
Citation: Mochurad, L. A Comparison

of Machine Learning-Based and

Conventional Technologies for Video

Compression. Technologies 2024, 12, 52.

https://doi.org/10.3390/

technologies12040052

Academic Editor: George F. Fragulis

Received: 5 March 2024

Revised: 4 April 2024

Accepted: 12 April 2024

Published: 15 April 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

A Comparison of Machine Learning-Based and Conventional
Technologies for Video Compression
Lesia Mochurad

Department of Artificial Intelligence, Lviv Polytechnic National University, 79905 Lviv, Ukraine;
lesia.i.mochurad@lpnu.ua; Tel.: +380-97-868-30-14

Abstract: The growing demand for high-quality video transmission over bandwidth-constrained
networks and the increasing availability of video content have led to the need for efficient storage
and distribution of large video files. To improve the latter, this article offers a comparison of six
video compression methods without loss of quality. Particularly, H.255, VP9, AV1, convolutional
neural network (CNN), recurrent neural network (RNN), and deep autoencoder (DAE). The proposed
decision is to use a dataset of high-quality videos to implement and compare the performance of
classical compression algorithms and algorithms based on machine learning. Evaluations of the
compression efficiency and the quality of the received images were made on the basis of two metrics:
PSNR and SSIM. This comparison revealed the strengths and weaknesses of each approach and pro-
vided insights into how machine learning algorithms can be optimized in future research. In general,
it contributed to the development of more efficient and effective video compression algorithms that
can be useful for a wide range of applications.

Keywords: streaming video; codecs; convolutional neural networks; recurrent neural networks; deep
autoencoders; video compression efficiency metrics

1. Introduction

Most of the data generated in the modern world are video [1,2]. The task of video
compression has become an integral part of modern multimedia communication systems [3].
The ability to compress videos without losing quality allows for efficient storage, transfer,
and playback of videos. For many years, various classic video compression algorithms such
as H.264, HEVC, and AV1 have been developed and widely used. These algorithms use
intra-frame prediction, inter-frame prediction, and encoding to reduce the size of video files
with minimal perceptible quality degradation [4]. By the term “with minimal perceptible
quality degradation”, we mean that after applying appropriate methods and technologies,
data can be stored or transmitted with high quality, close to the original.

One of the main challenges in video compression is finding the optimal compromise
between compression efficiency and video quality. Classic video compression algorithms
have been optimized over the years to achieve a good balance between these two factors.
However, machine learning algorithms offer a new perspective on the video compression
task, which will help achieve better results.

The growing demand for higher video resolution and frame rates has led to the need
for more efficient compression methods [5]. Using machine learning algorithms for video
compression is a promising solution to these problems because these algorithms can learn
to encode videos more efficiently and adapt to different video types and characteristics [6].

Recent studies have demonstrated the potential of machine learning algorithms for
solving this problem. Deep neural networks can generate high-quality frames that visu-
ally do not differ from the original, even with high degrees of compression [7]. Machine
learning-based algorithms that exploit the spatial and temporal correlations of video frames
can achieve significant compression gains over classical algorithms [8]. As noted in [9],

Technologies 2024, 12, 52. https://doi.org/10.3390/technologies12040052 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies12040052
https://doi.org/10.3390/technologies12040052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-4957-1512
https://doi.org/10.3390/technologies12040052
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies12040052?type=check_update&version=1

Technologies 2024, 12, 52 2 of 21

reinforcement learning methods can be used to optimize the trade-off between compression
efficiency and image quality, resulting in more adaptive and flexible video compression
algorithms. The latter emphasizes the relevance of machine learning algorithms for improv-
ing video compression efficiency. However, it is necessary to compare classical algorithms
and machine learning-based algorithms to determine the most effective approach for video
compression with minimal quality degradation.

The novelty of this research is to compare classical video compression algorithms with
machine learning-based algorithms for the task of compressing video with minimal quality
degradation. While classical video compression algorithms have been widely used for many
years, machine learning algorithms are relatively new and still under development [10].

The purpose of this study is to explore the potential advantages and disadvantages of
both types of methods and determine the most relevant one.

The main contribution of this article can be summarized as follows:

1. This research applies classical methods and machine learning algorithms for video
compression with minimal quality degradation;

2. Six methods are compared: H.265, VP9, AV1, CNN, RNN, and DAE based on several
metrics, including compression ratio, computational complexity, visual quality, and
subjective user experience;

3. Through extensive testing, we analyze the trade-offs between the performance indica-
tors for each algorithm, as well as their suitability for different cases.

In this article, we will present the following sections: We analyze the state-of-the-
art literature in Section 2. Section 3 describes classical video compression algorithms
and machine learning algorithms for the task of video compression with minimal quality
degradation. Section 4 presents the dataset used and provides a detailed analysis of the
implementation of the methods under consideration. Section 5 presents the numerical
experiments conducted to verify the effectiveness of the compression and visual qual-
ity assessment methods and comprehensively compares them. Finally, in Section 6, we
summarize our results and discuss potential directions for future research.

2. Related Work

Due to recent advances in machine learning, there is a growing interest in exploring
the use of these techniques for video compression. Machine learning algorithms show
significant potential in a wide range of areas, including natural language processing,
speech recognition, and computer vision [11]. Potential benefits of using machine learning
for video compression include increased compression efficiency, reduced computational
complexity, and improved subjective quality of compressed video.

The development of digital technologies has led to the emergence of new means
of disseminating information and knowledge around the world via the Internet. While
many social networks focus primarily on sharing images and videos, video streaming
platforms have recently experienced a significant increase in popularity. As noted in [12],
streaming video and its downloads accounted for more than 82% of all consumer Internet
traffic in 2022.

Compared to photos and other multimedia content, video contains a significant
amount of data. Hence, video coding plays a key role in minimizing the size of dig-
ital video by exploiting its inherent redundancy [13]. Video coding technologies help
compress large video files by eliminating redundant data, making the storage, transfer, and
streaming of video content more efficient. Using these methods, critical factors such as
uninterrupted streaming over any network, as well as quality, compatibility, and storage
issues, can be easily addressed.

Currently, most video compression algorithms use traditional methods such as trans-
form coding, quantization, and entropy coding. While these methods have proven to be
effective, they are not without their drawbacks. For example, classical video compression
algorithms usually achieve a high compression ratio by sacrificing some image or video
quality, which can lead to perceptual artifacts such as blurring, blocking, or ringing. In

Technologies 2024, 12, 52 3 of 21

addition, the complexity of these algorithms can be high, which can lead to long encoding
and decoding times.

Although classical video compression algorithms are widely used, they have certain
limitations that need to be taken into account. The use of machine learning algorithms has
become a promising alternative to overcome these limitations.

Machine learning-based video compression algorithms have shown promising results
in recent research [14]. These algorithms utilize the power of deep learning models to
compress video data without losing quality. One of the main advantages of using machine
learning algorithms for video compression is the ability to learn complex relationships
between data, which can lead to more efficient compression and better visual quality. In
addition, machine learning algorithms can be trained to optimize for different quality
metrics, such as peak signal-to-noise ratio (PSNR) or structural similarity (SSIM), which
provides more flexibility in video compression.

Despite the advantages of machine learning video compression algorithms, there are
still some drawbacks that need to be solved. One of the main challenges is the complexity
of these algorithms and the need for large amounts of training data to achieve optimal
performance. In addition, machine learning algorithms can be dependent on the quality
and quantity of training data, which can affect their performance in real-world applications.
Particularly, the study [15] proposes the use of CNN for the automatic classification of chest
X-rays. The authors introduced a novel method for enhancing the optimization of CNNs,
specifically focusing on acceleration, parallelism, and synchronization. The purpose of
this research is to compare the performance of classical video compression algorithms and
machine learning algorithms for the tasks of video compression without significant loss
of quality. First, an overview of classical video compression algorithms will be provided,
including their strengths and weaknesses. Then, various machine learning-based video
compression techniques will be discussed, such as deep learning-based video compression
and neural network-based video compression.

A study [16] conducted a detailed review of video object detection methods in com-
pressed coding over 32 years (1990–2022). The main focus was on the MPEG-2, H.264,
and HEVC compression standards, proposing two taxonomies: the use of motion vector
information and video compression standards for object detection. In our study, we went
beyond video compression methods to investigate their impact on image quality and pre-
serve maximum quality during compression. We conducted a comparative analysis of six
video compression methods, including both traditional algorithms and machine learning
methods. Two metrics (PSNR and SSIM) were used to objectively evaluate the compression
efficiency and quality. Our work not only offers practical recommendations on how to
apply these six methods in real-world scenarios with high-quality video but also highlights
the potential for optimizing machine learning methods in future research. Thus, in contrast
to [16], our paper extends the scope of the study by utilizing a wider range of methods and
providing specific recommendations for practical application based on the results.

The study [17] focuses on three methods of data lossy image compression (DCT,
wavelet transform, and VQ). The study evaluates these methods in terms of PSNR, SSIM,
MSE, RMSE, bitrate, and computational complexity to determine the most suitable method
for preserving image quality in a data-limited environment. In contrast, our study of-
fers a comparison of six video compression methods, including traditional algorithms
(H.265, VP9, AV1) and machine learning-based algorithms (CNN, RNN, and DAE), thereby
expanding the range of methods. We have focused on optimizing machine learning al-
gorithms for video compression, aiming to develop more efficient solutions applicable to
various industries.

Finally, this study aims to provide a comprehensive comparison of classical video
compression algorithms and machine learning algorithms for the task of compressing video
with minimal perceptible quality loss. The results of this comparison will help researchers
and practitioners better understand the strengths and weaknesses of these algorithms and
choose the most appropriate method for specific video compression needs.

Technologies 2024, 12, 52 4 of 21

3. Materials and Methods
3.1. Video Compression

As stated in [18], video is a sequential collection of consecutive images obtained by
projecting a real scene onto a two-dimensional plane using a video recording sensor or by
creating a sequence of artificially generated images, such as animation. Each image, called
a frame or picture, is presented at a specific frequency, which is determined by the frame
rate, usually measured in frames per second (fps) or hertz (Hz). Frame rates can range
from 24 to 30 frames per second, with 24 frames per second being the most common rate
used in the film industry.

Video encoding systems consist of two main components: an encoder and a decoder.
The encoder is responsible for creating a compressed bitstream from the original video
file. The ratio between the bitrate of the compressed bitstream and the original video file is
called the compression ratio. Conversely, the task of the decoder is to receive a compressed
bitstream as input and create an output video file suitable for display. Given that the
bit streams generated by the encoder must be interpreted by the decoder, which is often
located on a separate device, exact compatibility between these two systems is crucial. For
example, in a video streaming service, encoding takes place on data servers, and decoding
takes place on a receiving device, which can be a TV, personal computer, or even a mobile
phone [19].

As for compression, with or without minimal perceptible quality degradation, com-
pression can be used. Remove redundancy from video or graphics data using compression
with minimal perceptible quality degradation. A reconstruction method is provided that
allows obtaining an ideal reconstruction due to the compression ratio of only a small depth.
Lossy compression is irreversible because codecs reverse the reconstruction process to
approximate the input data. Research on lossy codecs is aimed at reducing the trade-off
between compression and quality [20].

3.2. Popular Codecs for Video Encoding

Video codecs are necessary for efficient video compression, which allows the storage
and transmission of video data with minimal loss. These codecs use complex algorithms to
encode video data and compress it to a more convenient size without affecting video quality.

In this study, we will analyze the performance of several popular video encoding
codecs, including H.265, VP9, and AV1. To do this, we used a set of videos in raw format
and then compressed them using each of the investigated codecs. We then evaluated
the quality of the compressed video using several objective metrics, including PSNR and
SSIM [21].

H.265 is known for its efficient compression algorithms that deliver high compression
ratios with minimal quality loss. To achieve this efficiency, several advanced techniques are
used, such as block partitioning, in-frame prediction, and variable length coding (VLC).
One of the key innovations of H.265 is the support for larger block sizes, which helps to
reduce the number of blocks required to encode a frame, thereby increasing compression
efficiency. According to a study by Bitmovin, a video technology company, H.265 can
achieve up to 50% bitrate savings compared to H.264 for the same video quality [22].

H.265 also supports several additional features, such as support for high-resolution
video (up to 8K), high dynamic range (HDR) video, and improved support for parallel
processing on multi-core processors and GPUs. These features make H.265 suitable for
use in a wide range of applications, from video streaming services to professional video
production workflows.

As is known [23], VP9 is a free codec developed by Google and optimized for web
streams. It uses several modern techniques to achieve high compression efficiency, includ-
ing in-frame prediction, flexible variable length coding, and adaptive entropy coding. VP9
also supports larger block sizes, similar to H.265, which helps reduce the number of blocks
needed to encode a frame. According to Google, VP9 can achieve up to 35% bit rate savings
compared to H.264 for the same video quality.

Technologies 2024, 12, 52 5 of 21

In addition to its high compression efficiency, VP9 also supports a wide range of
resolutions and frame rates, making it suitable for use in a variety of applications. It
supports resolutions from 240p to 8K and frame rates up to 120 frames per second, allowing
it to be used in a variety of applications, from video conferencing and streaming to virtual
reality and 360-degree video. Additionally, VP9 supports both 8-bit and 10-bit color depths,
allowing it to display a wider range of colors than previous codecs. These features make
VP9 a versatile codec that can be used in a variety of applications.

AV1 is the newest codec developed by the Alliance for Open Media (AOM) that is
designed to provide high-quality video streaming on the Internet. It uses a number of
advanced techniques, including intra-frame prediction, motion compensation, and coding
palettes, to achieve high compression efficiency. AV1 also supports larger block sizes than
previous codecs, which helps reduce the number of blocks needed to encode a frame.
According to a study by Bitmovin, AV1 allows for up to 30% bitrate savings compared to
H.265 at the same video quality [24].

AV1 also supports features such as High Dynamic Range (HDR) video and 4K and
8K resolutions, which are increasingly popular in today’s video applications. In addition,
AV1 is highly scalable, allowing it to be used on a wide range of devices, from low-power
mobile devices to high-performance desktop computers. Although AV1 is still a relatively
new codec, its potential for high compression efficiency and broad compatibility make it a
promising option for future video applications.

In general, the choice of codec depends on the specific requirements of the application,
including available bandwidth, desired video quality, and the devices used to play the
video. While H.265 provides the highest compression efficiency, VP9 and AV1 are optimized
for web streaming and may be more suitable for certain applications.

3.3. Machine Learning Algorithms for Video Compression

The field of machine learning has undergone a significant transformation, merging
other disciplines and experiencing rapid technological advancements that have led to prac-
tical applications in the real world. Although ML algorithms are widely used today, they
used to rely on specific knowledge and characteristic features to help interpret raw data.

Characterized by multi-layer neural networks, ML has a deeper impact than more
superficial methods, which is why they are called “deep learning methods”. In almost
all computer vision applications, deep learning algorithms have largely replaced tradi-
tional machine learning methods. Moreover, these technologies can outperform human
performance in tasks such as visual recognition and strategy games. Instead of creating
separate algorithms for each task, deep learning uses universal methods applicable to a
wide range of scenarios [25]. ANNs with a multi-layer or deep architecture are often called
“deep” because of their great depth. Neural networks have proven to be good at modeling
complex systems with a large number of hidden variables and complex relationships, even
when dealing with noisy data.

The processing of the latter was studied by the authors in [26,27]. Because of this,
a significant number of studies have been conducted on the use of deep networks in
compression tasks, namely image and video compression tasks [28].

Below, we present three of the most popular types of DNNs that are used today.

• CNN

Computer vision is a field of computer systems designed to recognize and learn from
visual images, such as images, videos, or others. A form of multidimensional DL model, the
CNN, is gaining popularity. A CNN consists of several convolutional layers and connecting
layers, as desired. In each convolutional layer, a series of filters or learning kernels with
specific dimensions (such as 3 × 3 or 5 × 5) are successively applied to the outputs of
the preceding layers. Additionally, the merging layers combine the outcomes of these
convolutions within nearby regions, thereby diminishing the spatial dimensions of the
images and establishing translational shift invariance. Furthermore, each convolution or

Technologies 2024, 12, 52 6 of 21

merging operation is carried out on a block that shifts by a fixed number of positions, a
parameter regulated by the step value [29,30].

• RNN

RNN is so-called because the math of the neural network is repeated at each stage.
This architecture takes into account the expected influence of the past on what will happen
in the future, which is why it is suitable for sequential data [31]. Neurons in an RNN have
a “state” that can be understood as memory; they can recall important events that have
occurred and use them to predict future events. For example, if your data are a time series,
then the characteristics at time t − n, t − n − 1, . . ., t − 1 can be used to estimate what will
happen at time t. Trends and patterns observed in the past are likely to be important for
predicting what will happen next [32].

• DAE

Autoencoders are an unsupervised learning technique employing NN to acquire a
representation. They assess and enhance this representation by attempting to reconstruct
the encoded input data. This process teaches the autoencoder to represent the dataset,
often with the goal of reducing dimensionality by training the network to discard irrelevant
inputs [33]. Autoencoders invariably comprise an encoder and decoder unit, both trained
simultaneously, though they can be employed separately. These autoencoders efficiently
transform data into a reduced-dimensional space, ensuring that the latent space is smaller
than the original data. Due to their resemblance to compression systems, autoencoders
play a vital role in addressing various compression problems using NNs [34].

3.4. Evaluation Metrics

Common image quality assessment metrics involve comparing two images: the origi-
nal input image and the resulting output image. The goal of image quality assessment is
to determine the quality of an image in such a way that it is as close as possible to human
perception. In essence, image quality measurement aims to bring it as close as possible to
the perception of the human visual system [18]. For both image and video compression
methods, special attention is paid to increasing the peak signal-to-noise ratio (PSNR). The
mean square error (MSE) is calculated, and the result is expressed in decibels (dB). For the
input image X and the output image Y, PSNR is determined as follows [34]:

PSNR(X, Y) = 10 × log10

(
M2

MSE

)
where M represents the maximum pixel value in the original image. This metric operates by
comparing the statistical characteristics of image pixels [35]. Nevertheless, while PSNR has
proven effective as a compression tool in previous decades, there is not sufficient evidence
to support its superiority over SSIM (Structural SIMILARITY) in identifying particular
coding artifacts and other distortions, especially when compared to PSNR [36].

SSIM is a more complex metric that includes convolutional methods that apply a
search window over the entire image and try to find an image quality index that is not
only calculated based on pixel measurements but also uses a wider favorable field to
achieve better results. The overall improvement is achieved with SSIM, but the recently
developed Multi-Scale Structural Similarity (MS-SSIM) improves on it by using multiple
applications of the SSIM metric at ever smaller image scales. SSIM takes into account not
only brightness, contrast, and color but also the structure of the image, which allows for a
more accurate assessment of image quality. This metric examines the structural elements
of an image, including texture and shape, to assess the likeness between the input and
output images. The key distinction between SSIM and PSNR is its ability to detect specific
encoding artifacts and other distortions that PSNR might overlook. One drawback of SSIM
is its potentially higher resource requirements compared to PSNR. Consequently, more

Technologies 2024, 12, 52 7 of 21

efficient metrics, such as the aforementioned MS-SSIM, may be preferred for assessing
image quality on extensive datasets.

4. Results
4.1. Search and Description of the Dataset

A large volume of videos to sift through and extract features from is a challenging
task, especially given the long duration of some videos, which can last for hours. Our
dataset was created by aggregating videos from YouTube, which are licensed under a
Creative Commons license [37]. The initial dataset consists of 1.5 million videos divided
into 15 categories, each annotated with a knowledge graph [38] (see Figure 1).

Technologies 2024, 12, x FOR PEER REVIEW 7 of 23

SSIM is a more complex metric that includes convolutional methods that apply a
search window over the entire image and try to find an image quality index that is not
only calculated based on pixel measurements but also uses a wider favorable field to
achieve better results. The overall improvement is achieved with SSIM, but the recently
developed Multi-Scale Structural Similarity (MS-SSIM) improves on it by using multiple
applications of the SSIM metric at ever smaller image scales. SSIM takes into account not
only brightness, contrast, and color but also the structure of the image, which allows for a
more accurate assessment of image quality. This metric examines the structural elements
of an image, including texture and shape, to assess the likeness between the input and
output images. The key distinction between SSIM and PSNR is its ability to detect specific
encoding artifacts and other distortions that PSNR might overlook. One drawback of SSIM
is its potentially higher resource requirements compared to PSNR. Consequently, more
efficient metrics, such as the aforementioned MS-SSIM, may be preferred for assessing
image quality on extensive datasets.

4. Results
4.1. Search and Description of the Dataset

A large volume of videos to sift through and extract features from is a challenging
task, especially given the long duration of some videos, which can last for hours. Our
dataset was created by aggregating videos from YouTube, which are licensed under a
Creative Commons license [37]. The initial dataset consists of 1.5 million videos divided
into 15 categories, each annotated with a knowledge graph [38] (see Figure 1).

Figure 1. Video categories in the YouTube UGC dataset.

The video category is an important attribute in our dataset, making it easier for users
to learn the distinctive characteristics of a video. For example, the top ten gaming videos
are characterized by fast movement, unlike many lyric videos that show a still
background. Using information about this category, compression algorithms can be
customized in different ways.

Videos in each category are divided into subgroups based on their resolution.
Resolution is an important characteristic that demonstrates different user preferences and
differences in the behavior of different devices and platforms. Therefore, it is reasonable
to consider resolution as a separate dimension. In our dataset, we used 360P, 480P, 720P,
and 1080P resolutions for all categories (except HDR and VR), adding 4K resolution for
HDR, gaming, sports, vertical video, vlogs, and VR. The final dataset consists of 1500

Figure 1. Video categories in the YouTube UGC dataset.

The video category is an important attribute in our dataset, making it easier for users
to learn the distinctive characteristics of a video. For example, the top ten gaming videos
are characterized by fast movement, unlike many lyric videos that show a still background.
Using information about this category, compression algorithms can be customized in
different ways.

Videos in each category are divided into subgroups based on their resolution. Res-
olution is an important characteristic that demonstrates different user preferences and
differences in the behavior of different devices and platforms. Therefore, it is reasonable to
consider resolution as a separate dimension. In our dataset, we used 360P, 480P, 720P, and
1080P resolutions for all categories (except HDR and VR), adding 4K resolution for HDR,
gaming, sports, vertical video, vlogs, and VR. The final dataset consists of 1500 video clips,
each lasting 20 s. All clips are in Raw YUV 4:2:0 format with a constant frame rate.

4.2. Implementation of Algorithms

In the context of large-scale video compression or transcoding pipelines, lengthy
videos are typically divided into segments and encoded concurrently. In practice, pre-
serving quality consistency when transitioning between these segments poses a challenge.
Hence, in addition to the three fundamental attributes (spatial, temporal, and color) pro-
posed in [39], we introduce video complexity variation as a fourth attribute, reflecting the
intra-segment quality consistency.

We established the duration of video clips in our dataset at 20 s, a length deemed
sufficient to encompass various levels of difficulty. These 20 s segments were extracted

Technologies 2024, 12, 52 8 of 21

from random portions of the video. Consequently, out of the 5 million hours of video, there
were a staggering 1.8 billion potential 20 s clips. Additionally, we employed Google’s Borg
system [40] to encode each video within the initial collection. The encoding was carried out
using the FFmpeg H.264 encoder with PSNR enabled. The specific compression settings
employed are outlined below:

• constant QP = 20;
• fixed GOP size of 14 frames without B-frames.

The average bitrate in work was determined using the formula:

Avarage bitrate = (8 × Initial size)/(Video duration)

where Initial size—the size of the output file in bytes, 8-bit conversion, Video duration—
video duration in seconds (in our case, equal to 20 s). After determining the average bitrate,
this value was used as the bitrate during encoding. Also, for all Figures 2, 4, 6, 8, and 10,
Initial size of video material is equal to 94 Mb. The quality of the obtained videos as a
result of applying the appropriate compression methods is shown in Table 2.

To implement the H.265 algorithm, we used the x265 Python library, which is an
open-source HEVC encoder that provides a fast and efficient way to encode H.265 video.
We used the standard settings of the x265 library to encode our test sequences, which
include the standard test sequences from the Joint Collaborative Team on Video Coding
(JCT-VC).

In addition to the x265 library, we also used the NumPy library to process and analyze
the video data. NumPy is a Python library that provides support for large, multidimen-
sional arrays and matrices commonly used in scientific computing. We used NumPy to
load and manipulate video frames, as well as to calculate compression efficiency and visual
quality metrics.

Overall, the combination of the x265 and NumPy libraries provided a powerful and
flexible platform for implementing and evaluating the H.265 algorithm (see Figure 2).

Technologies 2024, 12, x FOR PEER REVIEW 8 of 23

video clips, each lasting 20 s. All clips are in Raw YUV 4:2:0 format with a constant frame
rate.

4.2. Implementation of Algorithms
In the context of large-scale video compression or transcoding pipelines, lengthy

videos are typically divided into segments and encoded concurrently. In practice,
preserving quality consistency when transitioning between these segments poses a
challenge. Hence, in addition to the three fundamental attributes (spatial, temporal, and
color) proposed in [39], we introduce video complexity variation as a fourth attribute,
reflecting the intra-segment quality consistency.

We established the duration of video clips in our dataset at 20 s, a length deemed
sufficient to encompass various levels of difficulty. These 20 s segments were extracted
from random portions of the video. Consequently, out of the 5 million hours of video,
there were a staggering 1.8 billion potential 20 s clips. Additionally, we employed
Google’s Borg system [40] to encode each video within the initial collection. The encoding
was carried out using the FFmpeg H.264 encoder with PSNR enabled. The specific com-
pression settings employed are outlined below:
• constant QP = 20;
• fixed GOP size of 14 frames without B-frames.

The average bitrate in work was determined using the formula: 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 = 8 × 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑖𝑧𝑒 / 𝑉𝑖𝑑𝑒𝑜 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

where 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑖𝑧𝑒 —the size of the output file in bytes, 8-bit conversion, 𝑉𝑖𝑑𝑒𝑜 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛—video duration in seconds (in our case, equal to 20 s). After determining
the average bitrate, this value was used as the bitrate during encoding. Also, for all Figures
2, 4, 6, 8, and 10, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑖𝑧𝑒 of video material is equal to 94 Mb. The quality of the
obtained videos as a result of applying the appropriate compression methods is shown in
Table 2.

To implement the H.265 algorithm, we used the x265 Python library, which is an
open-source HEVC encoder that provides a fast and efficient way to encode H.265 video.
We used the standard settings of the x265 library to encode our test sequences, which
include the standard test sequences from the Joint Collaborative Team on Video Coding
(JCT-VC).

In addition to the x265 library, we also used the NumPy library to process and ana-
lyze the video data. NumPy is a Python library that provides support for large, multidi-
mensional arrays and matrices commonly used in scientific computing. We used NumPy
to load and manipulate video frames, as well as to calculate compression efficiency and
visual quality metrics.

Overall, the combination of the x265 and NumPy libraries provided a powerful and
flexible platform for implementing and evaluating the H.265 algorithm (see Figure 2).

(a) (b)

Figure 2. Video frame from the dataset: (a) before and (b) after compression using H.265. Figure 2. Video frame from the dataset: (a) before and (b) after compression using H.265.

As you can see from Figure 2, even when using the x265 Python library to implement
the H.265 codec and the standard settings of this library, certain details in the image may
be lost during video frame compression (look at the upper left corner of both images).
First of all, the loss of details can occur due to the characteristics of the compression
algorithm itself. Although H.265 is considered to be more efficient than its predecessor,
H.264, it is unavoidable that some detail loss will occur during video compression. At high
compression ratios, the H.265 algorithm can reduce bitrate and color sampling, which can
lead to loss of detail and degradation of image quality. Additionally, if you do not take into
account the x265 library settings that can affect compression quality, such as compression
level and filtering options, you may risk losing detail in the image. Thus, even with the
powerful combination of the x265 and NumPy libraries to implement and analyze the

Technologies 2024, 12, 52 9 of 21

H.265 algorithm, there is a possibility that some image detail may be lost during video
frame compression.

Nevertheless, the obtained PSNR (39.17 dB) and SSIM (0.78) values indicate that the
H.265 method provides a high-quality compressed video signal, where PSNR indicates a
low level of signal loss and SSIM confirms the structural similarity between the original
and compressed video.

VP9 is an open-source video compression algorithm developed by Google. It uses
various methods to compress video data, including internal prediction, interpretation, trans-
form coding, and entropy coding. The algorithm is designed to provide high compression
efficiency while maintaining good video quality.

In our experiment, we implemented the VP9 algorithm using the following Python
libraries:

1. FFmpeg: A multimedia framework that allowed us to decode and encode video files
using the VP9 codec.

2. PyAV: A Python wrapper for Ffmpeg that provides a user-friendly interface for
manipulating video streams.

To encode video using VP9, we first divided the video into smaller blocks called
macroblocks. For each macroblock, we predicted its contents using surrounding blocks
and then encoded the difference between the prediction and the original content using
transformation. Finally, we encoded the transformed data using entropy coding methods.

To decode video encoded with VP9, we changed the order of operations in reverse
order. First, we decoded the entropy-encoded data, applied the inverse transform to
recover the transformed data, and then added the estimated content to produce the final
reconstructed video.

Overall, our implementation of the VP9 codec using the libvpx library provided
efficient video compression with good visual quality (see Figure 3).

Technologies 2024, 12, x FOR PEER REVIEW 9 of 23

As you can see from Figure 2, even when using the x265 Python library to implement
the H.265 codec and the standard settings of this library, certain details in the image may
be lost during video frame compression (look at the upper left corner of both images).
First of all, the loss of details can occur due to the characteristics of the compression algo-
rithm itself. Although H.265 is considered to be more efficient than its predecessor, H.264,
it is unavoidable that some detail loss will occur during video compression. At high com-
pression ratios, the H.265 algorithm can reduce bitrate and color sampling, which can lead
to loss of detail and degradation of image quality. Additionally, if you do not take into
account the x265 library settings that can affect compression quality, such as compression
level and filtering options, you may risk losing detail in the image. Thus, even with the
powerful combination of the x265 and NumPy libraries to implement and analyze the
H.265 algorithm, there is a possibility that some image detail may be lost during video
frame compression.

Nevertheless, the obtained PSNR (39.17 dB) and SSIM (0.78) values indicate that the
H.265 method provides a high-quality compressed video signal, where PSNR indicates a
low level of signal loss and SSIM confirms the structural similarity between the original
and compressed video.

VP9 is an open-source video compression algorithm developed by Google. It uses
various methods to compress video data, including internal prediction, interpretation,
transform coding, and entropy coding. The algorithm is designed to provide high com-
pression efficiency while maintaining good video quality.

In our experiment, we implemented the VP9 algorithm using the following Python
libraries:
1. FFmpeg: A multimedia framework that allowed us to decode and encode video files

using the VP9 codec.
2. PyAV: A Python wrapper for Ffmpeg that provides a user-friendly interface for

manipulating video streams.
To encode video using VP9, we first divided the video into smaller blocks called

macroblocks. For each macroblock, we predicted its contents using surrounding blocks
and then encoded the difference between the prediction and the original content using
transformation. Finally, we encoded the transformed data using entropy coding methods.

To decode video encoded with VP9, we changed the order of operations in reverse
order. First, we decoded the entropy-encoded data, applied the inverse transform to
recover the transformed data, and then added the estimated content to produce the final
reconstructed video.

Overall, our implementation of the VP9 codec using the libvpx library provided
efficient video compression with good visual quality (see Figure 3).

(a) (b)

Figure 3. Video frame from the dataset: (a) before and (b) after compression with VP9. Figure 3. Video frame from the dataset: (a) before and (b) after compression with VP9.

For Figure 3, the performance indicators are as follows: PSNR = 38.19 dB, SSIM = 0.79,
and the video file size after compression is 22.62 MB. The obtained results demonstrate
that both VP9 and H.265 codecs are contemporary and efficient for video compression.
The data reveal that H.265 has a slightly higher PSNR but a lower SSIM compared to VP9.
Nevertheless, both codecs exhibit significant video compression capabilities, leading to
a reduction in file size by more than 70%. When deciding between VP9 and H.265, it is
crucial to consider the specific requirements and constraints of your application, including
hardware support, quality criteria, network bandwidth, etc. Both codecs present viable
options, and the choice may be contingent on the particular conditions and demands of
the task.

AV1 is a next-generation video codec that uses advanced technologies such as block
splitting and internal and external prediction to achieve high compression efficiency while
maintaining high visual quality.

Technologies 2024, 12, 52 10 of 21

To implement the AV1 codec, we used the following Python libraries:

• NumPy: for efficient array operations and calculations.
• OpenCV: for reading and writing video files, as well as some image processing tasks.

Initially, we generated a compressed bitstream using the AV1 encoder, which takes
unedited video as input and outputs the compressed video stream. Then, the AV1 decoder
was used to recover the compressed video from the bitstream (see Figure 4).

Technologies 2024, 12, x FOR PEER REVIEW 10 of 23

For Figure 3, the performance indicators are as follows: PSNR = 38.19 dB, SSIM = 0.79,
and the video file size after compression is 22.62 MB. The obtained results demonstrate
that both VP9 and H.265 codecs are contemporary and efficient for video compression.
The data reveal that H.265 has a slightly higher PSNR but a lower SSIM compared to VP9.
Nevertheless, both codecs exhibit significant video compression capabilities, leading to a
reduction in file size by more than 70%. When deciding between VP9 and H.265, it is
crucial to consider the specific requirements and constraints of your application, including
hardware support, quality criteria, network bandwidth, etc. Both codecs present viable
options, and the choice may be contingent on the particular conditions and demands of
the task.

AV1 is a next-generation video codec that uses advanced technologies such as block
splitting and internal and external prediction to achieve high compression efficiency while
maintaining high visual quality.

To implement the AV1 codec, we used the following Python libraries:
• NumPy: for efficient array operations and calculations.
• OpenCV: for reading and writing video files, as well as some image processing tasks.

Initially, we generated a compressed bitstream using the AV1 encoder, which takes
unedited video as input and outputs the compressed video stream. Then, the AV1 decoder
was used to recover the compressed video from the bitstream (see Figure 4).

To evaluate codec performance, we conducted several experiments to measure their
compression efficiency and visual quality. We changed coding parameters such as block
size, prediction mode, and range of motion vector search.

(a) (b)

Figure 4. Video frame from the dataset: (a) before and (b) after compression with AV1.

To compare the performance of VP9 with H.265 and with AV1, we conducted exper-
iments using a dataset of video clips with different resolutions and bitrates. For each clip,
the following metrics were measured:
• PSNR: Peak signal-to-noise ratio, which measures the quality of compressed video

compared to the original.
• SSIM: Structural similarity index, which measures the similarity between the com-

pressed video and the original.
• Bitrate: The average number of bits used to represent each frame in a compressed

video.
Each clip was encoded using codecs with default settings and recorded PSNR, SSIM,

and bitrate for each clip.
To present our results, we created tables and graphs to compare VP9's performance

with H.265 and with AV1. The tables show the average PSNR, SSIM, and bitrate values
for each codec in all clips. More details on the results of the experiment can be found in
the next section.

Figure 4. Video frame from the dataset: (a) before and (b) after compression with AV1.

To evaluate codec performance, we conducted several experiments to measure their
compression efficiency and visual quality. We changed coding parameters such as block
size, prediction mode, and range of motion vector search.

To compare the performance of VP9 with H.265 and with AV1, we conducted experi-
ments using a dataset of video clips with different resolutions and bitrates. For each clip,
the following metrics were measured:

• PSNR: Peak signal-to-noise ratio, which measures the quality of compressed video
compared to the original.

• SSIM: Structural similarity index, which measures the similarity between the com-
pressed video and the original.

• Bitrate: The average number of bits used to represent each frame in a compressed
video.

Each clip was encoded using codecs with default settings and recorded PSNR, SSIM,
and bitrate for each clip.

To present our results, we created tables and graphs to compare VP9’s performance
with H.265 and with AV1. The tables show the average PSNR, SSIM, and bitrate values for
each codec in all clips. More details on the results of the experiment can be found in the
next section.

Our results showed that all codecs are quite similar in terms of PSNR and SSIM, but
VP9 has a slightly lower bit rate for the same video quality.

To build a CNN, we prepared a dataset with a video of the same duration and different
resolutions and divided it into training, validation, and test sets. After pre-processing the
video by resizing, cropping, and normalizing, we used a CNN architecture with an encoder–
decoder structure to compress the incoming video to a smaller-dimensional representation
and then reconstruct it with a decoder. We used standard loss functions such as mean square
error (MSE) or binary cross entropy (BCE) to measure the difference between compressed
and original video.

For model training, we used reverse propagation to update the model weights and
optimization algorithms such as stochastic gradient descent (SGD) and Adam. Furthermore,
regularization techniques were used, such as dropout and weight reduction, to prevent
overfitting. After training, we evaluated the performance of the model on the test set using

Technologies 2024, 12, 52 11 of 21

metrics such as PSNR and SSIM to estimate the visual quality of the compressed video and
measure the compression ratio.

The tools we used to implement CNN are Python libraries such as NumPy for efficient
array operations and calculations and OpenCV for video processing tasks such as reading
and writing video files. In general, our approach was similar to the methodology for
implementing video codecs like AV1.

Figure 5 below shows a schematic representation of the architecture used for encoding
and decoding.

Technologies 2024, 12, x FOR PEER REVIEW 12 of 23

Figure 5. CNN network architecture for video encoding and decoding. Figure 5. CNN network architecture for video encoding and decoding.

Technologies 2024, 12, 52 12 of 21

The architecture presented above (see Figure 5) includes convolutional layers with
3 × 3 filters to extract features from the video, as well as max-pooling layers to reduce
dimensionality. Fully connected layers with 1024 neurons are used to further process
the features and compress the input data to a lower dimensionality. After encoding, the
resulting representation is passed through a decoder to restore the original video. Based on
Figure 5, here is the breakdown of processes performed by the encoder and decoder blocks
in the given architecture:

Encoder:

• Convolutional Layers (extract features from the input video clip using 3 × 3 filters).
• Max Pooling Layers (reduce the dimensionality of the extracted features).
• Fully Connected Layers (1024 neurons) (further process the features and compress the

input data to a lower dimensionality).
• Fully Connected Layer (encoded representation) (represents the compressed form of

the input video clip.

Decoder:

• Fully Connected Layers (1024 neurons) (process the encoded representation.
• Fully Connected Layer (1024 neurons) (further process the features).
• Fully Connected Layer (output layer) (reconstruct the original video clip).
• Mirrors encoder architecture (this implies that the decoder essentially reverses the

operations performed by the encoder to reconstruct the original video clip).

To measure the compression efficiency and visual quality of our CNN, we conducted
several experiments, as we did when evaluating codecs (see Figure 6). We varied coding
parameters such as block size, prediction mode, and motion vector search range to identify
areas for improvement and compare our model with other modern methods. As a result,
the following optimal options for coding parameters were chosen: Block size 8x8 to ensure
finer crushing and more accurate reproduction of features; interframe prediction mode,
as it allowed using information from previous frames for prediction and subsequent
compression; for optimal use of the motion vector, values ranging from -16 to 16 pixels in
the horizontal and vertical directions were used.

Technologies 2024, 12, x FOR PEER REVIEW 13 of 23

(a) (b)

Figure 6. Video frame from the dataset: (a) before and (b) after compression using a CNN.

To implement an RNN, each video was divided into fixed-length segments and then
fed to each segment as a sequence of frames. The RNN encoded the frame sequence into
a fixed-length vector representation, which was then used by the RNN decoder to
reconstruct the compressed video sequence. We used standard loss functions, such as
those of CNN, to measure the difference between the compressed and original video
sequences.

For model training, we used backpropagation through time (BPTT) to update the
model weights and optimization algorithms such as stochastic gradient descent (SGD)
and Adam’s method. Afterward, the training was evaluated on a test set using PSNR and
SSIM metrics. To build the RNN, we had to use additional TensorFlow and PyTorch
frameworks, unlike CNN.

A general representation of the architecture of the RNN network used for video
encoding and decoding with the above parameters is shown in Figure 7.

The effective quantitative values of the coding parameters for the RNN model were
as follows:
1. The sequence length is 20 frames for each fixed video segment.
2. The number of layers is equal to 3 layers of RNN coding.
3. Each layer has 100 hidden blocks.

In the architecture shown in Figure 7, the processes performed by the encoder blocks:
• Segmentation of the input signal (each video is divided into segments of fixed

length).
• Frame sequence encoding (the RNN encoder processes each segment as a frame se-

quence).
• Feature extraction (layers of the RNN encoder encode the frame sequences into a

fixed-length vector representation).
• Compression (a fully connected layer compresses the encoded representations to a

smaller size).
And decoder processes:

• Decoding (RNN decoder layers receive the encoded images).
• Sequence recovery (RNN decoder layers recover the compressed video sequence).
• Output generation (the output layer generates the reconstructed video).

Figure 6. Video frame from the dataset: (a) before and (b) after compression using a CNN.

To implement an RNN, each video was divided into fixed-length segments and then
fed to each segment as a sequence of frames. The RNN encoded the frame sequence into a
fixed-length vector representation, which was then used by the RNN decoder to reconstruct
the compressed video sequence. We used standard loss functions, such as those of CNN, to
measure the difference between the compressed and original video sequences.

For model training, we used backpropagation through time (BPTT) to update the
model weights and optimization algorithms such as stochastic gradient descent (SGD) and
Adam’s method. Afterward, the training was evaluated on a test set using PSNR and SSIM
metrics. To build the RNN, we had to use additional TensorFlow and PyTorch frameworks,
unlike CNN.

Technologies 2024, 12, 52 13 of 21

A general representation of the architecture of the RNN network used for video
encoding and decoding with the above parameters is shown in Figure 7.

Technologies 2024, 12, x FOR PEER REVIEW 14 of 23

Figure 7. RNN network architecture for video encoding–decoding.

In the presented architecture, the RNN encoder encodes sequences of frames into
fixed-length vector images, which are then used by the RNN decoder to recover the com-
pressed video sequence.

As with codec estimation and CNN, we conducted several experiments to measure
the compression efficiency and visual quality of our RNN (see Figure 8). We varied coding
parameters such as sequence length, number of layers, and hidden blocks to identify areas
for improvement and compare our model with other modern methods.

Figure 7. RNN network architecture for video encoding–decoding.

The effective quantitative values of the coding parameters for the RNN model were as
follows:

1. The sequence length is 20 frames for each fixed video segment.
2. The number of layers is equal to 3 layers of RNN coding.
3. Each layer has 100 hidden blocks.

In the architecture shown in Figure 7, the processes performed by the encoder blocks:

• Segmentation of the input signal (each video is divided into segments of fixed length).
• Frame sequence encoding (the RNN encoder processes each segment as a frame

sequence).
• Feature extraction (layers of the RNN encoder encode the frame sequences into a

fixed-length vector representation).
• Compression (a fully connected layer compresses the encoded representations to a

smaller size).

Technologies 2024, 12, 52 14 of 21

And decoder processes:

• Decoding (RNN decoder layers receive the encoded images).
• Sequence recovery (RNN decoder layers recover the compressed video sequence).
• Output generation (the output layer generates the reconstructed video).

In the presented architecture, the RNN encoder encodes sequences of frames into fixed-
length vector images, which are then used by the RNN decoder to recover the compressed
video sequence.

As with codec estimation and CNN, we conducted several experiments to measure
the compression efficiency and visual quality of our RNN (see Figure 8). We varied coding
parameters such as sequence length, number of layers, and hidden blocks to identify areas
for improvement and compare our model with other modern methods.

Technologies 2024, 12, x FOR PEER REVIEW 15 of 23

(a) (b)

Figure 8. Video frame from the dataset: (a) before and (b) after compression using an RNN.

The DAE architecture with the encoder–decoder structure is schematically shown in
Figure 9. In the given DAE architecture:

Encoder processes:
• Input Processing (the input video undergoes pre-processing steps such as resizing,

cropping, and normalization).
• Feature Extraction (encoder layers extract features from the pre-processed input

video).
• Dimension Reduction (encoder layers progressively reduce the dimensionality of the

extracted features).
• Compression (the fully connected layer compresses the encoded representations into

a low-dimensional representation).
Decoder processes:

• Decoding (decoder layers receive the low-dimensional representations).
• Feature Expansion (decoder layers expand the low-dimensional representations back

to higher dimensions).
• Reconstruction (decoder layers reconstruct the original input video).
• Output Generation (the output layer generates the reconstructed video).

Moreover, to compress the input video to a low-dimensional representation, the DAE
architecture with an encoder–decoder structure was used (see Figure 10). The coder part
consisted of several convolution and union layers, followed by fully connected layers,
while the decoder portion was a mirror reflection of the encoder layers. The input video
was pre-processed by resizing, cropping, and normalizing and then divided into training,
validation, and test sets. The following effective quantitative parameter values were
chosen for the DAE model:
1. The number of encoder layers is two.
2. The number of decoder layers is also equal to two.

And the size of the fully connected layer (encoded representation) is 256 neurons.

Figure 8. Video frame from the dataset: (a) before and (b) after compression using an RNN.

The DAE architecture with the encoder–decoder structure is schematically shown in
Figure 9. In the given DAE architecture:

Encoder processes:

• Input Processing (the input video undergoes pre-processing steps such as resizing,
cropping, and normalization).

• Feature Extraction (encoder layers extract features from the pre-processed input video).
• Dimension Reduction (encoder layers progressively reduce the dimensionality of the

extracted features).
• Compression (the fully connected layer compresses the encoded representations into a

low-dimensional representation).

Decoder processes:

• Decoding (decoder layers receive the low-dimensional representations).
• Feature Expansion (decoder layers expand the low-dimensional representations back

to higher dimensions).
• Reconstruction (decoder layers reconstruct the original input video).
• Output Generation (the output layer generates the reconstructed video).

Moreover, to compress the input video to a low-dimensional representation, the DAE
architecture with an encoder–decoder structure was used (see Figure 10). The coder part
consisted of several convolution and union layers, followed by fully connected layers,
while the decoder portion was a mirror reflection of the encoder layers. The input video
was pre-processed by resizing, cropping, and normalizing and then divided into training,
validation, and test sets. The following effective quantitative parameter values were chosen
for the DAE model:

1. The number of encoder layers is two.
2. The number of decoder layers is also equal to two.

And the size of the fully connected layer (encoded representation) is 256 neurons.

Technologies 2024, 12, 52 15 of 21

After training, model performance was evaluated on a test set by measuring the
compression ratio and using metrics such as PSNR and SSIM to estimate the visual quality
of the compressed video.

In general, the DAE method allows you to achieve high compression efficiency with
good visual quality and can process videos of different durations. However, it may require
more training data and computing resources compared to other methods and may also not
be as effective in identifying temporal dependencies in video compared to RNN.

Technologies 2024, 12, x FOR PEER REVIEW 16 of 23

Figure 9. The DAE architecture with the encoder–decoder structure.

(a) (b)

Figure 10. Frame video from the dataset: (a) before and (b) after compression using DAE.

After training, model performance was evaluated on a test set by measuring the
compression ratio and using metrics such as PSNR and SSIM to estimate the visual quality
of the compressed video.

In general, the DAE method allows you to achieve high compression efficiency with
good visual quality and can process videos of different durations. However, it may
require more training data and computing resources compared to other methods and may
also not be as effective in identifying temporal dependencies in video compared to RNN.

Figure 9. The DAE architecture with the encoder–decoder structure.

Technologies 2024, 12, x FOR PEER REVIEW 16 of 23

Figure 9. The DAE architecture with the encoder–decoder structure.

(a) (b)

Figure 10. Frame video from the dataset: (a) before and (b) after compression using DAE.

After training, model performance was evaluated on a test set by measuring the
compression ratio and using metrics such as PSNR and SSIM to estimate the visual quality
of the compressed video.

In general, the DAE method allows you to achieve high compression efficiency with
good visual quality and can process videos of different durations. However, it may
require more training data and computing resources compared to other methods and may
also not be as effective in identifying temporal dependencies in video compared to RNN.

Figure 10. Frame video from the dataset: (a) before and (b) after compression using DAE.

5. Discussion of Results

In this paper, we compare different video compression methods, including codecs,
CNNs, RNNs, and deep autoencoders (DAEs), in terms of compression efficiency and

Technologies 2024, 12, 52 16 of 21

visual quality. Several experiments were conducted to evaluate the performance of each
method using different video datasets and coding parameters.

To evaluate the methods under consideration, we measured compression efficiency
and image quality using metrics such as PSNR and SSIM (see Figures 11 and 12). The
results for the codecs showed that all codecs have almost the same PSNR and SSIM, but
VP9 has a slightly lower score for the same video quality. Our results also show that
the CNN and RNN models performed better than the classical codecs and achieved high
compression efficiency and visual quality. However, it should be noted that the RNN model
outperformed the CNN model in terms of compression ratio and visual quality. The DAE
method also demonstrated high compression efficiency and great visual quality but may
require more training data and computing resources compared to other methods.

Technologies 2024, 12, x FOR PEER REVIEW 17 of 23

5. Discussion of Results
In this paper, we compare different video compression methods, including codecs,

CNNs, RNNs, and deep autoencoders (DAEs), in terms of compression efficiency and vis-
ual quality. Several experiments were conducted to evaluate the performance of each
method using different video datasets and coding parameters.

To evaluate the methods under consideration, we measured compression efficiency
and image quality using metrics such as PSNR and SSIM (see Figures 11 and 12). The
results for the codecs showed that all codecs have almost the same PSNR and SSIM, but
VP9 has a slightly lower score for the same video quality. Our results also show that the
CNN and RNN models performed better than the classical codecs and achieved high com-
pression efficiency and visual quality. However, it should be noted that the RNN model
outperformed the CNN model in terms of compression ratio and visual quality. The DAE
method also demonstrated high compression efficiency and great visual quality but may
require more training data and computing resources compared to other methods.

As a result, all methods showed prospective results in terms of compression
efficiency and visual quality. However, the RNN method outperformed the CNN and
DAE methods and the classical compression methods.

Figure 11. Graph of estimation of video compression methods based on PSNR metric.

Figure 11. Graph of estimation of video compression methods based on PSNR metric.

Technologies 2024, 12, x FOR PEER REVIEW 18 of 24

Figure 12. Graph of evaluation of video compression methods based on SSIM metric.

Based on the research, a comparative table of metrics was formed (see Table 1) and a
quality table (see Table 2) of different approaches to compressing video materials, as well
as describing the positive and negative aspects of each of the proposed methods.

Table 1. Comparative table of metrics for video compression methods.

Method Name
Average Value

PSNR (dB)
Average Value

SSIM
H.265 39.17 0.78
VP9 38.19 0.79
AV1 38.72 0.80
CNN 40.00 0.81
RNN 42.05 0.82

Figure 12. Graph of evaluation of video compression methods based on SSIM metric.

Technologies 2024, 12, 52 17 of 21

As a result, all methods showed prospective results in terms of compression efficiency
and visual quality. However, the RNN method outperformed the CNN and DAE methods
and the classical compression methods.

Based on the research, a comparative table of metrics was formed (see Table 1) and a
quality table (see Table 2) of different approaches to compressing video materials, as well
as describing the positive and negative aspects of each of the proposed methods.

Table 1. Comparative table of metrics for video compression methods.

Method Name Average Value
PSNR (dB)

Average Value
SSIM

H.265 39.17 0.78
VP9 38.19 0.79
AV1 38.72 0.80
CNN 40.00 0.81
RNN 42.05 0.82
DAE 41.15 0.82

Table 2. Comparative table of quality for video compression methods.

Video Material H.265 VP9 AV1 CNN RNN DAE

Number Initial Size (Mb) Video File Size after Compression (Mb)

1 50 13.64 13.32 13.34 12.31 9.80 10.71

2 87 21.44 21.12 21.14 20.11 15.91 18.42

3 120 27.84 27.52 26.54 26.51 20.91 24.32

4 75 18.14 17.82 17.10 16.92 13.82 15.51

5 56 14.04 13.72 13.04 12.71 10.13 11.61

6 94 22.94 22.62 21.64 21.62 17.12 19.70

To efficiently compress video using CNN, RNN, and DAE architectures, a video
encoder needs trained models. These models are crucial, as they enable the video encoder to
perform compression and reconstruction tasks efficiently. Therefore, the size of each model
becomes a critical parameter for evaluating the performance and practical implementation
of a video compression system. With this in mind, Table 3 provides an overview of the
model sizes corresponding to the initial size of the video material expressed in terms of
the amount of memory used. Next, we will consider the advantages and disadvantages of
each of the above methods, which will be presented in Table 4.

Table 3. The sizes of the three generated models are in GB.

Initial Size (Mb) CNN RNN DAE

50 1.611 0.928 0.074
87 2.812 1.632 0.129

120 3.841 2.243 0.176
75 2.410 1.408 0.109
56 1.792 1.056 0.082
94 3.008 1.762 0.141

Technologies 2024, 12, 52 18 of 21

Table 4. Comparative table of advantages and disadvantages of video compression methods.

Method
Name Advantages of Using the Method Disadvantages of Using the Method

H.265

A significant improvement in compression efficiency over its
predecessor, H.264.

It is supported by many devices and software, making it a
widely accepted standard.

It supports different video resolutions and frame rates.

In some cases, it may not be as effective as
newer codecs such as VP9 and AV1.

VP9
It is open source and does not require royalties, which makes it

an attractive option for many companies.
Supports high-resolution video and a high frame rate.

It requires more computational resources to
encode and decode compared to some other

codecs.
It is not as widespread as some other codecs,

such as H.265.

AV1

It provides significantly better compression efficiency compared
to older codecs like H.264 and even newer codecs like H.265

and VP9.
It is open source and does not require royalties, which makes it

an attractive option for many companies.
It supports different video resolutions and frame rates.

It requires more computational resources to
encode and decode compared to some other

codecs.
It is not as common as some other codecs, such

as H.265.

CNN

High compression efficiency due to the ability to extract spatial
features from video frames.

Relatively high coding and decoding speed compared to other
deep learning methods.

It can work with different resolutions and frame rates.

It may require large computational resources
for training and deployment.

It is not as effective at detecting temporal
dependencies in video as RNN.

RNN

It can effectively capture temporal dependencies in the video,
treating each frame as a sequence.

It can process video of variable length.
It allows you to achieve high compression efficiency with good

visual quality.

It may require more time for training and
computing resources than CNN.

It can be responsive to the length of the input
sequence and the choice of hyperparameters.

DAE

It allows you to achieve high compression efficiency with good
visual quality.

It can process video of variable length.
It can be faster and more computationally efficient than other

deep learning methods.

It may require more training data and
computing resources compared to other

methods.
It may not be as effective in detecting temporal

dependencies in video compared to RNN.

In general, each method has its own strengths and weaknesses, and the choice of
method depends on the specific requirements and limitations of the video compression task.

The considered methods have several consequences and applications in the field
of video compression and storage. One potential application is video streaming, where
compressed video can be transmitted over the Internet more efficiently, resulting in faster
downloads and less buffering. This could lead to an overall improvement in the user
experience for consumers of video streaming services. Furthermore, compressed video
can take up less memory space, which can be especially useful for devices with limited
memory, such as mobile phones and tablets.

The advantages of the suggested methods are high compression efficiency and good
visual quality. The CNN and RNN methods are particularly effective for storing spatial
and temporal information, respectively, while the DAE method achieves high compression
efficiency with good visual quality and can process videos of different durations. These
methods offer a range of video compression options, allowing you to customize them to
suit your application’s needs.

Nevertheless, it is important to take into account the limitations. One is that the
proposed methods may require more training data and computing resources compared to
traditional codecs. Another limitation is that compressed video may not be as compatible
as video compressed by traditional codecs, which may limit their practical application in
some settings.

Technologies 2024, 12, 52 19 of 21

Overall, the proposed methods have significant potential to improve the efficiency
and quality of video compression and storage, but their practical application will depend
on factors such as compatibility and resource requirements.

Despite the results, the proposed method has a number of limitations that should be
considered in future research. One major limitation is the size and variety of the dataset
used in our experiments. Although we used a variety of publicly available datasets, they
may not fully reflect the complexity and diversity of real-world video data. This may have
affected the generalizability of our results. Moreover, the computational resources required
to train and evaluate models can be quite high, which may limit their practical use in
some settings.

Further research should be aimed at eliminating the limitations of the proposed
method and improving its performance. One possible direction is to investigate the use of
more diverse and realistic datasets to better assess the performance of models. Another
focus is to investigate the use of more complex architectures and learning methods to
improve the compression efficiency and visual quality of compressed videos. For instance,
using attention mechanisms to selectively focus on important video frames and regions
can help improve model performance. Eventually, the integration of the proposed method
into existing video streaming and storage systems should be explored to determine its
practical feasibility.

6. Conclusions

In this paper, several video compression methods have been implemented and eval-
uated using deep learning techniques. Our results show that these methods can achieve
great compression efficiency and high visual quality, making them promising for improving
video streaming and storage.

Specifically, we evaluated six methods: H.265, VP9, AV1, CNN, RNN, and DAE.
Among them, the CNN and RNN methods proved to be particularly effective in pre-
serving spatial and temporal information, respectively, while the DAE method achieved
great compression efficiency with high visual quality and was able to handle videos of
different lengths.

Our results showed that deep learning-based methods such as CNN, RNN, and DAE
achieved higher compression efficiency and better visual quality compared to traditional
codecs such as H.265, VP9, and AV1. The metrics comparison table (Table 1) and quality
table (Table 2) provide a comprehensive overview of the performance of each method
based on the PSNR and SSIM metrics. Although the proposed methods have significant
advantages in terms of compression efficiency and visual quality, there are also limitations
to consider, such as the need for more training data and computational resources compared
to traditional codecs.

Despite the limitations, our study provides some opportunities for future research.
One direction for future research is to use more diverse and realistic datasets to improve
the performance evaluation of the model. Another direction is to apply more sophis-
ticated learning architectures and techniques, such as attention mechanisms, to further
improve model performance. In addition, further research should explore the feasibility of
integrating the proposed methods into existing video streaming and storage systems.

Thus, our study provides a comprehensive evaluation of deep learning methods for
video compression. The results demonstrate the potential of these methods to improve
video streaming and storage. However, further research is needed to address the limitations
of these methods and explore their practical applications. We believe that the results of our
study can serve as a guide for future research in this rapidly evolving area.

In summary, our study has shown that deep learning-based methods are a promising
direction for improving the efficiency and quality of video compression. By addressing the
limitations of these methods and continuing to improve their performance, we will be able
to unlock the full potential of video streaming and storage, resulting in more efficient use
of storage resources and an improved user experience.

Technologies 2024, 12, 52 20 of 21

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in our research are in the paper.

Acknowledgments: The author would like to thank the reviewers for their correct and concise
recommendations that helped present the materials better. We acknowledge that ChatGPT was solely
used to address grammar issues while revising the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, W.G.; Yu, R.; Wang, X. Neural Network-Based Video Compression Artifact Reduction Using Temporal Correlation and

Sparsity Prior Predictions. IEEE Access 2020, 8, 162479–162490. [CrossRef]
2. Havrysh, B.; Tymchenko, O.; Izonin, I. Modification of the LSB Implementation Method of Digital Watermarks. In Advances in

Artificial Systems for Logistics Engineering. ICAILE 2022; Lecture Notes on Data Engineering and Communications Technologies;
Hu, Z., Zhang, Q., Petoukhov, S., He, M., Eds.; Springer: Cham, Switzerland, 2022; Volume 135, pp. 101–111. [CrossRef]

3. Kovtun, V.; Izonin, I.; Gregus, M. Model of functioning of the centralized wireless information ecosystem focused on multimedia
streaming. Egypt. Inform. J. 2022, 23, 89–96. [CrossRef]

4. Coding of Moving Video: High Efficiency Video Coding (HEVC) ITU-T Recommendation H.265. Available online: https:
//handle.itu.int/11.1002/1000/14107 (accessed on 1 May 2023).

5. Shilpa, B.; Budati, A.K.; Rao, L.K.; Goyal, S.B. Deep learning based optimised data transmission over 5G networks with Lagrangian
encoder. Comput. Electr. Eng. 2022, 102, 108164. [CrossRef]

6. Said, A. Machine learning for media compression: Challenges and opportunities. APSIPA Trans. Signal Inf. Process. 2018, 7, e8.
[CrossRef]

7. Bidwe, R.V.; Mishra, S.; Patil, S.; Shaw, K.; Vora, D.R.; Kotecha, K.; Zope, B. Deep Learning Approaches for Video Compression: A
Bibliometric Analysis. Big Data Cogn. Comput. 2022, 6, 44. [CrossRef]

8. Zhang, Y.; Kwong, S.; Wang, S. Machine learning based video coding optimizations: A survey. Inf. Sci. 2020, 506, 395–423.
[CrossRef]

9. Zhou, M.; Wei, X.; Kwong, S.; Jia, W.; Fang, B. Rate Control Method Based on Deep Reinforcement Learning for Dynamic Video
Sequences in HEVC. IEEE Trans. Multimed. 2021, 23, 1106–1121. [CrossRef]

10. Ji, K.D.; Hlavacs, H. Deep Learning Based Video Compression. In Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 127–141.

11. Hoang, T.M.; Zhou, J. Recent trending on learning based video compression: A survey. Cogn. Robot. 2021, 1, 145–158. [CrossRef]
12. Dong, C.; Deng, Y.; Loy, C.C.; Tang, X. Compression artifacts reduction by a deep convolutional network. In Proceedings of the

IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 576–584. [CrossRef]
13. Shao, H.; Liu, B.; Li, Z.; Yan, C.; Sun, Y.; Wang, T. A High-Throughput Processor for GDN-Based Deep Learning Image

Compres-sion. Electronics 2023, 12, 2289. [CrossRef]
14. Joy, H.K.; Kounte, M.R.; Chandrasekhar, A.; Paul, M. Deep Learning Based Video Compression Techniques with Future Research

Issues. Wirel. Pers. Commun. 2023, 131, 2599–2625. [CrossRef]
15. Mochurad, L.; Dereviannyi, A.; Antoniv, U. Classification of X-ray Images of the Chest Using Convolutional Neural Networks.

IDDM 2021 Informatics & Data-Driven Medicine. In Proceedings of the 4th International Conference on Informatics & Data-Driven
Medicine, Valencia, Spain, 19–21 November 2021; pp. 269–282.

16. Zhai, D.; Zhang, X.; Li, X.; Xing, X.; Zhou, Y.; Ma, C. Object detection methods on compressed domain videos: An overview,
comparative analysis, and new directions. Measurement 2023, 207, 112371. [CrossRef]

17. Khuhawar, F.Y.; Bari, I.; Ijaz, A.; Iqbal, A.; Gillani, F.; Hayat, M. Comparative analysis of lossy image compression algorithms. Pak.
J. Sci. Res. 2023, 3, 136–147.

18. Brown, A.J.; Baburin, A.S. System and Method for Digital Video Management. United. States patent US 7,859,571, 28 December
2010.

19. Ameres, E.L.; Bankoski, J.; Grange, A.W.; Murphy, T.; Wilkins, P.G.; Xu, Y. Video Compression and Encoding Method. United.
States Patent US 7,499,492, 3 March 2009.

20. Wiseman, Y. Video Compression Prototype for Autonomous Vehicles. Smart Cities 2024, 7, 758–771. [CrossRef]
21. Klink, J.; Uhl, T. Video Quality Assessment: Some Remarks on Selected Objective Metrics. In Proceedings of the International

Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2020; pp. 1–6.
22. Grois, D.; Nguyen, T.; Marpe, D. Coding efficiency comparison of AV1/VP9, H.265/MPEG-HEVC, and H.264/MPEG-AVC

encoders. In Proceedings of the 2016 Picture Coding Symposium (PCS), Nuremberg, Germany, 4–7 December 2016; pp. 1–5.

https://doi.org/10.1109/ACCESS.2020.3020388
https://doi.org/10.1007/978-3-031-04809-8_9
https://doi.org/10.1016/j.eij.2022.06.009
https://handle.itu.int/11.1002/1000/14107
https://handle.itu.int/11.1002/1000/14107
https://doi.org/10.1016/j.compeleceng.2022.108164
https://doi.org/10.1017/ATSIP.2018.12
https://doi.org/10.3390/bdcc6020044
https://doi.org/10.1016/j.ins.2019.07.096
https://doi.org/10.1109/TMM.2020.2992968
https://doi.org/10.1016/j.cogr.2021.08.003
https://doi.org/10.48550/arXiv.1504.06993
https://doi.org/10.3390/electronics12102289
https://doi.org/10.1007/s11277-023-10558-2
https://doi.org/10.1016/j.measurement.2022.112371
https://doi.org/10.3390/smartcities7020031

Technologies 2024, 12, 52 21 of 21

23. Mukherjee, D.; Bankoski, J.; Grange, A.; Han, J.; Koleszar, J.; Wilkins, P.; Xu, Y.; Bultje, R. The latest open-source video codec
VP9—An overview and preliminary results. In Proceedings of the 2013 Picture Coding Symposium (PCS), San Jose, CA, USA,
8–11 December 2013; pp. 390–393.

24. Yasin, H.M.; Abdulazeez, A.M. Image Compression Based on Deep Learning: A Review. Asian J. Res. Comput. Sci. 2021, 8, 62–76.
[CrossRef]

25. Nandi, U. Fractal image compression with adaptive quadtree partitioning and non-linear affine map. Multimed. Tools Appl. 2020,
79, 26345–26368. [CrossRef]

26. Mochurad, L. Canny Edge Detection Analysis Based on Parallel Algorithm, Constructed Complexity Scale and CUDA. Comput.
Inform. 2022, 41, 957–980. [CrossRef]

27. Bykov, M.M.; Kovtun, V.V.; Kobylyanska, I.M.; Wójcik, W.; Smailova, S. Improvement of the learning process of the automated
speaker recognition system for critical use with HMM-DNN component. In Photonics Applications in Astronomy, Communications,
Industry, and High-Energy Physics Experiments; SPIE: Bellingham, WA, USA, 2019. [CrossRef]

28. Zhu, S.; Liu, C.; Xu, Z. High-Definition Video Compression System Based on Perception Guidance of Salient Information of a
Convolutional Neural Network and HEVC Compression Domain. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1946–1959.
[CrossRef]

29. Kamilaris, A.; Prenafeta-Boldú, F.X. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018, 156,
312–322. [CrossRef]

30. Albahar, M. A Survey on Deep Learning and Its Impact on Agriculture: Challenges and Opportunities. Agriculture 2023, 13, 540.
[CrossRef]

31. Hu, Y.; Yang, W.; Xia, S.; Cheng, W.H.; Liu, J. Enhanced intra prediction with recurrent neural network in video coding. In
Proceedings of the 2018 Data Compression Conference, Snowbird, UT, USA, 27–30 March 2018; p. 413.

32. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

33. Habibian, A.; Rozendaal, T.V.; Tomczak, J.M.; Cohen, T.S. Video Compression with Rate-Distortion Autoencoders. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 7032–7041.
[CrossRef]

34. Toderici, G.; O’Malley, S.M.; Hwang, S.J.; Vincent, D.; Minnen, D.; Baluja, S.; Covell, M.; Sukthankar, R. Variable Rate Image
Compression with Recurrent Neural Networks. arXiv 2015, arXiv:1511.06085.

35. Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.

36. Setiadi, D.R.I.M. PSNR vs. SSIM: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021, 80,
8423–8444. [CrossRef]

37. YouTube. YOUTUBE UGC Dataset. 2021. Available online: https://media.withyoutube.com/ (accessed on 13 April 2024).
38. Singhal, A. Introducing the Knowledge Graph: Things, Not Strings. 2012. Available online: https://blog.google/products/

search/introducing-knowledge-graph-things-not/ (accessed on 13 April 2024).
39. Winkler, S. Analysis of Public Image and Video Databases for Quality Assessment. IEEE J. Sel. Top. Signal Process. 2012, 6, 616–625.

[CrossRef]
40. Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale cluster management at Google with Borg.

In Proceedings of the Tenth European Conference on Computer Systems (EuroSys 1‘5), Association for Computing Machinery,
New York, NY, USA, 21–24 April 2015; Article number 18. pp. 1–17. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.9734/ajrcos/2021/v8i130193
https://doi.org/10.1007/s11042-020-09256-z
https://doi.org/10.31577/cai_2022_4_957
https://doi.org/10.1117/12.2536888
https://doi.org/10.1109/TCSVT.2019.2911396
https://doi.org/10.1017/S0021859618000436
https://doi.org/10.3390/agriculture13030540
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1109/ICCV.2019.00713
https://doi.org/10.1007/s11042-020-10035-z
https://media.withyoutube.com/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1109/JSTSP.2012.2215007
https://doi.org/10.1145/2741948.2741964

	Introduction
	Related Work
	Materials and Methods
	Video Compression
	Popular Codecs for Video Encoding
	Machine Learning Algorithms for Video Compression
	Evaluation Metrics

	Results
	Search and Description of the Dataset
	Implementation of Algorithms

	Discussion of Results
	Conclusions
	References

