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Abstract: This article explores the integration of Digital Twins in Systems and Predictive Medicine,
focusing on eye diagnosis. By utilizing the Digital Twin models, the proposed framework can support
early diagnosis and predict evolution after treatment by providing customized simulation scenar-
ios. Furthermore, a structured architectural framework comprising five levels has been proposed,
integrating Digital Twin, Systems Medicine, and Predictive Medicine for managing eye diseases.
Based on demographic parameters, statistics were performed to identify potential correlations that
may contribute to predispositions to glaucoma. With the aid of a dataset, a neural network was
trained with the goal of identifying glaucoma. This comprehensive approach, based on statistical
analysis and Machine Learning, is a promising method to enhance diagnostic accuracy and provide
personalized treatment approaches.

Keywords: medical informatics; digital twin; predictive medicine; systems medicine; genetic eye
diseases; glaucoma

1. Introduction

In the current medical context, according to a study conducted in recent years by the
World Health Organization (WHO) [1], the number of individuals identified with visual
impairments or blindness has significantly increased, reaching a global level of 2.2 billion,
underscoring that ocular diseases pose a major challenge to the healthcare system.

Among the categories predisposed to the onset of eye diseases, individuals over the age
of 50 stand out, and the causes leading to these impairments are represented by glaucoma,
refractive errors, cataracts, diabetic retinopathy, and age-related macular degeneration.
From an economic standpoint, regions with low and middle incomes have identified the
most cases of visual impairments, both at a distance and nearby. According to [1], 80% of
near-vision impairments have been identified in Western, Eastern, and Central sub-Saharan
Africa—regions with low and middle incomes, while in North America, Australia, and
Western Europe, less than 10% of cases were reported—regions with high incomes.

Based on the statistics presented in [1], one of the main causes of blindness is repre-
sented by glaucoma, with over 76 million people diagnosed with this condition in recent
years. Due to the fact that glaucoma is asymptomatic in its early stages and progresses
slowly, approximately half of the diagnosed individuals were unaware of the existence
of this condition in their eyes. Thus, the WHO aims to conduct awareness and education
campaigns for patients regarding the importance of eye care, and accessibility to healthcare
services, thereby fostering the development of a patient-centered approach.
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With rapid technological evolution, the world is in the midst of a process of continuous
adjustment and change. By interconnecting the concepts of Digital Twin, Systems Medicine,
and Predictive Medicine, revolutionary medical approaches can prioritize patients’ health
and safety.

The concept of a Digital Twin [2] originates from Michael Grieves’ 2003 presentation
on product life-cycle management based on his work with John Vickers [3]. Grieves and
Vicker’s motivation for developing the concept was to shift from the predominantly paper-
based and manual product data to a digital model of the product which would become
foundational for life-cycle management.

Systems Medicine [4] represents an innovative approach to understanding both health
and disease, providing personalized insights into each individual’s unique health journey
across molecular, cellular, and organ levels.

Predictive Medicine [5] involves the proactive identification of changes in a patient’s
health condition before the onset of noticeable deterioration or improvement. Predictive
Medicine also plays a crucial role in anticipating and managing therapy-related side effects,
and optimizing patient care outcomes.

With the rapid evolution of technology and the world undergoing continuous transfor-
mation and change, we have set out to explore the use of Digital Twins in ophthalmology by
creating an architectural framework that integrates datasets to make predictions regarding
the identification of glaucoma. By integrating a dataset containing medical images and
the results of ophthalmological examinations, along with information derived from the
patient’s history, glaucoma can be identified. Through the integration of Systems Medicine
into the construction of a Digital Twin, genes that may influence predispositions to inherited
pathologies can be detected, thereby contributing to increased accuracy in the provided
results. To achieve this goal, we propose the utilization of Machine Learning to develop a
model aimed at supporting early diagnosis and predicting the progression of glaucoma,
thereby assisting clinicians in selecting the appropriate treatment.

Creating a Digital Twin associated with the patient contributes to monitoring the
patient’s health status and constructing personalized treatment plans [6]. Additionally,
Systems Medicine and Predictive Medicine will identify various approaches to highlight
complex interactions in the human body at different levels of organization [7]. Through
DNA sequencing and the use of imaging protocols, biosensors, and wireless health moni-
toring devices, genetic mutations that lead to the onset of hereditary pathologies can be
identified. Based on these results, the risk of each patient developing such pathologies
can be evaluated [8]. Thus, through the use of genetic sequencing procedures and genetic
tests, patients have the opportunity to analyze their DNA and identify any genetic muta-
tions, which can provide information related to early diagnosis and the development of an
optimal solution for personalized treatment.

The integration of Digital Twins, Systems Medicine, and Predictive Medicine in oph-
thalmology can lead to significant cost reduction by improving disease management,
decreasing the need for costly medical interventions through early detection of eye diseases,
and simulating the progression of pathologies. Another factor could be the optimization
of treatment for each patient through predictive analyses, thereby reducing the risk of
providing ineffective treatments. Furthermore, it should be mentioned that in the creation
of the Digital Twin associated with the patient for the identification of glaucoma, ensuring
the accuracy of the results requires the utilization of large volumes of data, and the process
of collecting, processing, and transforming them into information is time-consuming. Ad-
ditionally, issues related to the confidentiality and security of patient data, as well as the
ethical risks that may arise, need to be addressed.

However, one of the limitations is the monitoring of the progression of pathologies
because there are no sensors to capture real-time information from the patient, and moni-
toring can only be carried out with the help of a specialist doctor. Thus, monitoring can be
performed by the specialist doctor at well-defined time intervals depending on the pathol-
ogy. They will input the data obtained from the consultation regarding the patient’s health
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status, which will lead to the establishment of a human-to-machine (H2M) connection.
Therefore, with the help of the Digital Twin, healthcare personnel are provided with an
integrative approach regarding the identification of predispositions to certain pathologies,
the early detection of these pathologies, treatment suggestions, the visualization of the
stages of progression, and the patient’s reactions to the proposed medication.

The paper is structured as follows: the specialized literature discusses selected def-
initions for the concepts of Digital Twin, Systems Medicine, and Predictive Medicine.
(Section 2.1), respectively, in ophthalmology (Section 2.2), highlighting their potential ben-
efits and relevance in this field. Section 3.1 introduces an architectural framework for
Digital Twin in ophthalmology, while Section 3.2 focuses on identifying risks and assessing
vulnerability in the context of Digital Twin. Subsequently, in Section 4, the datasets used for
statistical analysis (Section 4.1) and the architecture of the neural network (Section 4.2) are
presented. Following this, the research results are presented in Section 5, and several direc-
tions for future research are discussed in Section 6. The paper concludes by summarizing
the key findings and insights drawn from the preceding sections—Section 7.

2. Digital Twin, Systems Medicine and Predictive Medicine
2.1. Digital Twin, Systems Medicine and Predictive Medicine in Literature

• Digital Twin

Regarding the application of Digital Twins in medicine, one of the central character-
istics that has played a significant role in shaping this study has been specificity. Unlike
other fields of application such as manufacturing, energy production, and smart cities, the
specificity of Digital Twins in medicine leads to obtaining a complex image of the human
body starting from genes, cells, organs, and organ systems, thus providing a personalized,
patient-centered approach [9]. These data will be transformed into information and used
for modeling and simulating patient behavior, continuously monitoring health, identifying
pathologies, and providing personalized treatments. In specialized literature, various
definitions for the human Digital Twin can be identified.

• Son et al. [10]—“A human Digital Twin could show what is happening inside the
linked physical twin’s body, making it easier to predict the occurrence of an illness
by analyzing the real twin’s personal history and the current context such as location,
time, and activity”.

• Ala-Laurinaho et al. [11]—“An emerging approach for disease treatment and pre-
vention encompassing the use of new diagnostics and therapeutics, targeted to the
needs of a patient based on their own genetic, biomarker, phenotypic, physical, or
psychosocial characteristics”.

• Bruynseels et al. [12]—“Human Digital Twins—the assumption that one is in pos-
session of a data magnifying glass, that gives a detailed account of the molecular,
phenotypic, and lifestyle history of persons”.

• Shengli [13]—“A human Digital Twin is a copy or counterpart in cyberspace of a real
person in our physical world. It is the digital description of you in a digital manner on
a computer or server in the cloud. The model analyzes the timely data, historic data,
the data from your relatives, and obtains insight from these data by Cloud Computing,
Deep Learning, etc.”.

According to the definitions presented earlier, creating a Digital Twin associated with
the patient involves integrating various sources of data (biological data, genetic data,
biomarkers, phenotypic characteristics, psychosocial data) and emerging technologies
(Deep Learning and Cloud Computing) to obtain a holistic image of the human body. Thus,
the Digital Twin is not just a virtual representation of the human body but serves as a
dynamic reflection of the patient’s health status and the evolution of their pathologies in
real time. Continuous data monitoring aims to support clinicians in identifying risk factors
and trends that lead to early diagnosis of diseases and provides various suggestions for
personalized treatment. The Digital Twin can help reduce the risks associated with the
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occurrence of side effects, improve treatment effectiveness, and offer new opportunities in
terms of diagnosis, personalized treatment, and disease prevention.

• Systems Medicine

Systems Medicine [14] represents a systemic approach to modern medicine that in-
tegrates information from several sources such as systems biology and bioinformatics
(genomic, transcriptomic, proteomic, metabolomic, and imaging data), as well as mathe-
matical modeling at the physiological level for clinical applications. Using these integrative
approaches, the functional and morphological structures of the organs can be analyzed,
starting with DNA sequencing. Additionally, genetic pathologies that may appear at the
level of these organs are detected. In the specialized literature, different definitions of
Systems Medicine can be identified.

• Benson [15]—“Systems medicine encompasses the application of theoretical strategies
through iterative and reciprocal exchanges of inputs between physicians, biologists,
pharmacologists, bioinformaticians, and mathematicians in the fields of medical con-
cepts, study, and practice”.

• Cascante et al. [16]—“The driving force behind the eventual improvement of pa-
tient outcomes is, therefore, the recurrent interaction between bedside examinations,
experimental models, and statistical analyses”.

• Bousquet et al. [17]—“Systems Medicine is the latest definition of pediatric allergic
diseases over a systematic translational approach involving detection, diagnosis,
prevention, and therapy”.

• Mayer et al. [18]—“System-based modeling also resulted from heterogeneous and
daunting conditions, such as irritable bowel disease”.

• Hood and Flores [19]—“Systems Medicine is a systemic approach to medicine and
health that identifies all the components of a system and the interactions between them.
Thus, the complex processes of the human body are characterized by interactions at
the level of structural and functional organization”.

According to the definitions presented earlier, Systems Medicine represents a medical
paradigm that integrates knowledge from a diverse range of fields and promotes collabora-
tion among physicians, biologists, pharmacologists, bioinformaticians, and mathematicians.
By integrating laboratory research, clinical observations, and statistical analyses, Systems
Medicine focuses not only on diagnosing pathologies and providing personalized treat-
ment but also on prevention. The application of systemic models allows for the analysis
of interactions between different levels of the organism, from the molecular and cellular
levels to tissues and organs, and the identification of underlying connections. In conclusion,
Systems Medicine can contribute to shaping a comprehensive perspective on the diagno-
sis, treatment, and prevention of diseases, laying the foundation for a patient-centered
healthcare system.

Predictive Medicine is an approach to modern medicine that utilizes information
about a person’s genes, proteins, or clinical information to prevent, diagnose, or treat
a disease. In [20], Valet and Tárnok highlighted that the goal of Predictive Medicine
involves identifying shifts in a patient’s health condition before any visible deterioration or
improvement occurs in their current status. The authors presented the role of Predictive
Medicine for patients of different ages (newborns, children, and the elderly) in the detection
of complex diseases such as cancer, leukemia, diabetes, and asthma through their early
identification and the adoption of therapeutic measures before the appearance of symptoms.

Thus, Digital Twin, Systems Medicine, and Predictive Medicine—Figure 1, redefine
the paradigm of modern medicine, shaping an interdisciplinary and personalized approach
to human health. The Digital Twin, through the integration and processing of data from
patients, along with the technologies used, constructs a holistic picture of the patient’s
health status, reflecting the dynamism and interactions at the level of various components
in real time. With the help of Systems Medicine, connections between the various levels of
the human body are identified, highlighting the establishment of dependencies and rules
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that lead to the prevention, and diagnosis of pathologies, and the patient’s response to
personalized treatment. Through the models and results provided by Predictive Medicine,
personalized recommendations for diagnosis and treatment are offered, and by analyzing
risk factors, predispositions to certain pathologies can be identified.

Figure 1. Interconnection of the Digital Twin, Systems Medicine and Predictive Medicine.

2.2. Digital Twin, Systems Medicine and Predictive Medicine in Ophthalmology

Following research on the application of the Digital Twin in medicine, we observed
that one of the promising yet underexplored research directions is represented by ophthal-
mology, an area within Systems Medicine and Predictive Medicine where the utilization of
Digital Twins holds particular promise. Starting from DNA sequencing, we can identify
the gene mutations that predispose individuals specifically to glaucoma.

Glaucoma [21] is a progressive eye disease that leads to irreversible vision loss due to
damage to optic nerve fibers. Risk factors contributing to the development of glaucoma
include increased intraocular pressure, ocular trauma, chronic conditions like diabetes,
prolonged corticosteroid treatment, myopia, hyperopia, and genetic predisposition. Various
types of glaucoma have been previously identified.

• Congenital glaucoma is a rare eye condition (optic neuropathy) that predominantly
affects males. This disease may manifest during the neonatal or early infantile period
and is characterized by symptoms such as sensitivity to light and ocular discomfort.
Primary congenital glaucoma (PCG) is an autosomal recessive disorder largely attributed
to mutations in CYP1B1, and to a lesser extent, in LTBP2, TEK, MYOC, and FOXC1 [22].

• Primary open-angle glaucoma (POAG) [23] is the most common form of glaucoma and
is associated with increased intraocular pressure (IOP) (>21 mmHg) and an open
iridocorneal angle (35◦–45◦). Another manifestation is central retinal venous occlusion
(the stoppage of circulation in the central vein of the retina or in one of its branches);
heredity is one of the factors that favor the appearance of this pathology. In [24],
Sears et al. highlighted that mutations in each of the three genes, myocilin (MYOC),
optineurin (OPTN), and TANK binding kinase 1 (TBK1), can cause primary open-angle
glaucoma (POAG).

• Primary closed-angle glaucoma (PCAG) is determined by an anatomical predisposition of
the eyeball, which leads to partial or total obstruction of the drainage of the aqueous
humor by blocking the angle at the periphery of the iris.

• Secondary open-angle glaucoma can be associated with intraocular tumors and eye hem-
orrhages, or it can be caused by treatment with cortisone and post-laser procedures.

• Secondary closed-angle glaucoma can be caused by pupillary block, which is determined
by intumescent cataract, or it can occur without pupillary block, as in neovascular
post-inflammatory glaucoma.

Thus, through the analysis of genomic data and multimodal data, glaucoma can
be predicted, prevented, identified, and managed. Moreover, personalized treatment
plans based on genetic characteristics should be developed to identify the most effective
treatment solutions. Continuous monitoring of the evolution of the pathology is achieved
by analyzing real-time data received from the patient which are integrated with their
medical history, as well as data obtained from regular medical examinations.
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As stated in the Section 1, there are no sensors capable of acquiring real-time informa-
tion directly from the eye, such as intraocular pressure, cup/disc ratio, or iridocorneal angle,
so monitoring the progression of glaucoma will be exclusively conducted during medical
consultations by the ophthalmologist. Thus, the absence of sensors for real-time monitor-
ing represents a limitation in managing this pathology. The implementation of a Digital
Twin focused on diagnosing glaucoma will utilize an integrated approach, conducted with
continuous communication with medical personnel who will assess relevant parameters
and adjust treatment according to the progression of the disease. The ophthalmologist
will provide continuous feedback to the Digital Twin system regarding treatment sugges-
tions, which contributes to training the system so that through ongoing data collection and
analysis processes, it improves the accuracy of the results provided.

Regarding the use of the Digital Twin for diagnosing glaucoma, this could be applied
both in the ophthalmologist’s office and on a large scale in medical clinics or hospitals.

The use of the Digital Twin in an ophthalmologist’s office emphasizes the importance of
direct interaction between the doctor and the patient, facilitated by the doctor’s continuous
access to the patient’s medical history and immediate interpretation of the results provided
by the Digital Twin. However, one limitation is that the Digital Twin system can only
be trained with data obtained from the respective doctor’s patients. To provide results
with a high degree of accuracy, the system needs to be trained with large volumes of
data, suggesting that the use of Digital Twins for diagnosing glaucoma would be more
efficient in medical clinics and hospitals. In this case, within a large number of patients,
the Digital Twin could be used to automate the diagnostic process and reduce the time
spent in ophthalmologic consultation, while the final decision still remains solely with the
specialist doctor.

Regarding the costs of using a Digital Twin in an ophthalmologist’s office, one must
consider the initial expenses related to acquiring equipment for collecting patient data,
specialized software for processing and analyzing data, as well as for developing and
implementing prediction and diagnostic algorithms. Other costs could include training
qualified personnel who will utilize the data provided by the Digital Twin, thereby incurring
maintenance costs. At the clinic level, costs will be much higher as the system needs to
serve a larger number of doctors and patients, simultaneously managing large volumes of
data. Thus, the costs of acquiring the infrastructure capable of supporting a large number of
users increase significantly. In both cases, to avoid ethical issues, a budget must be allocated
for implementing security measures, including data encryption and confidentiality, access
monitoring, security testing, and cyber attack detection.

Thus, the Digital Twin represents a decision support tool for physicians, providing
them with real-time predictive analyses regarding diagnosis and personalized treatment,
facilitating the communication between the doctor and patient both in the physician’s office
and in medical clinics.

3. Architectural Framework for Digital Twin, Risks and Vulnerabilities
3.1. An Architectural Framework for Digital Twin in Ophthalmology

The architecture proposed (Figure 2) in this chapter is based on the architecture
presented in [25] and facilitates the construction of a Digital Twin associated with the
patient, aimed at providing decision support to the physician in diagnosing glaucoma.
From a structural point of view, it is composed of five layers: Data Acquisition and
Dissemination, Data Management and Synchronization, Realization of the Digital Twin
Associated with the Patient, Virtualization and Accessibility, and a Comprehensive Layer
for Enhanced Security and Cybersecurity, which provides a systematic view of the system.
The initial layers focus on collecting and managing patient data, while in subsequent layers,
these data will be used to construct a Digital Twin associated with the patient, integrating
various parameters for glaucoma diagnosis. The final layer of the architecture focuses on
the security of the entire system, aiming to ensure users’ data confidentiality, integrity, and
availability. All these layers provide a robust framework for constructing the Digital Twin.
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Figure 2. Digital Twin Architecture.

The first layer is represented by Data Acquisition and Dissemination—Figure 3. At this
stage, the emphasis is on the patient’s medical history, initial evaluation, data related to
previous eye disorders, current medications, as well as corneal and pupil dimensions.
These data will be used for constructing a Digital Twin associated with the eye.

The second stage involves acquiring data from the ophthalmological examination—
Tabel 1, which includes measuring intraocular pressure and testing visual acuity. If the
eye’s anatomy suggests a predisposition to primary open-angle glaucoma, Pentacam is
used. The irido-corneal angle (whether closed or open) is also evaluated, followed by a FO
(funduscopic examination) to determine the cup/disc ratio (c/d) implicitly detecting the
presence of optic disc hemorrhages. The c/d ratio typically ranges between 0.3 and 0.4 for
normal values, but for patients with glaucoma, it increases, often reaching 0.6 to 0.8.

Corneal pachymetry will be conducted to measure the thickness of the cornea, as a
thin cornea (below 550 microns) is a risk factor for the progression of open-angle glaucoma.
Additionally, OCT (Optical Coherence Tomography) of the optic nerve or retina will be
performed to detect structural changes that may occur at the level of the optic nerve fibers.
If the patient is in the follow-up stage of this pathology, this information will be added to
the patient’s medical history.

By employing Systems Medicine, the model of the Digital Twin associated with the eye
will incorporate the patient’s genetic information, including the presence of gene mutations
that predispose to glaucoma. Consequently, following the integration of genetic factors, the
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focus shifts to a systemic approach that forms the basis for predictive medicine. It aims to
achieve the early diagnosis of various types of glaucoma, personalized treatment provision,
and monitoring of the patient’s response to prescribed medication.

Table 1. The patient’s acquired data for glaucoma identification.

Stage The Patient’s Acquired Data

Information about the patient
• Patient’s medical history
• Data related to previous eye disorders
• Current medications

Data acquisition from the
ophthalmological examination

• Measurement of intraocular pressure
• Testing visual acuity
• Evaluation of irido-corneal angle
• Determining cup-disc ratio
• Measurement of corneal thickness
• Detection of structural changes at the level of the

optic nerve fibers

Genetic Information • Presence of gene mutations predisposing
to glaucoma

Figure 3. Data acquisition and Dissemination Layer.

Once these data are acquired, they are transmitted to the Data Management and Synchro-
nization Layer—Figure 4, which incorporates functionalities such as data storage, processing,
mapping, and fusion. Simultaneously, the security, authenticity, and integrity of the data
are ensured using encrypted communication protocols, at least TLS 1.1 (Transport Layer
Security). Additionally, at the database level, it is recommended to implement backup and
restoration procedures. The implementation of backup and restore procedures contributes
to maintaining operational continuity in exceptional situations arising from unexpected
incidents such as cyber-attacks or temporary data unavailability. All these events lead to
significant delays in the glaucoma identification process and to the blocking of access to
information. Also, from a legislative perspective, the implementation of backup and restore
procedures is carried out in accordance with medical security standards, aiming to reassure
patients that their sensitive information is adequately protected and to support the quality
of medical services.

Recurrent testing and updating of the software will be performed through Penetration
Testing and periodic vulnerability scanning. The data from the patient’s medical history
and ophthalmological examination are processed and analyzed. Subsequently, they are
utilized in the simulation, evaluation, and prediction of potential eye pathologies. By
conducting these security tests, we identify potential vulnerabilities that attackers could
exploit, which is essential for preventing unauthorized access to sensitive patient data.
Identifying and addressing vulnerabilities, as well as retesting the system, ensure users
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have a high level of security regarding the use of the Digital Twin. The data obtained from
medical consultations represent sensitive information for glaucoma identification, and any
modification or unauthorized access to these data can affect the integrity and reliability of
the Digital Twin.

Once storage in a database is complete, the data are preprocessed to eliminate redun-
dant information. Data cleaning methods can be employed, along with data compression,
smoothing, reduction, and transformation techniques. One of the reasons that justifies
performing the data cleaning process is to ensure their quality. Data cleaning involves
removing deficiencies and inconsistencies that arise during the data collection process.
Data standardization is carried out to comply with the required formats that will later be
incorporated into the prediction algorithms used by the Digital Twin. Another step in the
data cleaning process involves reducing their size and complexity. Removing irrelevant
information and applying compression and optimization techniques leads to improving
the accuracy and performance of the Digital Twin.

Subsequently, the data undergo analysis using various statistical methods (such as
correlation analysis, regression analysis, and discriminant analysis) or neural network
approaches (including neural networks based on gradient algorithms and optimal regular-
ization methods like feedback networks such as the Hamming network and wavelet neural
network) [26]. Furthermore, data analysis using the statistical methods mentioned earlier
is carried out to detect incomplete data stored in the database and to identify discrepancies
between the datasets used. Additionally, this analysis contributes to ensuring high data
accuracy, which will influence the efficiency of prediction algorithms for glaucoma detec-
tion. Another argument supporting the data analysis process using statistical methods is
the identification of correlations and relationships between parameters to contribute to
identifying trends and patterns associated with glaucoma diagnosis.

Data mapping involves synchronously mapping and correlating physical data with vir-
tual operations, based on data storage and processing. It encompasses data time sequence
analysis, data correlation, and data synchronization [27].

The methods used for data fusion include synthesis, filtering, correlation, and integra-
tion. Data fusion can be performed at both the raw data level and the decision level using
various methods such as Kalman filtering, Bayesian estimation, classical reasoning, and ar-
tificial intelligence. Working with real-time data may pose storage-related problems, while
complex processing algorithms can lead to issues related to massive data processing [26].

Figure 4. Data Management and Synchronization Layer.

As a result of the data processing carried out in the second layer, predictive medical
models will be developed in the Realization of the Digital Twin Associated with the Patient
Layer—Figure 5. These models can highlight structural and functional changes that may
occur at the eye level, aiding in the continuous and predictive monitoring of the patient’s
health status. The Digital Twin will send alerts to the medical staff to illustrate the predicted
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behavior of the patient regarding the progression of the pathology or the adjustment of
treatments depending on the context.

At this layer, patient data have already been processed, and the use of Machine Learn-
ing assists in developing personalized predictive models for each patient. These predictive
models are trained to recognize glaucoma based on the patient-derived data. Addition-
ally, the use of Machine Learning for integrating glaucoma prediction contributes to the
development of personalized decision support systems based on various demographic
parameters such as age, gender, race, as well as other medical conditions associated with
the goal of providing individualized treatment and management recommendations.

Retinal images will undergo processing, utilizing the insights presented in [28] as a
foundational reference. From these images, anatomical features such as Optic Cup to Disc
Ratio (CDR), Retinal Nerve Fiber Layer (RNFL), Peripapillary Atrophy (PPA), Neuroretinal
Rim Notching, and Vasculature Shift will be automatically extracted to diagnose potential
cases of glaucoma. Various methods are employed for optic disc detection and center
localization, including Local Contrast Color Enhancement, Thresholding Highest Pixel
Intensities, and Shade Correction using morphology. As detailed in [28], the highest accu-
racy is achieved using the latter method, with an impressive percentage of 94.7%. For PPA
detection, Haleem et al. [28] employed the Disc Difference Method, yielding an accuracy
of 95%, while GLCM-Based Texture analysis resulted in 92.5% accuracy. Additionally,
GLCM-Based Texture analysis was utilized for PPA extraction, achieving an accuracy of
73%. The employed extraction methods encompass Directional Gabor Filters, Markov
Random Fields, and Intensity Profile Plotting, with the latter method attaining an accuracy
of 91.5%.

In addition, at this layer, predictions will be made to illustrate how Primary Open-
Angle Glaucoma evolves over the next five years if the patient complies with the recom-
mended medical treatment [29]. To make these predictions, linear regression was used.

To identify the evolution rules of the patient’s data, a mining algorithm with sequence
mode was used. Once the Digital Twin associated with the eye is created, the data generated
during periodic eye examinations can be used to evolve the model. By tracking the
glaucomatous status through IOP measurements and data from medical imaging, both
the patient and the doctor will receive information about the recommended medication or
surgical intervention, as well as the interval until the next consultation [30].

• If the IOP has not increased compared to the previous examination conducted no more
than six months ago, the patient will be advised to undergo another ophthalmological
examination after six months.

• If the IOP has not increased compared to the previous examination conducted more
than six months ago, the patient will be advised to undergo an eye examination after
12 months.

• If the IOP has increased compared to the previous examination, the patient will be
advised to undergo an eye exam after 1–2 months.

• If the IOP has not increased compared to the previous examination, but there has been
progression in other aspects, an ophthalmological examination will be recommended
after 1–2 months.

• If the IOP has not increased compared to the previous examination and there has
been no progression in other aspects, an ophthalmological examination will be recom-
mended after 3–6 months.

In addition, the most appropriate treatment options will be suggested to the patient,
including local medication (administering daily drops every 8, 12, or 24 h throughout life),
general medication (tablets or intravenous infusions to lower intraocular pressure), laser
therapy, or surgery.

The fourth layer in the Digital Twin architecture, the Virtualization and Accessibility
Layer—Figure 6, associated with the eye, contributes to improving operational efficiency
and facilitates the identification, diagnosis, and provision of personalized treatments
to patients.
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Figure 5. Realization of the Digital Twin Associated with the Patient Layer.

This layer contains two blocks: User Interface and Application and User. The User
Interface contains a service request interface through which both medical staff and patients
can follow the updates that have been realized. In addition, a service and platform operation
interface is provided, where stakeholders can follow the method of glaucoma diagnosis and
treatment suggestions. The application and the user provide user access to interact with
different CloudDTH platforms while supporting efficient task coordination [31]. Hence,
end users, entities, and processes are provided with access to observe simulation results
from digital models, enabling them to make decisions concerning the monitoring of patient
pathologies. By employing diverse methods of data visualization and accessibility, the
Digital Twin facilitates the optimization of healthcare services.

Figure 6. Virtualization and Accessibility Layer.

The layer for Enhanced Security and Cybersecurity—Figure 7, represents the last layer
in the Digital Twin architecture. It focuses on ensuring the security of the entire system,
platform, and network, including the user data. Furthermore, it seeks compliance with
security standards while ensuring confidentiality, integrity, and availability of data. Data
security procedures are implemented at the level of this layer in terms of user authentication,
data encryption, monitoring, and auditing, implicitly managing their lifecycle. In addition,
security controls are implemented to ensure protection against cyber-attacks. Periodic
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security testing is recommended to identify potential vulnerabilities at each layer of the
Digital Twin.

Recurring backup and restoration procedures should be carried out to avoid the prob-
lems that may arise as a result of data theft, modification, or deletion. At the management
level, the aim is to implement an incident response plan that contains the presentation of
the way to respond in the event of cyberattacks, respectively, non-compliance with data
security regulations such as GDPR (General Data Protection Legislation), HIPAA (Health
Insurance Portability and Accountability Act), or PCI DSS (Payment Card Industry Data
Security Standard). Also, in the medical field there are standards for the exchange of infor-
mation such as HL7 (Health Level Seven International), and IHE (Integrating the Healthcare
Enterprise), respectively, “standardized management of the system” to standardize the way
of collecting, sharing and managing medical data.

Figure 7. Enhanced Security and Cybersecurity Layer.

3.2. Risks and Vulnerabilities at the Digital Twin Level

• The risks of doctor reputation and patient health in Digital Twin for glaucoma detection

Using the Digital Twin for detecting glaucoma and providing treatment suggestions
poses a series of risks, which will be outlined below. As mentioned earlier, the Digital Twin
serves as a decision support tool for physicians, tasked with conducting predictive analyses
regarding glaucoma detection and providing various scenarios for its progression. Thus,
the use of a Digital Twin in this context cannot directly influence the patient’s health status.
However, the decision-making process may be affected by errors occurring during the data
collection process from the patient, which will train the algorithm responsible for detecting
glaucoma and providing treatment suggestions, thus impacting the relationship between
the physician and the patient.

One of the risks could be the constant provision of inaccurate information by the
Digital Twin. Emphasizing that the physician is the one proposing the optimal treatment
solution, the patient might perceive the version suggested by the Digital Twin as favorable.
This can lead to a decrease in the patient’s trust in the physician’s ability to provide a
correct diagnosis and prescribe appropriate treatment.

Initially, the Digital Twin system will provide diagnostic and treatment information
with a low level of accuracy. With the continuous training of the system using feedback from
the specialist physician, the accuracy level of the system will increase. Thus, processing
large amounts of data from both patients and medical personnel may cause delays in the
diagnostic and treatment procedure provided by the Digital Twin. In this context, the doctor
may wait for the response provided by the Digital Twin, which could lead to excessive
dependence on technology. From the patient’s perspective, trust in the specialist doctor
may be diminished, resulting in a decrease in reputation.
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Another risk could be represented by the confidentiality of the data obtained, stored,
and processed during the ophthalmologic consultation by the Digital Twin in accordance
with legislative standards. In this case, the risk of damaging the doctor’s reputation could
be represented by the lack of trust from the patient in the medical staff’s ability to protect
sensitive information and use it for personal purposes.

Also, one of the paramount elements in the relationship between doctor and patient is
transparency and communication. Therefore, the patient desires the doctor to consistently
explain how the Digital Twin provides the diagnosis and offers treatment suggestions. The
lack of effective communication and discussion based on the suggestions received from
the Digital Twin can lead to the formation of an opinion where the doctor is perceived as
lacking professionalism and not providing the best treatment solution.

In conclusion, to avoid the occurrence of risks that could diminish the reputation of the
specialist doctor, the emphasis is on finding a balance between the use of technology and
the clinical skills of the doctor. This involves making decisions ethically and responsibly,
alongside maintaining genuine communication with the patient.

• Cybersecurity challenges and research frontiers for Digital Twin

The identification of risks is carried out by taking into account all the information con-
tained in the assets, parties involved, and contractors, but also as a result of the exploitation
of threats and existing vulnerabilities. The sources of the risks will be identified (human
errors, component failures), the consequences, the results, the impact (unavailability of
services, loss of data, theft of information), the reasons that led to their appearance (incor-
rect application of the prediction algorithm, training prediction algorithm with modified
data), protection mechanisms, existing controls (control systems, detection, compliance
with procedures, standards), and the time and level of the Digital Twin at which they can
occur [32].

Threats to physical assets, service unavailability, data compromise, technical failures,
internal threats (usually caused by insiders leading to information extraction), and external
threats (hardware component failures, software errors, asset deletion, criminal acts, and
espionage) [33] can impact the cybersecurity of a digital twin system.

Human Digital Twins are critical systems where confidentiality (C), integrity (I), and
availability of data (A), as well as entity assets (E) and their location (L) are emphasized.
In addition, security threats affect the operational requirements of Digital Twins, such as
their performance, reliability, maintainability, and interoperability. It is recommended to
perform security analysis at the Digital Twin layer level. Large-scale attacks mainly target
patient data processing, predictive medical models, multimodal retinal image processing
algorithms, artificial intelligence, virtualization platforms, and networks. The attack can
be launched at the level of the physical asset (at the equipment level where patient data
will be received as a result of the medical examination) and its digital counterpart. At
the Digital Twin level, there can be exploits for all the components that provide resources
for distributed and centralized computing for the entire network, as well as for security
settings that can enable the execution and management of critical data involved in various
decision processes. Regarding the compromise of the Digital Twin, one can consider the
existence of an attack at the level of the physical asset by modifying the input data carried
out in layer 1 implicitly in the processes of processing and representing them in layers 2–4.
Moreover, the existence of an attack on its digital counterpart that will occur in layers 2–4
will modify the outputs that will then be transmitted to layer 1, thereby not achieving the
desired behavior of the physical asset. Thus, Digital Twin cannot assist medical staff in
diagnosing and prescribing personalized treatments. In [33], Alcaraz and Lopez identified
a series of vulnerabilities that can appear at the Digital Twin level, which are highlighted in
Figure 8.

Periodic vulnerability scanning at the level of each layer of the Digital Twin is recom-
mended to identify the misconfigurations and security issues of physical and virtual assets.
Once the potential vulnerabilities have been identified, the focus is on fixing them by imple-
menting corrective measures, such as software updates, appropriate system configuration,
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and default user access policy. The continuous monitoring and reporting of vulnerabilities
are important steps in protecting against cyberattacks. Another way to identify threats
through exploitation is to become the source of cyberattacks, represented by security tests.
The first stage is the identification of potential threats to which the Digital Twin is subjected,
which contributes to the development of scenarios and the choice of testing methodology.
Depending on the type of test chosen, which can take place at the level of the Digital Twin
infrastructure, the network, the construction of medical-predictive models, the storage
platform, and the data visualization, the cyberattack will be simulated. Following the simu-
lations, potential threats are identified, and a report containing the risks, vulnerabilities,
and recommendations for their remediation is produced. After the implementation of the
suggested measures, retesting and continuous monitoring are recommended.

Figure 8. Vulnerabilities at the Digital Twin level.

Thus, through periodic vulnerability scanning at the Digital Twin level, both the
security, integrity, and confidentiality of patient data, as well as medical processes, can
be ensured. To improve security measures, a multi-level approach is proposed, involving
both implementing security controls at each layer of the Digital Twin and taking corrective
actions and continuous monitoring of the system. As a result of identifying vulnerabilities,
the corrective measures that need to be implemented are those mentioned earlier, referring
to software updates, system configuration adjustments, and the implementation, and
implicit compliance with access control policies. Continuous monitoring of the system
contributes to the real-time detection of suspicious activities and allows timely remedial
actions to be taken. Also, following the security tests, the generated reports contain
information about the risks and vulnerabilities identified, providing recommendations for
addressing these situations.

4. Materials and Methods

In the context of this study, the focus was on outlining an architectural framework
for creating a Digital Twin associated with the patient, integrating concepts of Predictive
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Medicine. Thus, a methodological approach was conducted, starting with the selection of
datasets used for conducting statistical analyses based on various demographic parameters
such as age, gender, and race of the patients. The study continues with the training of
the neural network aimed at identifying the presence of glaucoma and presenting the
obtained results.

4.1. Datasets

The dataset Harvard Glaucoma Fairness with 3300 Samples (Harvard-GF3300) [34,35]
was used to perform the statistics. The data categories contained in this set are represented
by OCT (Optical Coherence Tomography) RNFLT map (Noncontact and Noninvasive
Retinal Nerve Fiber Layer) of size 200 × 200, glaucomatous status, mean deviation value of
visual field, 52 total deviation values of visual field, patient age, male, patient race, marital
status, ethnicity, and language. Among the previously presented categories, glaucomatous
status, patient age, male, patient race, and marital status were selected for the statistics.
The analysis of the results is presented in Section 5.1. The dataset Harvard Glaucoma
Detection with 500 Samples (Harvard-GD500) [36,37] was used to train the neural network.
The dataset composition is presented in Section 4.2, while the results are presented in
Section 5.2.

4.2. Convolutional Neural Network Architecture

We will describe the neural network used for predicting the presence of glaucoma. Our
model was trained on the Harvard Glaucoma Detection (Harvard-GD500) dataset [36,37],
which contains 500 samples from 500 patients for glaucoma detection. The dataset samples
consist of retinal nerve fiber layer (RNFL) grayscale maps, each having a dimension of
225 × 225 pixels, accompanied by their corresponding visual field mean deviation and a
label indicating whether the patient has been diagnosed with glaucoma or not.

Because the dataset contains mixed data, including both images and numeric values
corresponding to the visual field mean deviation, we opted to use a multiple-input convolu-
tional neural network (CNN). Our initial step involved data normalization for consistency.
The RNFL grayscale image maps were normalized to the [0, 1] interval, while the visual
field MD values were normalized using the L2 norm to the [−1, 1] interval.

After normalizing the dataset, we split it into subsets as follows:

• Training—80% of the dataset was used to train the network.
• Validation—10% of the dataset was used for fine-tuning the model’s hyperparameters

and preventing overfitting during the training phase. This helps assess the model’s
performance on unseen data during training. Unfortunately, the dataset only con-
tains 500 samples, so we compromised and used only 10% for validation to avoid
underfitting.

• Testing—10% of the dataset was used to test the model. This serves as an independent
dataset, not used during training and validation, and is exclusively used after model
training to evaluate its performance on entirely new, unseen data.

The network architecture can be seen in Figure 9. We used the functional approach in
TensorFlow to create a multiple-input network.

The first branch of the network is dedicated to processing the RNFL maps. Convo-
lutional layers are used to extract features related to the hierarchical representation and
spatial hierarchy of the data. Early layers tend to learn simple features such as edges or
corners, while deeper layers capture more complex and abstract features by combining
information from previous layers. Convolutional layers maintain the spatial relationship
between pixels. By using small filters, they capture local information while preserving
the spatial arrangement of features, which is crucial for understanding visual patterns.
Compared to fully connected layers, convolutional layers reduce the number of parameters
by sharing weights across the input space, making them computationally efficient and
capable of learning from large image datasets without excessive demands on memory. The
stride dimension used for all convolutional layers is (3, 3). After the convolution layers,
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we use a flattening layer to prepare the data for the dense layers, followed by several fully
connected (dense) layers.

Figure 9. The network architecture.

The second branch of the network is dedicated to processing the visual field mean
deviation values. This network is simple because we do not have too much data. It consists
only of one fully connected layer.

The outputs of the branches are concatenated, and the combined output is fed to a
fully connected layer with only one neuron, which serves as the output of the network.
It uses the sigmoid activation function, commonly used for binary classification tasks.
This function compresses the output of a neuron to a range between 0 and 1, effectively
converting the network’s output into a probability. The resulting value represents the
probability of the patient having glaucoma.

We used the binary cross-entropy loss function, which is suitable for binary classifica-
tion problems. It measures the difference between the predicted probability distribution
and the actual distribution for a binary classification task. Specifically, it quantifies the
distance between the predicted probability (computed by the model) and the actual target
value for each example. This loss function works well when the model is predicting the
probabilities for two classes (0 or 1). It encourages the model to learn to output probabilities
that are as close as possible to the true labels for each sample.

5. Results

The overall objective of this study was to identify glaucoma and monitor its pro-
gression. However, one of the challenges is the application of new artificial intelligence
techniques and building a trained model to predict one of the possible progressions based
on various parameters such as IOP, corneal thickness, iridocorneal angle, C/D ratio, starting
from the initial data. Considering the large volumes of ophthalmic data and the complexity
of image processing for glaucoma diagnosis, we propose a divide et timpera approach,
which involves finding subtypes centered on gender, age, race, and marital status, and
training the network on these subtypes. Training the model based on these categories
leads to the construction of a complex model. By using combined learning and prediction
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algorithms, medical staff will be able to visualize patient status information, having the
opportunity at any time to influence the prediction process by modifying relevant infor-
mation. Otherwise, the Digital Twin does not replace the doctor, its role being to suggest
the evolution of the pathology and how the personalized treatment offered influences this
evolution. In other words, the Digital Twin serves only as a decision support element for
medical staff.

In this chapter, the two stages that contribute to shaping the architectural framework
are presented, essentially representing the results of the article. In the first section, an
approach to data analysis and interpretation is presented as a result of the realization of
statistics based on demographic parameters such as age, gender, marital status, and race.
As a result of the obtained statistics, correlations have been identified that will contribute
to the development of a Digital Twin, starting from the segmentation of patients into
different categories.

The second section focuses on training a neural network based on 500 RNFLT maps
and their corresponding visual field (MD), aiming to assist in the glaucoma identification
process. Additionally, aspects related to the configuration and implementation of the
network as well as the accuracy of the results obtained are presented.

5.1. Statistics on the Occurrence of Glaucoma Based on Demographic Factors

The construction of a Digital Twin associated with the patient aimed at diagnosing
glaucoma can begin with the analysis of statistics based on demographic parameters such
as gender, age, and race. Based on the results obtained from these statistics, possible
correlations between the mentioned parameters and the likelihood of developing this
condition will be identified. All these contribute to forming a holistic view of the factors
that favor the onset of the pathology and to identifying groups of patients predisposed
to glaucoma.

As stated in Section 4, the dataset utilized for conducting the statistical analysis was
the Harvard Glaucoma Fairness dataset with 3300 samples (Harvard-GF3300) [34,35], the
details of which are also provided in this chapter.

From the data of the 3300 patients, 1748 patients suffering from glaucoma were
identified, representing 52.97% of the total. Regarding the gender distribution among the
patients diagnosed with glaucoma, 934 were women (53.43%) and 814 were men (46.57%).
In terms of gender, uniformity in the incidence of glaucoma was thus identified, suggesting
that there is no notable difference between these two demographic groups. The absence of
a notable difference in the frequency of glaucoma cases between women and men can be
attributed to common risk factors such as genetic predisposition and elevated intraocular
pressure. Additionally, socio-economic factors such as education, income, and similar
access to medical services may contribute to these outcomes.

Another factor that can be considered for conducting this study could be the age of
the patients. The dataset used contains information about patients aged between 10 and
98 years old. Figure 10 depicts a distribution based on gender and the age category to
which these individuals belong. Although the largest number of patients included in the
study belong to the age category over 60 years old, it is still around this age that the highest
trends of the increase in the number of glaucoma occurrences are detected.
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Figure 10. The occurrence of glaucoma based on gender and age category.

According to Figure 11, regarding the total number of glaucoma cases identified in the
dataset, the highest percentage is noted for patients aged 70 to 80 years (26%), followed
by the category of 60 to 70 years (25%). According to the data presented already in the
”Introduction”, we can observe a growing trend in the number of glaucoma cases after
the age of 50, increasing significantly for individuals in the age groups of 60–70 and
70–80 years old. Thus, the age of 60 can be considered a transitional moment regarding
the risk of glaucoma onset, primarily caused by the aging process affecting both the eye’s
structure and function, recommending regular ophthalmic check-ups at regular intervals.
Another factor can be represented by the fact that in the early stages, this pathology is
asymptomatic and can progress slowly. At the opposite pole, the fewest cases of glaucoma
were identified among people aged between 10 and 20 years (1%) and those aged between
90 and 98 years (2%).

Figure 11. The occurrence of glaucoma based on age category.

Another demographic factor considered for this study is race, with the three races
being White or Caucasian, Black or African American, and Asian. In the dataset used, the
total number of individuals for each race is the same, namely 1100. According to the data
from the dataset, 48.7% of individuals of White or Caucasian race involved in the study
were diagnosed with glaucoma, 62% of those of Black or African American race, and 48.1%
of those of Asian race. In the case of individuals diagnosed with glaucoma, a distribution
based on race and gender is presented in Figure 12.
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Figure 12. The occurrence of glaucoma based on gender and race category.

It is observed that there are variations in the percentage of glaucoma occurrence
depending on race, with the highest number of cases among individuals of Black or African
American race—39.07%, followed by individuals of White or Caucasian race—30.61%,
and individuals of Asian race—30.32%, all these aspects being highlighted in Figure 13.
Through an analysis considering the gender of the individuals involved, it can be noticed
that in all three cases, the frequency of glaucoma occurrence in men is higher than the
frequency of glaucoma occurrence in women. Thus, these variations may be caused by
the presence of hereditary factors that predispose to the occurrence of glaucoma. Another
factor could be represented by the structure of the eye, which in this situation presents
a narrower drainage angle, leading to increased intraocular pressure and favoring the
occurrence of glaucoma. According to the medical literature, Sample et al. [38] mention
several differences between races regarding the onset and monitoring of glaucoma. In
this category, differences have been identified concerning optic nerve appearance, visual
field results, and other clinical signs and risk factors. Thus, during the ophthalmologic
consultation, larger refractive errors, an increased cup-disc ratio, and the presence of a thin
cornea can be identified. However, socio-economic factors must also be taken into account,
as they play a crucial role in terms of population access to medical services.

Figure 13. The occurrence of glaucoma based on race category.

To provide a broader perspective on the environmental and socio-economic factors
that may influence the health status of patients, we have also included a statistic regarding
the marital status of the individuals involved. It should be noted, however, that from a
medical perspective, the occurrence of glaucoma is not directly associated with marital
status. The dataset contains five categories of marital status: Married/Civil Union or Life
Partner, Single, Divorced, Widowed, Legally Separated, and Unknown. Figure 14 shows a
distribution of graphs according to gender and the mentioned marital statuses.
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Figure 14. The occurrence of glaucoma based on gender and marital status category.

Considering that in this dataset, individuals from the first category—Married/Civil
Union or Life Partners are overrepresented, according to the conducted statistics the highest
percentage of individuals with glaucoma—56% belong to the aforementioned category,
followed by the “Single” category—27%. Conversely, the fewest cases of glaucoma were
identified among those in the categories Legally Separated—1%, Unknown—2%. All these
aspects are highlighted in Figure 15.

Figure 15. The occurrence of glaucoma based on marital status category.

As a result of the analysis presented earlier, the dataset could be used as a starting
point for building a Digital Twin associated with the patient. To ensure that the Digital
Twin provides results with a high degree of accuracy, the dataset should be enhanced
by incorporating information obtained from ophthalmological consultations, as well as
environmental factors that may influence the patient’s health, predisposing them to the
onset of glaucoma. All the information contained in the dataset can be integrated for the
purpose of building predictive models for diagnosing glaucoma, thus contributing to the
construction of a Digital Twin associated with the patient.

In conclusion, concerning the advancement of predictive medicine and the construc-
tion of Digital Twins for glaucoma identification with the aim of providing personalized
treatment options in the future, a range of demographic parameters need to be considered.
Depending on the results obtained from the interpretation of the previously conducted
statistics, correlations were identified in terms of demographic parameters, which help both
in segmenting patients into relevant categories and in proposing personalized treatments.
Thus, the highest number of glaucoma cases occurs in patients aged over 50 years and
in those who are part of the “Black or African American” race, with gender or marital
status not being the main determining factors. As a result of factors indicating an increased
risk of glaucoma, measures can be taken to help improve the effectiveness of personalized
treatment and the quality of life of patients. Based on these correlations, Digital Twins
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can be built to assist in preventing or diagnosing glaucoma in its early stages, simulating
personalized treatment options and patient reactions.

5.2. Training the Neural Network for Glaucoma Detection

Utilizing input data consisting of RNFLT maps, their corresponding visual field mean
deviation (MD), and the indication of glaucoma presence or absence, we constructed a
mixed-data network with multiple inputs. The associated model diagram was presented
in the Materials and Methods section. The Harvard Glaucoma Detection dataset with
500 samples (Harvard-GD500) was employed to train the model [36,37].

According to Lokhande et al. [39], the processing of ophthalmic images for glaucoma
diagnosis is notably complex. The anatomical details of the eye, such as retinal thickness,
contribute significantly to this complexity. Based on the information presented in [39],
the glaucoma detection process was carried out using conventional Machine Learning
methods: classification and regression. One of the parameters contributing to the diagnosis
of glaucoma involves the use of retinal nerve fiber layer (RNFL) thickness maps, derived
from OCT images, to identify corneal thickness. Also, with the help of Machine Learning
algorithms, biomarkers for thinning and atrophy of the optic nerve are extracted. Therefore,
detecting the thinning of nerve fibers may indicate the progressive deterioration of retinal
nerve fiber layer thickness (RNFLT), a significant indicator of glaucoma presence. Textural
features provide information regarding the distribution of retinal nerve fibers, which can
be extracted using texture analysis methods. With the assistance of the specialist doctor
who will contribute through the feedback system to train the Digital Twin, morphological
characteristics such as length, curvature, and direction of nerve fibers can be provided
to diagnose both glaucoma and predisposition to this pathology. Based on an enhanced
dataset, both the mean and standard deviation will be considered to construct a model
of distribution for the intensity and thickness of retinal nerve fibers. However, for the
realization of this work, the emphasis has been placed on introducing regularization
based on contrastive learning, which leads to the appropriate representation of images in
the form of clusters, as well as adequate differentiation based on the feedback received
from the specialist doctor. Thus, vector representations are obtained that highlight the
similarities and differences in images. This approach integrates the doctor’s opinion into the
prediction process, ensuring convergence towards a robust method regarding the analysis
and interpretation of images for glaucoma identification.

Processing RNFLT maps results in Figure 16a indicating the presence of glaucoma,
while Figure 16b denotes the absence of glaucomatous status.

(a) (b)
Figure 16. The processing of RNFLT maps—glaucoma or non-glaucoma status. (a) Glaucoma,
(b) Non-glaucoma.

After training the model, a 5 × 5 image was created, where each subplot represents
an image from the dataset—Figure 17. Labels were also added to identify the presence of
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pathology: 1 indicates that the patient was diagnosed with glaucoma, while 0 indicates that
the patient does not suffer from glaucoma.

Figure 17. The presence of pathology—5 × 5.

After loading the trained model, its performance was evaluated on a test dataset, with
10% of the data allocated for this purpose. Upon loading and normalizing the data, the
trained model was then applied to the test dataset to make predictions. Subsequently, the
accuracy of these predictions was calculated.

The final step involved creating graphs to visualize the evolution of the loss and
accuracy of the model during training. The graph for the loss function was generated using
data from both the training and test datasets—Figure 18a. Similarly, the accuracy graph
utilized data from both the training and test datasets—Figure 18b. An accuracy of 84% was
achieved on the test data.

(a) (b)
Figure 18. The evolution of the loss and accuracy of the model during training. (a) The evolution of
the loss, (b) The accuracy of the predictions.

As a result of the obtained results, the accuracy achieved does not fully correspond to
expectations, leading to adjustments regarding the methods used. To improve the results,
considerations will be made for optimizing the neural network architecture, adjusting
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parameters, as well as using new techniques. As mentioned earlier, the dataset used needs
to be improved to include a diverse range of demographic data from patients, as well as
measurements obtained during ophthalmic consultations, in order to construct not only
a Digital Twin associated with the patient but also a pathology-associated one—a Digital
Twin for glaucoma identification.

The applicability of the Digital Twin in ophthalmology, especially in glaucoma detec-
tion, holds considerable potential, even though it currently represents only a concept. Thus,
by integrating each patient’s data, and medical history, and employing predictive modeling,
one can discuss shaping personalized treatment plans, simulating surgical procedures,
continuously monitoring patient health, and optimizing the diagnostic process. The Digital
Twin can be considered a paradigm that emphasizes revolutionizing the entire medical
system, with a focus on patient health. The use of Digital Twin in this field can lead to
changing the way medical staff interacts with patient clinical data, integrating technology
with medical expertise. All of these contribute to transforming how patient conditions are
diagnosed, treated, and managed, shaping a symbiosis between science and technology.

6. Discussion

As mentioned in the Section 5, the accuracy achieved does not meet our expectations.
One reason for this may be the architecture and parameters of the network, leading to
a mismatch between the model’s complexity and the availability of training data. Also,
the quality of the dataset used to train and test the model should be taken into consid-
eration. In the initial phase of constructing the Digital Twin to obtain conclusive results
that ensure performance and the construction of a general model, the dataset used must
be comprehensive enough to highlight the variations encountered in medical practice.
Another argument could be the use of inadequate techniques in the data preprocessing and
model regularization stages, which led to the disruption of the noise removal process. Last
but not least, another factor could be the use of algorithms that are not specific enough to
identify subtle signs of the pathology and to avoid diagnostic errors.

In the following, some future research directions regarding the application of Digital
Twin in ophthalmology will be presented. Based on the interpretation of the previously ob-
tained statistics, it is desired to construct Digital Twins corresponding to different categories
of individuals, taking into account genetic predisposition, integrating information obtained
from ophthalmological consultations, creating personalized treatments, and simulating
patient reactions.

The next stage emphasizes the adoption of a multi-model approach to ensure the
interoperability of the entire system, with a focus on using behavioral modeling based on
discrete event systems. From this perspective, a modeling of the cell cycle could be per-
formed, and based on the interactions at the molecular level, the patient’s predispositions
to certain pathologies and their diagnosis could be identified.

Another application for the use of discrete event systems is represented by the simula-
tion of the impact of personalized treatments, thereby providing a comprehensive view
of the patient’s symptoms as a result of the administration of the treatment. Also, the
events can represent various stages of the pathologies such as regression, stagnation, and
evolution, a fact that would help the medical staff in making decisions.

7. Conclusions

The creation of Digital Twin models by integrating specific elements of Systems
Medicine and Predictive Medicine helps identify and manage eye diseases, implicitly im-
proving diagnosis. Thus, using Digital Twin models, doctors can simulate the behavior
of the eye in different situations, which helps them quickly and efficiently identify poten-
tial eye problems. Predictive Medicine and Machine Learning offer a holistic approach
to simulating scenarios of various eye pathologies and offering personalized solutions
for patients.
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The use of artificial intelligence in constructing a Digital Twin associated with the
patient for glaucoma detection not only provides recommendations for subsequent in-
terventions such as recommending a doctor’s visit or regular monitoring of parameters
influencing the progression or stagnation of the pathology. Artificial intelligence contributes
to the analysis and interpretation of clinical data, providing possible progression options
for glaucoma and simulating the patient’s reactions to the proposed medication.

A structured architecture with five layers has been proposed with the aim of building
a Digital Twin associated with the patient for glaucoma identification. As part of this archi-
tecture, statistics were conducted to identify correlations based on various demographic
parameters, such as age, gender, and race that favor the onset of glaucoma. Additionally,
the results obtained from training the neural network for glaucoma identification were
presented. These results, Section 5, did not meet the expectations, motivating in Section 6
the changes we intend to make to improve the model.

According to the literature that we consulted, a predictive model-based Digital Twin
is not yet sufficiently approached and applied in ophthalmology. That is why we consider
that the results of our work presented in this paper represent a novelty in personalized and
predictive ophthalmology.
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