness studies, including the
stock returns. An in-depth study of the Laplace distribution, including various properties
and applications, is provided in Kotz et al. (2012).

The Laplace distribution has the probability density function (pdf) given by

f (x) =
1

2σ
exp

(
−| x − µ |

σ

)
, (1)

where −∞ < x < ∞, σ > 0 and −∞ < µ < ∞. The expected value, E(X), and the variance,
Var(X), of a Laplace random variable respectively given by

E(X) = µ

Var(X) = 2σ2.

It should be noted that the median and the mode of the Laplace distribution are the
same as its mean µ. Since the generalized distribution allows more flexibility to model
real-world data, there has been a growing interest in developing a generalized class of
distribution by inducting one or more additional parameter(s). Several asymmetry forms
of Laplace distribution have appeared in the literature, including those introduced by
McGill (1962), Holla and Bhattacharya (1968), Lingappaiah (1988), Poiraud-Casanova and
Thomas-Agnan (2000), Kozubowski and Podgorski (2000), Gupta et al. (2002), Kozubowski
and Nadarajah (2008), and Cordeiro and Lemonte (2011), to name a few. A comprehensive
review of variations of the univariate Laplace distribution is provided in Kozubowski and
Nadarajah (2010).

2.2. Asymmetric Laplace Distribution

A random variable X is said to have an asymmetric Laplace distribution (ALD) with
location parameter µ, scale parameter σ > 0, and skewness parameter p ∈ (0, 1), if its
probability density function (pdf) is given by

f (x, µ, σ, p) =
p(1 − p)

σ
exp

{
−ρp

(
x − µ

σ

)}
,

where ρp(u) = u(p − Iu<0) is the loss function, with I(.) denoting the usual indicator
function. The support of the random variable X is the real line and the loss function ρ
assigns weight p or 1 − p to the observations greater or, respectively, less than µ and that
Pr(X ≤ µ) = p. Therefore, the distribution splits along the scale parameter into two parts,
one with probability p to the left, and one with probability (1 − p) to the right. Note that
the ALD is skewed to the left when p > 1

2 , and skewed to the right when p < 1
2 . It should

be noted that for p = 1
2 , the ALD reduces to double exponential distribution with its pdf

f (x, µ, σ,
1
2
) =

1
4σ

exp
(
−| x − µ |

2σ

)
. (2)
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The expected value, E(X), and the variance, Var(X), of X are respectively given by

E(X) = µ +
σ(1 − 2p)
p(1 − p)

Var(X) =
σ2(1 − 2p + 2p2)

(1 − p)2 p2 .

Readers are referred to Yu and Zhang (2005) for details.

2.3. Skew Laplace Distribution

A random variable X is said to have the skew-Laplace distribution if its probability
density function is f (x) = 2g(x)G(λx), where g(x) and G(x) are the pdf and cdf of the
Laplace distribution and λ is the skewness parameter. One can consider the case of λ > 0,
as the corresponding results for λ < 0 can be obtained using the fact that −X has the pdf
given by 2g(x)G(−λX). When λ > 0, the pdf of skew Laplace distribution is given by

f (x) =


1

2σ
exp

{
(1 + λ)(x − µ)

σ

}
, if x ≤ µ,

1
σ

exp
(
− x − µ

σ

){
1 − 1

2
exp

(
−λ(x − µ)

σ

)}
, if x > µ.

(3)

Note that the additional shape parameter λ regulates the skewness, allowing for continuous
variation from symmetric to non-symmetric. The expected value, E(X), and the variance,
Var(X) of X are respectively given by

E(X) = µ + σ

{
1 − 1

(1 + λ)2

}
,

Var(X) =
σ2

(
2 + 8λ + 8λ2 + 4λ3 + λ4

)
(1 + λ)4 .

Readers are referred to Aryal and Nadarajah (2005) and references therein for details.

2.4. Kumaraswamy Laplace Distribution

A random variable X is said to have Kumaraswamy Laplace (Kum-Laplace) distri-
bution if its pdf is given by f (x) = abg(x)G(x)a−1[1 − G(x)a]b−1, where g(x) and G(x)
are the pdf and cdf of Laplace distribution and a > 0 and b > 0 are two additional shape
parameters. The pdf of Kum-Laplace (µ, σ, a, b) distribution is given by

f (x) =
ab

2aσ



exp
(

a(x − µ)

σ

)[
1 − 1

2a exp
(

a(x − µ)

σ

)]b−1

, if x ≤ µ,

exp
(
− x − µ

σ

)[
2 − exp

(
− x − µ

σ

)]a−1

×
[
1 −

{
1 − 1

2 exp
(
− x−µ

σ

)}a]b−1
, if x ≥ µ.

(4)

The Kum-Laplace distribution has a limiting property of

lim
x→µ

f (x) =
ab

2aσ

(
1 − 1

2a

)b−1
.

Readers are referred to Nassar (2016) and Aryal and Zhang (2016) and references therein
for details.
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2.5. Variance-Gamma Distribution

The Variance-Gamma distribution is a continuous probability distribution that is
defined as the normal variance-mean mixture where the mixing density is the gamma
distribution. The tails of the distribution decrease more slowly than the normal distribution.
It is, therefore, suitable to model phenomena where numerically large values are more
probable than is the case for the normal distribution. The pdf of VG distribution is given by

f (x) =
2

σ
√

2πν
1
ν Γ( 1

ν )
eθ x−c

σ2

 |x − c|√
2σ2

ν + θ2

 1
ν −

1
2

K 1
ν −

1
2

 |x − c|
√

2σ2

ν + θ2

σ2

 (5)

with c (location), σ (spread), θ (asymmetry) and ν (shape) parameters. Kν() is the modified
Bessel function of the third kind of order ν. The expected value, E(X), and the variance,
Var(X) of a Variance-Gamma distribution are given by

E(X) = c + θ

Var(X) = σ2 + θ2ν.

Readers are referred to Kotz et al. (2012), Madan and Seneta (1990), and Seneta (2004) for
more details.

3. Data Description and Methodology

Investing in stocks is influenced by various factors, including investor risk profiles,
investment duration, size, asset class characteristics, and the economic foundation of
the stock markets. However, the primary goal remains consistent: optimizing returns.
Achieving optimal returns requires a comprehensive assessment of return behaviors across
different asset classes, investment durations, and market types. This study aims to identify
the most suitable probability distribution to model returns across various asset classes,
durations, and market conditions. The S&P 500 index, consisting of the 500 largest publicly
traded US companies, offers immediate diversification across sectors and historically
strong long-term returns. It provides high liquidity and serves as a benchmark for portfolio
performance, accessible through diverse investment vehicles like mutual funds, ETFs, and
index funds (Cooper and Woglom 2002). Thus, for the illustration purpose, we focused our
study on benchmark S&P 500 index and its eleven business sector indices dataset. These
eleven sectors, which are considered to be constituent business segments of the S&P 500, are
Information Technology, Health Care, Financials, Consumer Discretionary, Communication
Services, Industrials, Consumer Staples, Energy, Utilities, Real State, and Materials. Each
of these business sectors has their own index. Changes in the price of individual stocks
within a sector can influence both the overall performance of that sector index and its
market-capitalization-weight within the S&P 500 index, as sector performance directly
impacts its representation in the broader index (Pokharel and Tsokos 2022). To broaden the
scope of our empirical study, we also fit the chosen distributions for return datasets from
international stock market indices such as IBOVESPA from the emerging market economy
and KOSPI from the developed market economy, along with the 20+ Years Treasury Bond
ETFs and individual stocks across various time horizons, drawing parallel conclusions.

Inspired by Laplace and its generalized forms, known for capturing the heavy-tailed
and asymmetric characteristics of stock index return data, along with robustness to outliers
and empirical backing, we explore the Laplace family as a potential alternative distribution
for modeling stock index returns. Our goal is to identify the optimal probability distribution
within the Laplace family.

Our imperial analysis is based on the raw data obtained from yahoofinance.com for
S&P 500 index and its 11 constituent business segments. The weekly closing price of the
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indices from January 2010 to May 2022 are used to calculate the index return and formally,
the stock return is defined as follows.

rt = ln
(

St

St−1

)
, (6)

where rt is the weekly return and St and St−1 represent the closing price of a stock at time t
and previous week price, respectively.

In many statistical applications, the interest is centered on estimating the parameters
and evaluating the goodness-of-fit of the model to analyze the data on hand. Using
the method of maximum likelihood procedure, we estimated the parameters of each
distribution. That is, if x1, x2, · · · , xn are observations on X, then the parameters of each
distribution are the values maximizing the likelihood function

L(Θ) =
n

∏
i=1

f (xi; Θ)

or the log likelihood function

ℓ(Θ) = ln L(Θ) =
n

∑
i=1

ln f (xi, Θ),

where Θ = (θ1, θ2, · · · , θk)
′
is a vector of parameters specifying the pdf f (.) of a distribution.

We can use the optim function in R (R Core Team 2023) software for direct numerical
maximization of the log-likelihood function. Throughout this article, we will use the Nelder-
Mead optimization method using the AdequacyModel library of the R-package written by
Marinho et al. (Marinho et al. 2022) to estimate the parameters. Our calculations also makes
use of the R packages ald (for Asymmetric Laplace distribution) by Galarza and Lachos
(2021) and VarianceGamma (for Variance-Gamma distribution) by Scott and Dong (2023).

The standard errors of the of the estimated parameters were computed by approx-
imating the covariance matrix of the estimated parameters by the inverse of observed
information matrix. This means, if Θ̂ = (θ̂1, θ̂2, · · · , θ̂k)

′
denote the maximum likelihood

estimate of Θ, then the standard errors are computed by approximating the covariance
matrix of Θ̂ by the inverse of observed information matrix, i.e.,

cov(Θ̂) ≈



∂2ℓ
∂θ2

1

∂2ℓ
∂θ1∂θ2

· · · ∂2ℓ
∂θ1∂θk

∂2ℓ
∂θ2θ1

∂2ℓ
∂θ2

2
· · · ∂2ℓ

∂θ2∂θk

...
...

...
...

∂2ℓ
∂θkθ1

∂2ℓ
∂θkθ2

· · · ∂2ℓ
∂θ2

k



−1

Θ=Θ̂

To compare the fit of different distributions, one can consider the goodness-of-fit
statistics, namely the Akaike information criterion (AIC), Bayesian information criterion
(BIC), Hannan-Quinn information criterion (HQIC), corrected Akaike information criterion
(AICc), consistent Akaike information criterion (CAIC) and Kolmogorov–Smirnov (KS) test
statistics (D), among others. These statistics are given by

AIC = −2ℓ(Θ̂) + 2p,

BIC = −2ℓ(Θ̂) + p ln(n),

HQIC = −2ℓ(Θ̂) + 2p ln[ln(n)],

AICc = −2ℓ(Θ̂) + 2p(p + 1)/(n − p − 1),

CAIC = −2ℓ(Θ̂) + p[ln(n) + 1],
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and

D = max
1≤i≤n

∣∣∣∣F(xi)−
i
n

∣∣∣∣
respectively, where p is the number of parameters, n is the sample size, and the values
x(i)’s are the ordered observations. The smaller these statistics are, the better the fit to the
given data.

Once the values of the parameters are estimated, we can calculate the value of the
log-likelihood statistic, which can then be used to determine the measures of goodness-of-fit
statistic, including the Akaike information criterion (AIC). One can employ the likelihood
ratio (LR) test statistic to check the superiority of a distribution over the other competing
distributions. For example,

H0 : Laplace distribution is appropriate,

Ha : Kumaraswamy Laplace distribution is appropriate.

The LR test statistic for testing H0 versus Ha is

ω = 2(ℓ(φ̂, x)− ℓ(φ̂0, x)),

where φ̂ and φ̂0 are the MLEs under Ha and H0, respectively. The statistic ω is asymptot-
ically distributed as χ2

k , where k is the length of the parameter vector of interest. In this
particular comparison, k = 4 − 2 = 2, the Kumaraswamy Laplace distribution has four
parameters, and the Laplace distribution has only two parameters. We will also provide the
value of the Kolmogorov–Smirnov test statistic and the corresponding p-value for the test.

4. Data Analysis

The weekly closing price of the indices from eleven different business sectors of S&P
500 and S&P 500 itself from January 2010 to May 2022 are collected from Yahoo Finance.
The weekly returns of the indices are calculated using Equation (6). A numerical summary
of the returns data for each sector and S&P 500 is provided in Table 1.

Table 1. Descriptive statistics for the weekly return data.

Business Sector Min. Q1 Median Mean Q3 Max. Skewness Kurtosis

Communication −0.169 −0.012 0.002 0.001 0.015 0.073 −0.930 6.105

Energy −0.421 −0.017 0.003 0.001 0.020 0.196 −2.135 24.565

Cons. Discretionary −0.184 −0.009 0.004 0.002 0.018 0.114 −1.013 6.810

Cons. Staples −0.171 −0.007 0.003 0.002 0.011 0.054 −2.035 16.003

Financials −0.261 −0.013 0.003 0.002 0.018 0.152 −1.186 10.979

Healthcare −0.141 −0.009 0.004 0.002 0.014 0.081 −0.812 5.165

Industrials −0.225 −0.011 0.003 0.002 0.017 0.136 −1.099 9.666

Info. Technology −0.187 −0.009 0.005 0.003 0.017 0.102 −1.114 6.356

Materials −0.235 −0.013 0.002 0.002 0.018 0.164 −0.799 8.563

Real Estate −0.189 −0.011 0.003 0.002 0.016 0.185 −0.529 8.096

Utilities −0.216 −0.011 0.003 0.001 0.014 0.126 −1.419 15.615

S&P 500 −0.198 −0.008 0.004 0.002 0.014 0.099 −1.668 13.458
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Based on the skewness and kurtosis of the financial data, we can descriptively com-
ment on the shape of the distribution. Negative skewness implies that the tail on the left
side of the distribution is longer or fatter than the tail on the right side, whereas positive
skewness is when the tail on the right side of the distribution is longer or fatter than the
left side. Generally, the data distribution is fairly symmetrical if the skewness is between
−0.5 and 0.5. The data are moderately skewed if the skewness is between −1 and −0.5
(negatively skewed) or between 0.5 and 1 (positively skewed). If the skewness is less than
−1 (negatively skewed) or greater than 1 (positively skewed), the data are highly skewed.
We can see from Table 1 that the distribution of the return data for all indices is either
negatively or highly negatively skewed, resulting in a longer or fatter tail on the left side of
the distribution.

Likewise, kurtosis is a statistical measure used to describe the degree to which scores
cluster in the tails or the peak of a frequency distribution. High kurtosis in a data set
is an indicator that data has heavy tails. A kurtosis measure equal to 3 implies that the
distribution is mesokurtic, which is the same as the normal distribution. Negative excess
values of kurtosis (<3) indicate that the distribution is flat and has thin tails. Platykurtic
distributions have negative kurtosis values. Positive excess values of kurtosis (>3) indicate
that the distribution is peaked and possesses thick tails. Leptokurtic distributions have
positive kurtosis values. The kurtosis value presented in Table 1 shows that index returns
have leptokurtic distribution with high peaks and thick tails. This observation also supports
our conclusion that Gaussian probability distribution is not suitable for modeling financial
asset returns.

Further, the Shapiro–Wilk test of normality across all the business sectors of S&P 500 and
S&P 500 itself is conducted. In other words, we have performed the following hypothesis:

H0 : Index returns follow a normal distribution,

Ha : Index returns do not follow a normal distribution.

The corresponding W-statistic and p-value from the Shapiro–Wilk test of normality are
presented in Table 2. The p-values are extremely small, indicating that stock/index returns
data does not support Gaussian probability distribution.

Table 2. Shapiro–Wilk test of normality.

Business Sector W-Statistic p-Value

Communication Service 0.9510 <0.0001

Energy 0.8576 <0.0001

Consumer Discretionary 0.9302 <0.0001

Consumer Staples 0.8876 <0.0001

Financials 0.9131 <0.0001

Healthcare 0.9440 <0.0001

Industrials 0.9176 <0.0001

Information Technology 0.9336 <0.0001

Materials 0.9282 <0.0001

Real Estate 0.9180 <0.0001

Utilities 0.9065 <0.0001

S&P 500 0.8875 <0.0001
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Once we established the fact that index returns do not follow normality, we evaluated
the distributions listed in Section 2 through a goodness-of-fit test using Kolmogorov–
Smirnov test (KS-test). The KS-test is used to identify the goodness-of-fit of the data
towards the specified distribution.

H0 : The index returns data follow a specified distribution,

Ha : The index returns data that do not follow the specified distribution.

Next, we present the findings concerning each of the eleven business sectors within
the S&P 500. Specifically, we outline the estimated parameters, likelihood statistics, and the
goodness-of-fit metrics for the selected distributions described in Section 2.

4.1. Communication Service Sector

The Communication Services Sector includes telecommunication service providers,
such as Wireless Telecom Networks, Media and Entertainment Companies, older radio and
television companies, Newer Interactive Media, and Internet Companies. Examples of large
communication services companies include Alphabet (GOOG) and AT&T (T). The Commu-
nication Services Sector granted a 4.42% annualized return in the last 10 years and is known
as the worst performer sector of S&P 500 over the past 10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Communication Sector data, are provided in Table 3. The number
in the parenthesis in the KS-test column is the p-value of the test. The plots comparing
all five distributions described in Section 2 are given in Figure 1. It is evident that the
Kumaraswamy Laplace distribution fits better than any of the other competing distributions
for the subject data. Specifically, Kumaraswamy Laplace also outperforms the Variance-
Gamma distribution for the subject data.

Figure 1. Fitted distribution of Communication Sector data.
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Table 3. Estimated parameters and goodness-of-fit statistics: Communication Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0018, σ = 0.0168 1546.844 −3089.688 0.0476
(0.1067)

Asy. Laplace µ = 0.0037, σ = 0.0083 1548.404 −3090.808 0.0508
p = 0.5414 (0.0709)

Skew Laplace µ = 0.0069, σ = 0.0173 1550.954 −3095.908 0.0939
λ = −0.1555 (0.0001)

Kum-Laplace µ = 0.0032, σ = 0.0232 1553.259 −3098.518 0.0408,
a = 1.4086, b = 1.5870 (0.2308)

Variance-Gamma c = 0.0032, σ = 0.0658 1374.044 −2740.088 0.0939
θ = 0.0007, ν = 2.5881 (0.0001)

4.2. Energy Sector

The Energy Sector comprises businesses involved in the exploration, production, refin-
ing, and sale of energy resources, including oil and natural gas, as well as companies that
service these industries. The energy sector includes some of the largest energy companies
in the world, such as Exxon Mobil (XOM) and Chevron (CVX). The Energy Sector achieved
a 5.95% annualized return in the last 10 years, and it is known as the best performer sector
of S&P 500 in the years 2021 and 2022 (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Energy Sector data, are provided in Table 4. The number in the
parenthesis in the KS-test column is the p-value of the test. The plots comparing all
five distributions described in Section 2 are given in Figure 2. It is evident that all five
distributions fit well with the subject data. Specifically, Kumaraswamy Laplace also has a
slight edge over the Variance-Gamma distribution for the subject data.
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Figure 2. Fitted distributions of Energy Sector data.
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Table 4. Estimated parameters and goodness-of-fit statistics: Energy Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0030, σ = 0.0251 1287.874 −2571.748 0.0358
(0.3774)

Asy. Laplace µ = 0.0041, σ = 0.0125 1290.349 −2574.698 0.0329
p = 0.5349 (0.4863)

Skew Laplace µ = 0.0041, σ = 0.0252 1290.233 −2574.466 0.0391
λ = −0.0582 (0.2746)

Kum-Laplace µ = 0.0044, σ = 0.0334 1290.459 −2572.918 0.0212
a = 1.3314, b = 1.5333 (0.9328)

Variance-Gamma c = 0.0042, σ = 0.0352 1290.368 −2572.736 0.0248
θ = −0.0036, ν = 0.9708 (0.8204)

4.3. Consumer Discretionary Sector

The Consumer Discretionary Sector, also known as consumer cyclical, encompasses
companies engaged in retail, eCommerce, hotel, luxury goods, leisure, and travel industries.
Unlike consumer staples, these goods and services are often considered non-essential or
discretionary purchases. Some of the major players within this sector include Amazon
(AMZN), Tesla (TSLA), and Home Depot (HD). Over the last decade, the Consumer
Discretionary Sector has delivered an impressive annualized return of 11.91% in the last 10
years (Lazy Portfolio 2023), showcasing its resilience and growth potential in the market.
This sector’s performance underscores its importance in reflecting consumer sentiment,
economic trends, and evolving consumer preferences. As consumer behavior continues
to evolve, driven by technological advancements and changing lifestyles, the Consumer
Discretionary Sector remains dynamic and poised for further growth opportunities.

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Consumer Discretionary Sector data, are provided in Table 5. The
number in the parenthesis in the KS-test column is the p-value of the test. The plots
comparing all five distributions described in Section 2 are given in Figure 3.
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Figure 3. Fitted distributions of Consumer Discretionary Sector data.
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Table 5. Estimated parameters and goodness-of-fit statistics: Cons. Discretionary Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0036, σ = 0.0180 1502.377 −3000.754 0.0500
(0.0784)

Asy. Laplace µ = 0.0064,σ = 0.0089 1504.738 −3000.476 0.0489
p = 0.5511 (0.0903)

Skew Laplace µ = 0.0062,σ = 0.0182 1505.220 −3004.440 0.0502
λ = −0.0895 (0.0765)

Kum-Laplace µ = 0.0060, σ = 0.0492 1512.373 −3016.746 0.0311
a = 2.8722, b = 5.3012 (0.5593)

Variance-Gamma c = 0.0105,σ = 0.0235 1512.663 −3017.326 0.0256
θ = −0.0080, ν = 0.5386 (0.7904)

It can be observed that Variance-Gamma seems to be a slightly better fit than other
distributions. However, the Kumaraswamy Laplace distribution also fits equally well.

4.4. Consumer Staples Sector

The Consumer Staples Sector includes companies involved in food, beverages, and
tobacco, as well as the producers of household goods and personal products. Since these
are goods and services that consumers need, regardless of their current financial condition,
consumer staples are considered to be a defensive sector (i.e., recession-proof industries).
The largest Consumer Staples companies include Walmart (WMT), Procter & Gamble
(PG), and The Coca-Cola Company (KO). The Consumer Staples Sector delivered a 10.76%
annualized return in the last 10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Consumer Staples sector data, are provided in Table 6. The number
in the parenthesis in the KS-test column is the p-value of the test. The plots comparing all
five distributions described in Section 2 are given in Figure 4. Specifically, Kumaraswamy
Laplace also outperforms the Variance-Gamma distribution for the subject data.

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

 weekly return (rt)

d
e
n
s
it
y

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0

−0.15 −0.10 −0.05 0.00 0.05

0
1
0

2
0

3
0

4
0 Laplace

Asymmetric − Laplace

skew − Laplace

Kumaraswamy − Laplace

Variance−Gamma

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 weekly return (rt)

C
D

F

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
D

F

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

−0.15 −0.10 −0.05 0.00 0.05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 Empirical

Laplace

Asymmetric − Laplace

skew − Laplace

Kumaraswamy − Laplace

Variance−Gamma

Distribution of Consumer Staples Sector Weekly Return 

Figure 4. Fitted distributions of Consumer Staples Sector data.
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Table 6. Estimated parameters and goodness-of-fit statistics: Cons. Staples Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0031, σ = 0.0122 1755.652 −3507.304 0.0372
(0.3321)

Asy. Laplace µ = 0.0055, σ = 0.0059 1763.589 −3521.178 0.0338
p = 0.5786 (0.4496)

Skew Laplace µ = 0.0031, σ = 0.0122 1758.612 −3511.224 0.0405
λ = −0.0695 (0.2390)

Kum-Laplace µ = 0.0063, σ = 0.0195 1766.554 −3525.108 0.0194
a = 1.5573, b = 2.2421 (0.9675)

Variance-Gamma c = 0.0094, σ = 0.0154 1758.131 −3508.262 0.0291
θ = −0.0078, ν = 0.2978 (0.6454)

4.5. Financial Sector

The financial sector includes a wide range of financial companies, including invest-
ment banks, commercial banks, insurance companies, financial service providers, asset
management companies, financial brokers, etc. The financial sector includes some of the
largest financial companies in the world like Visa (V), JPMorgan Chase (JPM), and Bank
of America (BAC). The Financial Sector delivered a 12.01% annualized return in the last
10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Financial Sector data, are provided in Table 7. The number in the
parenthesis in the KS-test column is the p-value of the test. The plots comparing all five
distributions described in Section 2 are given in Figure 5. The Kumaraswamy Laplace
distributions outperform the other generalized Laplace distributions. It also has a slight
edge over the Variance-Gamma distribution for the subject data.
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Figure 5. Fitted distributions of Financial Sector data.
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Table 7. Estimated parameters and goodness-of-fit statistics: Financial Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0028, σ = 0.0208 1408.804 −2813.608 0.0342
(0.4358)

Asy. Laplace µ = 0.0075, σ = 0.0102 1412.322 −2818.644 0.0399
p = 0.5675 (0.2552)

Skew Laplace µ = 0.0058, σ = 0.0209 1411.620 −2817.240 0.0440
λ = −0.0788 (0.1624)

Kum-Laplace µ = 0.0078, σ = 0.0367 1414.784 −2821.568 0.0204
a = 1.7552, b = 2.4667 (0.9497)

Variance-Gamma c = 0.0074, σ = 0.0281 1414.534 −2821.068 0.0228
θ = −0.0056, ν = 0.7351 (0.8894)

4.6. Healthcare Sector

The Healthcare Sector consists of the stocks of companies involved in a range of
health-related industries, including but not limited to pharmaceutical producers, medical
devices, healthcare service providers, biotech stocks, insurance companies, etc. Examples
of large healthcare companies include UnitedHealth Group (UNH) and Pfizer (PFE). The
Healthcare Sector delivered a 14.85% annualized return in the last 10 years, and is known as
the second-best performer sector of S&P 500 only after the Information Technology Sector
(Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Healthcare Sector data, are provided in Table 8. The number in the
parenthesis in the KS-test column is the p-value of the test. The plots comparing all five
distributions described in Section 2 are given in Figure 6. It can be observed that the
Kumaraswamy Laplace distribution outperforms all other generalizations of the Laplace
family. It also outperforms the Variance-Gamma distribution for the subject data.
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Figure 6. Fitted distributions of Healthcare Sector data.
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Table 8. Estimated parameters and goodness-of-fit statistics: Healthcare Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0038, σ = 0.0153 1564.960 −3125.920 0.0402
(0.2605)

Asy. Laplace µ = 0.0074, σ = 0.0074 1572.279 −3138.558 0.0403
p = 0.5841 (0.2595)

Skew Laplace µ = 0.0067, σ = 0.0155 1572.160 −3138.320 0.0696
λ = −0.1172 (0.0045)

Kum-Laplace µ = 0.0076, σ = 0.0251 1575.184 −3142.368 0.0204
a = 1.6091, b = 2.2829 (0.8521)

Variance-Gamma c = 0.0076, σ = 0.0343 1515.385 −3022.770 0.0774
θ = −0.0060,ν = 2.1546 (0.0011)

4.7. Industrials Sector

The Industrials Sector may include businesses that are involved in a wide range of
industries, including industrial machinery construction and engineering, aerospace and
defense, electrical equipment, etc. Some of the largest industrial companies in the world
include Boeing (BA), Honeywell (HON), and Union Pacific (UNP). The Industrials Sector
delivered a 12.11% annualized return in the last 10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Industrial Sector data, are provided in Table 9. The number in the
parenthesis in the KS-test column is the p-value of the test. The plots comparing all five
distributions described in Section 2 are given in Figure 7. It can be observed that the
Kumaraswamy Laplace distribution outperforms all other generalizations of the Laplace
distribution. It also outperforms the Variance-Gamma distribution for the subject data.
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Figure 7. Fitted distributions of Industrials Sector data.
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Table 9. Estimated parameters and goodness-of-fit statistics: Industrials Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0033, σ = 0.0187 1477.463 −2950.926 0.0344
(0.4275)

Asy. Laplace µ = 0.0046, σ = 0.0093 1479.421 −2952.842 0.0349
p = 0.5360 (0.4074)

Skew Laplace µ = 0.0046, σ = 0.0188 1479.536 −2953.072 0.0361
λ = −0.0664 (0.3673)

Kum-Laplace µ = 0.0050, σ = 0.0312 1481.504 −2955.008 0.0273
a = 1.7082, b = 2.1339 (0.7221)

Variance-Gamma c = 0.0121, σ = 0.0322 1424.007 −2840.014 0.1013
θ = −0.0103, ν = 0.1184 (0.0001)

4.8. Information Technology Sector

The Information Technology (IT) Sector includes multiple sub-sectors and industries,
from semiconductor producers to software and hardware providers, as well as internet
stocks and cloud computing. The sector includes companies with some of the largest
market capitalizations in the world, such as Apple (AAPL), Microsoft (MSFT), Accenture
Plc (ACN), Meta Platforms, Inc (META), etc. It had a 17.46% annualized return in the
last 10 years, and is known as the best performer sector of S&P 500 over the past 10 years
(Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Information Technology Sector data, are provided in Table 10. The
number in the parenthesis in the KS-test column is the p-value of the test. The plots
comparing all five distributions described in Section 2 are given in Figure 8. Note that
the Kumaraswamy Laplace distribution fits the data better than other generalizations
of Laplace distribution. It also outperforms the Variance-Gamma distribution for the
subject data.
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Figure 8. Fitted distributions of Information Technology Sector data.
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Table 10. Estimated parameters and goodness-of-fit statistics: IT Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0051, σ = 0.0186 1482.902 −2961.804 0.0323
(0.5077)

Asy. Laplace µ = 0.0096, σ = 0.0089 1492.046 −2978.092 0.0317
p = 0.5907 (0.5332)

Skew Laplace µ = 0.0051, σ = 0.0186 1485.442 −2964.884 0.0209
λ = −0.0629 (0.2726)

Kum-Laplace µ = 0.0106, σ = 0.0313 1492.893 −2977.786 0.0208
a = 1.6333, b = 2.4462 (0.9423)

Variance–Gamma c = 0.0096, σ = 0.0427 1437.612 −2867.224 0.06811
θ = −0.0072, ν = 2.0281 (0.0049)

4.9. Materials Sector

The Materials Sector includes businesses involved in the manufacture of construction
materials, chemicals, paper, glass, companies specializing in making paper and forest
products metals, and mining companies. Some of the largest materials companies in the
world include DuPont (DD) and The Sherwin-Williams Company (SHW). The Materials
Sector delivered a 9.78% annualized return in the last 10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Materials Sector data, are provided in Table 11. The plots comparing all
five distributions described in Section 2 are given in Figure 9. Note that Laplace distribution
and its generalizations fit better than the Variance-Gamma distribution for the Materials
Sector data. The Kumaraswamy Laplace outperforms the rest of the other distributions
within the Laplace family.
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Figure 9. Fitted distributions of Materials Sector data.
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Table 11. Estimated parameters and goodness-of-fit statistics: Materials Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0017, σ = 0.0207 1412.930 −2821.860 0.0341
(0.4384)

Asy. Laplace µ = 0.0019, σ = 0.0104 1412.963 −2819.926 0.0325
p = 0.5026 (0.5018)

Skew Laplace µ = 0.0026, σ = 0.0207 1413.102 −2820.204 0.0209
λ = −0.0265 (0.9405)

Kum-Laplace µ = 0.0016, σ = 0.0376 1415.617 −2823.234 0.0208
a = 1.9667,b = 2.2985 (0.9423)

Variance-Gamma c = 0.0216, σ = 0.0776 1032.473 −2056.946 0.2476
θ = −0.0193, ν = 0.1184 (0.0001)

4.10. Real Estate Sector

The Real Estate Sector includes companies that develop or manage real estate property.
This sector also includes real estate investment trusts (REITS), which are companies that
purchase multiple income-producing assets, such as office buildings and hotels. Some
of the largest real estate companies include American Tower Corp. (AMT) and Simon
Property Group (SPG). The Real Estate Sector delivered a 7.42% annualized return in the
last 10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Real Estate Sector data, are provided in Table 12. The plots comparing
all five distributions described in Section 2 are given in Figure 10. It can be observed that the
Laplace distribution and its generalizations fit better than the Variance-Gamma distribution
for the Real Estate Sector data. The Kumaraswamy Laplace outperforms the rest of the
other distributions within the Laplace family.
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Figure 10. Fitted distributions of Real Estate Sector data.
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Table 12. Estimated parameters and goodness-of-fit statistics: Real Estate Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0031, σ = 0.0188 1474.430 −2944.860 0.0341
(0.4717)

Asy. Laplace µ = 0.0062, σ = 0.0092 1477.283 −2948.566 0.0296
p = 0.5609 (0.6216)

Skew Laplace µ = 0.0043, σ = 0.0189 1476.053 −2946.106 0.0243
λ = −0.0519 (0.8390)

Kum-Laplace µ = 0.0063, σ = 0.0318 1477.655 −2947.310 0.0231
a = 1.6941, b = 2.2528 (0.8814)

Variance–Gamma c = 0.0116, σ = 0.0375 1376.423 −2744.846 01369
θ = −0.0086, ν = 0.1184 (0.0001)

4.11. Utilities Sector

The Utilities Sector includes companies that provide customers with utility services,
such as water, electricity, and gas. Since utilities are considered to be essentials for daily
living, the utility sector is also generally seen as a defensive sector. Some of the largest
utility companies include NextEra Energy (NEE), Duke (DUK), and The Southern Com-
pany (SO). The Utility Sector delivered a 10.87% annualized return in the last 10 years
(Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics, including the KS-test
statistics (D) for the Utilities Sector data, are provided in Table 13. The plots comparing all
five distributions described in Section 2 are given in Figure 11. It can be observed that the
Laplace distribution and its generalizations fit better than the Variance-Gamma distribution
for the Utilities Sector data. In particular, the Kumaraswamy Laplace outperforms the other
competing distributions.
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Figure 11. Fitted distributions of Utility Sector data.
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Table 13. Estimated parameters and goodness-of-fit statistics: Utilities Sector.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0028, σ = 0.0157 1593.560 −3183.120 0.0429
(0.1843)

Asy. Laplace µ = 0.0065, σ = 0.0076 1598.980 −3191.960 0.0356
p = 0.5815 (0.3842)

Skew Laplace µ = 0.0044, σ = 0.0157 1597.486 −3188.972 0.0409
λ = −0.0747 (0.2277)

Kum-Laplace µ = 0.0084, σ = 0.0246 1604.116 −3200.232 0.0274
a = 1.4908, b = 2.2459 (0.7166)

Variance–Gamma c = 0.0044, σ = 0.0358 1549.869 −3091.738 0.0790
θ = −0.0032, ν = 2.0000 (0.0006)

4.12. S&P 500 Index

The first S&P Index was launched in 1923 as a joint project by the Standard Statistical
Bureau and Poor’s Publishing. The original index covered 233 companies in 26 different
industries. The two companies merged in 1941 to become Standard and Poor’s. The
Standard and Poor’s 500, or simply the S&P 500, is a stock market index tracking the stock
performance of 500 large companies listed on stock exchanges in the United States. It is one
of the most commonly followed equity indices in the world. As of 31 December 2021, more
than USD 7.1 trillion was invested in assets tied to the performance of the index. The S&P
500 index delivered a 12.46% annualized return in the last 10 years (Lazy Portfolio 2023).

The estimated parameters and the goodness-of-fit statistics for the S&P 500 Index data
are provided in Table 14. The plots comparing all five distributions described in Section 2
are given in Figure 12. It can be observed that a generalized Laplace distribution fits better
than the Variance-Gamma distribution to model the S& P Index data.
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Figure 12. Fitted distributions of S&P 500 Index data.
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Table 14. Estimated parameters and goodness-of-fit statistics: S&P 500 Index.

Distribution Parameters Log-Likelihood AIC KS-Test

Laplace µ = 0.0039, σ = 0.0149 1625.187 -3246.374 0.0405
(0.2376)

Asy. Laplace µ = 0.0076, σ = 0.0071 1633.946 −3261.892 0.0228
p = 0.5947 (0.8885)

Skew Laplace µ = 0.0039, σ = 0.0149 1628.095 −3250.190 0.0409
λ = −0.0630 (0.2277)

Kum-Laplace µ = 0.0098, σ = 0.0241 1635.519 −3263.083 0.0274
a = 1.5227, b = 2.4292 (0.9061)

Variance–Gamma c = 0.0116, σ = 0.0188 1623.680 −3239.360 0.0315
θ = −0.0095, ν = 0.3288 (0.5404)

5. Ranking Probability Distributions for Modeling Stock Returns

It would be ideal if one could discover the probability distribution that universally
fits all types of asset returns. However, practically, it is hard to find such one universal
distribution that can explain the probabilistic characteristics of various types of asset returns.
In this empirical study, we examined the goodness-of-fit of the five popular Laplace family
probability distributions among various stock indices of S&P 500 based on p-value criteria.
We discovered that out of five distributions, only two of them, namely, Laplace (two
parameters) and the Kumaraswamy Laplace (four parameters) distributions, fit the returns
data from all eleven indices, including the benchmark index S&P 500. Our main objective
of this study is to compare the performance of the four-parameter probability distributions:
the popular Variance-Gamma with Laplace distribution and its generalizations. It is
interesting to note that in eleven out of twelve indices, Kumaraswamy Laplace (Kum-
Laplace) outperforms the VG distribution, except for the Consumer Discretionary index.
Table 15 and 16 provide the ranking of the most appropriate distribution to model index
returns data based on Kolmogorov–Smirnov (K-S) p-value criteria. The null hypothesis of
the subject of study is that the returns data follows a specified distribution, whereas the
alternative hypothesis says otherwise.

Table 15. Rank of goodness-of-fit of the distribution based on KS p-values.

Index Distribution KS p-Value Fail to Reject H0? Rank

Communication Service Kum-Laplace 0.2308 Yes 1
Laplace 0.1067 Yes 2
Asy. Laplace 0.0709 Yes 3
Skew Laplace 0.0001 No 4
Variance-Gamma 0.0001 No 5

Energy Kum-Laplace 0.9328 Yes 1
Variance-Gamma 0.8204 Yes 2
Asy. Laplace 0.4863 Yes 3
Laplace 0.3774 Yes 4
Skew Laplace 0.2746 Yes 5

Consumer Discretionary Variance-Gamma 0.7904 Yes 1
Kum-Laplace 0.5593 Yes 2
Asy. Laplace 0.0903 Yes 3
Laplace 0.0784 Yes 4
Skew Laplace 0.0765 Yes 5
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Table 15. Cont.

Index Distribution KS p-Value Fail to Reject H0? Rank

Consumer Staples Kum-Laplace 0.9675 Yes 1
Variance-Gamma 0.6454 Yes 2
Asy. Laplace 0.4496 Yes 3
Laplace 0.2390 Yes 4
Skew Laplace 0.3321 Yes 5

Financials Kum-Laplace 0.9497 Yes 1
Variance-Gamma 0.8894 Yes 2
Laplace 0.4358 Yes 3
Asy. Laplace 0.2552 Yes 4
Skew Laplace 0.0162 No 5

Healthcare Kum-Laplace 0.8521 Yes 1
Asy. Laplace 0.2595 Yes 2
Laplace 0.2605 Yes 3
Skew Laplace 0.0045 No 4
Variance-Gamma 0.0011 No 5

Table 16. Rank of goodness-of-fit of the distribution based on KS p-values (continued).

Index Distribution KS p-Value Fail to Reject H0? Rank

Industrials Kum-Laplace 0.7221 Yes 1
Laplace 0.4275 Yes 2
Asy. Laplace 0.4074 Yes 3
Skew Laplace 0.3673 Yes 4
Variance-Gamma 0.0001 No 5

Information Technology Kum-Laplace 0.9423 Yes 1
Asy. Laplace 0.5332 Yes 2
Laplace 0.5077 Yes 3
Skew Laplace 0.2726 Yes 4
Variance-Gamma 0.0049 No 5

Materials Kum-Laplace 0.9423 Yes 1
Skew Laplace 0.9405 Yes 2
Asy. Laplace 0.5018 Yes 3
Laplace 0.4384 Yes 4
Variance-Gamma 0.0001 No 5

Real Estate Sector Kum-Laplace 0.8814 Yes 1
Skew Laplace 0.8390 Yes 2
Asy. Laplace 0.6216 Yes 3
Laplace 0.4717 Yes 4
Variance-Gamma 0.0001 No 5

Utilities Sector Kum-Laplace 0.7166 Yes 1
Asy. Laplace 0.3842 Yes 2
Skew Laplace 0.2277 Yes 3
Laplace 0.1843 Yes 4
Variance-Gamma 0.0006 No 5

S&P 500 Index Kum-Laplace 0.9061 Yes 1
Asy. Laplace 0.8885 Yes 2
Variance-Gamma 0.5404 Yes 3
Laplace 0.2376 Yes 4
Skew Laplace 0.2277 Yes 5

The rank of the specified distribution is 1 through 5, where Rank 1 refers to the most
appropriate and Rank 5 is the least appropriate distribution for index returns modeling.
The distributions without rank are not appropriate for modeling returns datasets from the
specified index in a given period. It is found that Kumaraswamy Laplace distribution is
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the number one probability distribution among the Laplace family of distributions, and
the Variance-Gamma distribution fails measurably, especially for Communication Services,
Healthcare, Industrial, Information Technology, Materials, Real Estate, and Utilities sectors
of S&P 500. The rank of the distributions provides very useful information for financial
analysts concerning their application in modeling returns, while the correct choice of the
distribution for modeling leads to excellence in prediction.

6. Exceedance Probability Prediction

The exceedance probability is the probability of a random variable exceeding a certain
threshold. The complement of exceedance probability is often called the non-exceedance
probability. Based on the choice of probability distribution, we may obtain a different
exceedance probability. In Table 17, we present the exceedance probability at different
return levels of the S&P data using the distributions discussed in Section 2.

Table 17. Exceedance Probability for S&P 500 Index.

Return Level (%) 0 0.01 0.02 0.03 0.04 0.05

Observed Probability 0.604 0.349 0.135 0.053 0.023 0.011

Laplace 0.615 0.332 0.169 0.087 0.044 0.023

Bias −0.011 0.017 −0.034 −0.034 −0.021 −0.012

Asy. Laplace 0.615 0.332 0.144 0.062 0.027 0.012

Bias −0.011 0.017 −0.009 −0.009 −0.004 −0.001

Skew Laplace 0.582 0.323 0.158 0.077 0.037 0.018

Bias 0.022 0.026 −0.023 −0.024 −0.014 −0.007

Kum-Laplace 0.604 0.348 0.146 0.058 0.022 0.008

Bias 0.000 0.001 −0.011 −0.005 0.001 0.003

Variance-Gamma 0.580 0.351 0.159 0.059 0.019 0.006

Bias 0.024 −0.002 −0.024 −0.006 0.004 0.005

We can see from Table 17 that Kumaraswamy Laplace has a low bias as compared to
the Variance-Gamma distribution while predicting the exceedance probability of different
return levels of S&P 500. These findings also attest that Kum-Laplace outperforms VG
distribution while fitting returns data. One can compute the exceedance probability of all
eleven business segments.

7. Parallel Inferences and Discussions

We expanded our empirical investigations to assess the goodness-of-fit of all five
chosen probability distributions on returns from stock indices across both emerging and
developed markets. Our analysis focused on the IBOVESPA from Brazil and the KOSPI
from Korea, spanning from January 2010 to May 2022 and encompassing daily, weekly,
and monthly stock returns data. Consistently, our findings underscore the superior fit of
the Kumaraswamy Laplace distribution compared to the other distributions examined.
This trend persisted when the distribution was applied to various assets, such as the 20+
Year Treasury Bond ETF (TLT), as well as prominent individual stocks like Amazon and
Apple. Specifically, when examining the KOSPI index on a daily, weekly, and monthly
basis, we found KS statistics p-values of 0.6130, 0.8885, and 0.9687, respectively. Likewise,
for the IBOVESPA index, the p-values for KS statistics were 0.6308, 0.5577, and 0.9448,
corresponding to the daily, weekly, and monthly stock index returns dataset, respectively.
Similarly, for individual stocks Amazon and Apple, the p-values over daily, weekly, and
monthly were (0.5327 and 0.1848), (0.8096 and 0.7015), and (0.8084 and 0.2919), respectively.
For the 20+ Year Treasury Bond ETF (TLT), based on available weekly and monthly data, KS
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statistics p-values were 0.2965 and 0.3228. Additionally, our study involved calculating log-
likelihood functions and goodness-of-fit statistics, consistently favoring the Kumaraswamy
Laplace distribution over other competitive distributions considered.

The empirical evidence across diverse markets, asset classes, and timeframes reaffirms
the superiority of the Kumaraswamy Laplace distribution in modeling stock returns data.
Consequently, it emerges as a robust alternative to other Laplace family distributions,
including the Variance-Gamma distribution.

Probability distributions play a pivotal role in modeling potential returns within asset
portfolios. The Kumaraswamy Laplace distribution (Kum-Laplace) offers a powerful tool
for enhancing portfolio construction and risk analysis. By employing this distribution, in-
vestors can effectively model the distribution of portfolio returns, amalgamating individual
asset return distributions for comprehensive evaluations of expected returns and inherent
variability (risk). Furthermore, the Kum-Laplace distribution facilitates the computation
of various risk metrics, including standard deviation, value-at-risk (VaR), and conditional
value-at-risk (CVaR), thereby providing valuable insights into portfolio downside risk
exposure across a spectrum of probability scenarios.

Furthermore, probability distributions seamlessly integrate into portfolio optimization
models, allowing for the creation of portfolios that maximize returns while maintaining
predetermined risk levels or minimize risk while targeting specific return levels. Modern
portfolio theory serves as a prime example, leveraging probability distributions to identify
optimal asset allocations within portfolios. Consequently, the Kum-Laplace probability
distribution offers a robust framework for understanding uncertainty in financial markets,
empowering investors to make informed decisions regarding portfolio construction and
risk management.

8. Concluding Remarks

Modeling and predicting stock returns are pivotal tasks in the financial market, of-
fering investors valuable guidance to mitigate risks in their portfolio management. The
Laplace distribution has emerged as a favored alternative to the normal variance model,
owing to its adept fit with financial data and its effective portrayal of underlying behaviors.
However, the quest for a universal distribution capable of fitting all forms of financial data
proves virtually unattainable, particularly when dealing with complex natural phenomena
like stock returns. In this context, both Laplace and generalized Laplace probability distri-
butions play crucial roles in modeling asset returns. The four-parameter Variance-Gamma
distribution stands out as the preferred choice for modeling stock returns, extensively
examined in finance and economics literature.

In this article, we conducted an empirical investigation using real market data from the
S&P 500 index and its eleven business sector indices, employing Laplace distributions and
their generalized forms, which encompass both the four-parameter Variance Gamma and
the Kumaraswamy Laplace distribution. Additionally, we evaluated the goodness-of-fit of
these distributions on returns across various assets class, investment durations, and market
types, including 20+ Years Treasury Bond ETFs, individual stocks, and international stock
indices such as IBOVESPA and KOSPI.

Our analysis indicates that the Kumaraswamy Laplace distribution is the only distri-
bution consistently fitting stock/index returns data across diverse assets class, investment
durations, and market types. Given the compelling evidence presented, the superior per-
formance of the Kumaraswamy Laplace distribution over other choices establishes, it as a
robust alternative for practitioners aiming for precise return predictions and efficient risk
mitigation in their investments.
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