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Abstract: Rockburst is a severe geological disaster accompanied with the violent ejection of rock
debris, which greatly threatens the safety of underground workers and equipment. This study aims
to propose a novel multi-criteria decision-making (MCDM) approach for evaluating rockburst risk
under uncertain environments. First, considering the heterogeneity of rock mass and complexity of
geological environments, trapezoidal fuzzy numbers (TrFNs) are adopted to express initial indicator
information. Thereafter, the superiority linguistic ratings of experts and a modified entropy weights
model with TrFNs are used to calculate the subjective and objective weights, respectively. Then,
comprehensive weights can be determined by integrating subjective and objective weights based on
game theory. After that, the organísation, rangement et synthèse de données relarionnelles (ORESTE)
approach is extended to obtain evaluation results in a trapezoidal fuzzy circumstance. Finally, the
proposed approach is applied to assess rockburst risk in the Kaiyang phosphate mine. In addition,
the evaluation results are compared with empirical methods and other trapezoidal fuzzy MCDM
approaches. Results show that the proposed extended ORESTE approach is reliable for evaluating
rockburst risk, and provides an effective reference for the design of prevention techniques.

Keywords: rockburst; trapezoidal fuzzy numbers (TrFNs); organísation; rangement et synthèse de
données relarionnelles (ORESTE); risk evaluation; comprehensive weights

MSC: 90B50; 94D05

1. Introduction

The mining industry is vital for human survival and social progress, since it provides
abundant raw materials for other industries [1]. With the depletion of shallow mineral
resources, mining depths are becoming deeper and deeper [2]. However, some challenges
still exist when excavating in deep mines. One of the most important concerns is rockburst
disasters induced by the instantaneous release of elastic strain energy [3]. As a rockburst is
often accompanied by a violent ejection of rock debris, the safety of underground workers
and equipment is greatly threatened. For example, a violent rockburst happened in the
Klerksdorp district of South Africa, resulting in two deaths and fifty-eight injuries [4]; and
an intense rockburst with a Richter scale of 3.5 occurred in the Falconbridge mine, which
caused four deaths and the collapse of massive amounts of rock [5]. Due to its serious
consequences, evaluating rockburst risk effectively is essential and plays a significant role
in risk management for deep mines.

Many methods have been proposed to evaluate rockburst risk, which can be mainly
summarized as on-site monitoring techniques, empirical criteria, numerical simulation
methods, machine-learning algorithms and multi-criteria decision-making (MCDM) ap-
proaches. Among them, on-site monitoring techniques are the most-direct method to
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determine rockburst risk. Many monitoring technologies are adopted to detect risk warn-
ing signs, which include the drilling cutting method [6], the electromagnetic radiation
technique [7], acoustic emissions technology [8] and the microseismic monitoring tech-
nique [9]. Although the monitoring results are valid, the relationship between monitoring
data and rockburst risk is hard to determine, and the operation is complicated and time-
consuming. Based on the understanding of rockburst mechanisms and field experience,
many empirical criteria have been summarized, including Russenes’s criterion [10], Barton’s
criterion [11], Turchaninov’s criterion [12], Kidybinski’s criterion [13], and so on [14,15].
Although empirical criteria are simple and easy to understand, the risk evaluation results
may be dissimilar or even contradictory, according to different field experiences. Due
to the rapid development of rock mechanics and simulation software, numerical simula-
tion methods have become effective means to determine rockburst risk. The core of such
methods is to establish the quantitative relationship between rockburst risk and numerical
indicators. Many indicators, such as energy-release rate [16], local energy-release rate [17],
burst-tendency index [18], rockburst energy-release rate [19] and failure-approaching in-
dex [20], have been proposed. According to their spatial distribution, the rockburst risk in
different locations can be effectively determined. Although numerical simulation methods
can simultaneously consider the influence of in-situ stress, rock parameters and excavation
activities, the model inputs and constitutive relations are difficult to precisely determine.
With the accumulation of rockburst data, many machine-learning algorithms have been
used to analyze rockburst risk, which include Bayesian networks [21], logistic regres-
sion [22], support vector machine [23], ensemble learning [24], and so on [25,26]. Although
machine-learning algorithms can well handle nonlinear problems, plenty of reliable data is
needed to improve their predictive performance. Considering that rockburst is affected
by numerous factors, MCDM technologies have become popular to assess its risk. Some
typical MCDM approaches include the technique for order preference by similarity to ideal
solution (TOPSIS) [27], the fuzzy matter-element model [28], an acronym in Portuguese of
interactive and multiple attribute decision-making (TODIM) [29], and so on [30]. MCDM
approaches can not only consider the comprehensive influence of multiple factors, but also
deal with uncertainty issues by combing fuzzy theory. However, the indicator weights and
grading standard of rockburst risk need to be determined.

Due to the heterogeneity of rock mass and complexity of geological environments, a
single crisp number cannot sufficiently indicate the inherent variability in indicator values.
Under this circumstance, the indicator information of rockburst risk is hard to accurately
denote by crisp numbers. Considering that a fuzzy set can be used to express uncertain
and imprecise information, it may be an appropriate way to indicate the indicator values.
Although different types of methods have their own advantages, MCDM approaches are
preferentially selected in this study. A primary reason is that they can be extended with
fuzzy theory to solve uncertain problems. In this case, two key problems should be solved.
The first one is the selection of the fuzzy set. Since Zadeh [31] pioneered the idea of fuzzy
set theory, many extensions of fuzzy sets have been proposed to solve fuzzy decision
issues. Among them, triangular fuzzy numbers and trapezoidal fuzzy numbers (TrFNs)
are commonly used. Considering triangular fuzzy numbers are special cases of TrFNs,
TrFNs are selected to describe assessment information of rockburst risk under uncertain
conditions. As a typical fuzzy set, TrFNs are simple and effective, and have been widely
applied in multiple fields, such as supplier selection [32], service-quality evaluation [33]
and manufacturing-firm-performance measurement [34].

The second problem is the selection of MCDM approaches. In addition to the used
rockburst risk assessment methods, the organísation, rangement et synthèse de données re-
larionnelles (ORESTE) is an another effective MCDM approach to deal with risk evaluation
problems [35]. The reason is two-fold. First, it is proposed based on the general formulation
of pairwise comparative rules, and can acquire a reliable rank. Second, a clear advantage of
this method is that it can identify concrete relations (such as preference, indifference and
incomparability) among alternatives, and then obtain more-comprehensive relationships of
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alternatives [36]. In recent years, it has received extensive attentions and been used in many
fields. For example, Wang et al. [37] adopted a double hierarchy hesitant fuzzy linguistic
ORESTE method to assess traffic congestion; Kaya [38] integrated the Gaussian membership
function and ORESTE method to monitor brand performance; Liu et al. [39] proposed an
integrated TOPSIS–ORESTE framework for new-energy-investment assessment; Liang and
Li [40] combined qualitative flexible (QUALIFLEX) and ORESTE techniques to assess the
performance of green mines under hesitant fuzzy environments; and Adali and IŞIK [41]
utilized the ORESTE approach to obtain the ranking results of web-design firms. Therefore,
there is the potential to assess rockburst risk by extending the ORESTE method with TrFNs.

This study intends to propose a novel MCDM framework for the evaluation of rock-
burst risk. First, the methodology is established by integrating TrFNs, the combination
weighting method and an extended ORESTE approach. Then, the proposed approach
is used to evaluate the rockburst risk of different lithologies in the Kaiyang phosphate
mine. Finally, the effectiveness is verified by comparing with empirical methods and other
MCDM approaches.

2. Methodology

An extended ORESTE approach with TrFNs for the risk evaluation of rockburst is
proposed in this section. First, the preliminaries of TrFNs are introduced. Then, the
procedures of extended ORESTE method are elaborated.

2.1. Trapezoidal Fuzzy Numbers

(1) The definition of TrFNs
A trapezoidal fuzzy number (TrFN) is expressed as S̃ = (s1, s2, s3, s4), which can be

described in Figure 1. The membership function is defined as [42]:

µS̃(x) =


0, x < s1
(x− s1)/(s2 − s1), s1 ≤ x < s2
1, s2 ≤ x < s3
(x− s4)/(s3 − s4), s3 ≤ x < s4
0, x ≥ s4

, (1)

where µS̃(x) ∈ [0, 1]; s1 and s4 represent the smallest and largest possible values, respec-
tively; and the interval [s2, s3] denotes the most-promising possible values.

Figure 1. Trapezoidal fuzzy number of S̃.

(2) Arithmetic operations
Suppose S̃ = (s1, s2, s3, s4) and T̃ = (t1, t2, t3, t4) are two arbitrary TrFNs, and φ is a

positive real number; then, the arithmetic operations can be determined as [43]:

S̃(+)T̃ = (s1, s2, s3, s4)(+)(t1, t2, t3, t4) = (s1 + t1, s2 + t2, s3 + t3, s4 + t4), (2)
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S̃(−)T̃ = (s1, s2, s3, s4)(−)(t1, t2, t3, t4) = (s1 − t4, s2 − t3, s3 − t2, s4 − t1), (3)

S̃(×)T̃ = (s1, s2, s3, s4)(×)(t1, t2, t3, t4) = (s1 × t1, s2 × t2, s3 × t3, s4 × t4), (4)

S̃(/)T̃ = (s1, s2, s3, s4)(/)(t1, t2, t3, t4) = (s1/t1, s2/t2, s3/t3, s4/t4), (5)

φS̃ = δ(s1, s2, s3, s4) = (φs1, φs2, φs3, φs4), (6)

(3) The distance between two TrFNs
According to [44], the generalized distance of fuzzy numbers is a non-negative function

with two parameters p and q. Furthermore, q = 1/2 is suggested when there is no reason
for distinguishing any side of fuzzy numbers, and p = 2 is more useful in the calculating
process. As a result, when p = 2 and q = 1/2, the distance between two TrFNs S̃ and T̃ can
be calculated by [44]:

d(S̃, T̃) =

√√√√√1
6

 4

∑
a=1

(ta − sa)
2 + ∑

a∈{1,3}
(ta − sa)(ta+1 − sa+1)

. (7)

(4) The comparison method between two TrFNs
The idea of the center of area method is introduced to transform TrFNs into crisp

values. As a widely used approach, the center of area method is easy to understand and
operate. Compared with other defuzzification techniques, the largest advantages of this
method are that it can greatly reduce number of calculations and amount of memory space.
Based on the center of area method, the TrFN can be transformed into corresponding crisp
number. The transfer formula is [32]:

F(S̃) =
−s1s2 + s3s4 +

1
3 (s4 − s3)

2 − 1
3 (s2 − s1)

2

−s1 − s2 + s3 + s4
. (8)

Then, the comparison method of TrFNs can be determined by:

S̃ > T̃, i f F(S̃) > F(T̃)
S̃ = T̃, i f F(S̃) = F(T̃)
S̃ < T̃, i f F(S̃) < F(T̃)

. (9)

2.2. Extended ORESTE Method

An extended ORESTE method with TrFNs is proposed in this section, as shown in
Figure 2. This methodology integrates TrFNs, combination weighting method and ORESTE
approach simultaneously. It includes three phases: express the evaluation information
using TrFNs, determine the indicator weights, and obtain the evaluation results with
extended ORESTE method. First, TrFNs are adopted to express initial indicator values,
so that the ambiguous information can be well indicated. Then, a combination weighting
method, which integrates the subjective and objective weights based on game theory, is
used to calculate the indicator weights. Finally, the ORESTE approach is extended by TrFNs
to determine the risk level of rockburst. The detailed process is indicated as follows.
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Figure 2. Framework of extended ORESTE method with TrFNs.

(1) Phase 1: express the evaluation information using TrFNs
Step 1: Obtain the initial indicator values.
According to laboratory tests and field investigation, the initial indicator values can

be obtained, which are expressed as:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

, (10)

where xij is a crisp number, which indicates the value of alternative (which refers to the rock
mass in different areas in this study) Bi (i = 1, 2, · · · , m) for indicator Cj (j = 1, 2, · · · , n).

Step 2: Normalize the initial decision-making matrix.
Considering the dimensions and units of indicators are different, the initial matrix

should be normalized. To normalize the indicator values within 0 and 1, a common normal-
ized technique, the max–min normalization method, is adopted. The largest advantages of
this method are that it is independent of the size or amount of dataset.

For benefit indicators, the normalization value can be obtained by [45]:

xij =

xij −min
j
(xij)

max
j

(xij)−min
j
(xij)

. (11)

For cost indicators, the standardized value can be determined by [45]:

xij =

max
j

(xij)− xij

max
j

(xij)−min
j
(xij)

. (12)
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Step 3: Convert the indicator values into TrFNs.
Due to the anisotropy and heterogeneity of rock mass, the quantitative indicator

values are susceptible to uncertainty. Therefore, this study introduces two parameters to
convert crisp numbers into TrFNs, so that the uncertainty can be captured. The conversion
formula is:

x̃ij = (xij − βxij, xij − αxij, xij + αxij, xij + βxij), (13)

where α and β indicate the uncertainty parameters, and 1 > β ≥ α > 0.
This means the most-promising possible values are in the interval [xij− αxij, xij + αxij],

the less likely are in the intervals [xij − βxij, xij − αxij] and [xij + αxij, xij + βxij], and the
impossible in the intervals (−∞, xij − βxij] and [xij + βxij,+∞). Comparing with a single
crisp number xij, the transformed TrFNs can reflect the real situation better.

Then, the fuzzy matrix can be denoted as:

X̃ =


x̃11 x̃12 · · · x̃1n
x̃21 x̃22 · · · x̃2n

...
...

. . .
...

x̃m1 x̃m2 · · · x̃mn

. (14)

(2) Phase 2: determine the indicator weights
Step 1: Calculate the subjective weights.
The subjective weights are calculated by superiority linguistic ratings of experts.

Linguistic variables, such as “very low” and “high”, are adopted to describe the importance
of indicators. These linguistic variables are then transformed into the corresponding TrFNs.
The relationship between linguistic terms and TrFNs can be consulted in [46].

After all experts give the linguistic ratings, the aggregated weight ω̃j can be calculated as:

ω̃j = (wj1, wj2, wj3, wj4) = (1/V)⊗ (ω̃1j ⊕ · · · ⊕ ω̃vj ⊕ · · · ⊕ ω̃Vj), (15)

where ω̃vj indicates the weight of indicator Cj(j = 1, 2, · · · , n) given by expert
Ev(v = 1, 2, · · · , V).

Based on Equation (8), the subjective weights ωs
j can be obtained by:

ωs
j =

F(ω̃j)
n
∑
j

F(ω̃j)
. (16)

where F(ω̃j) is the transformation formula defined in Equation (8), namely,

F(ω̃j) =
−wj1wj2 + wj3wj4 +

1
3 (wj4 − wj3)

2 − 1
3 (wj2 − wj1)

2

−wj1 − wj2 + wj3 + wj4
(j = 1, 2, · · · , n).

Step 2: Compute the objective weights.
The entropy weights model corresponding to TrFNs is used to calculate the objective

weights. Since Shannon [47] first proposed the concept of entropy to measure the amount
of information, the entropy value of decision-making matrix is widely used to calculate
indicator weights [31]. The calculation procedure is demonstrated as follows.

The entropy value τj is determined by:

τj = −
1

ln m

m

∑
i=1

γij ln γij, (17)

where γij = (1 + F(x̃ij))/
m
∑

i=1
(1 + F(x̃ij)).
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Then, the objective weights can be calculated by:

ωo
j = (1− τj)/

n

∑
j=1

(1− τj). (18)

Step 3: Determine the comprehensive weights.
The comprehensive weights are determined by integrating subjective and objective

weights according to game theory. The purpose is to seek a compromise between compre-
hensive and basic weights so that their deviation is minimized. Suppose the basic weight
vector is:

ωz =
[

ωz
1 ωz

2 · · · ωz
n
]
, (19)

where z = 1, 2 · · · , Z, and Z indicates the numbers of weight vector obtained by different methods.
The arbitrary linear combination of different weight vector is:

ω∗ =
Z

∑
z=1

η∗z ωzT , (20)

where η∗z is the combination coefficient and ω∗ is the comprehensive weight vector set.
To make the deviation between ω∗ and ωz minimized, η∗z should be optimized. The

gaming model is established as:

min

∥∥∥∥∥ Z

∑
z=1

η∗z ωzT −ωzT

∥∥∥∥∥
2

. (21)

The optimal first derivative of Equation (21) is:

Z

∑
z=1

η∗z ωeωzT = ωeωeT , e = 1, 2 · · · , Z. (22)

The matrix form of Equation (22) is:
ω1ω1T ω1ω2T · · · ω1ωZT

ω2ω1T ω2ω2T · · · ω2ωZT

...
...

. . .
...

ωZω1T ωZω2T · · · ωZωZT




η∗1
η∗2
...

η∗Z

 =


ω1ω1T

ω2ω2T

...
ωZωZT

. (23)

After η∗z is calculated, it can be normalized by:

ηz = η∗z /
Z

∑
z=1

η∗z (24)

Then, the comprehensive weights are calculated by:

ω =
Z

∑
z=1

ηzωzT (25)

(3) Phase 3: obtain the evaluation results with the extended ORESTE method
Step 1: Compute the significance degree.
First, determine the positive ideal solution x̃+j = max

j
{x̃ij} and the negative ideal

solution x̃−j = min
j
{x̃ij} under each indicator.
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Thereafter, the significance degree Sij of alternative Bi under indicator Cj is com-
puted with

Sij =
d(x̃ij, x̃−j )

d(x̃ij, x̃+j ) + d(x̃ij, x̃−j )
. (26)

Step 2: Calculate the global preference score.
Given a coefficient δ ∈ [0, 1], then the global preference score of each alternative under

each indicator can be obtained with

Gij =
√

δ(ωj)
2 + (1− δ)(Sij)

2. (27)

Step 3: Determine the weak rank of alternatives.
The preference score Pi of alternative Bi is

Pi = ∑n
j=1 Gij. (28)

According to the value of Pi, the weak rank of alternatives are derived. That is, the
bigger the value of Pi, the better the alternative Bi.

Step 4: Calculate the average preference intensity and the net preference intensity.
The average preference intensity AGik of Bi to Bk can be computed with

AGik =
∑n

j=1 max
{
(Gij − Gkj), 0

}
n

(i, k = 1, 2, · · · , m). (29)

Thus, the net preference intensity ∆Gik of Bi to Bk can be calculated with

∆Gik = AGik − AGki(i = 1, 2, · · · , m). (30)

Step 5: Build the preference/indifference/incomparability (PIR) structure.
First, the rules of the indifference and incomparability test (namely, the conflict analy-

sis) are defined as follows:

(1) When |∆Gik|≤ ε , then
{

Bi I Bk, i f |AGik|≤ θ and |AGki|≤ θ
Bi R Bk, i f |AGik|> θ or |AGki|> θ

;

(2) When |∆Gik|> ε , then

{
Bi P Bk, i f ∆Gik > 0
Bk P Bi, i f ∆Gik < 0

, where ε ∈ [0, 1] and θ ∈ [0, 1] are

two parameters.

For determining the values of ε and θ, the following approach can be utilized.
According to the literature [36], if

∣∣∣Gij − Gkj

∣∣∣≤ λ , then x̃ij and x̃kj can be
regarded as indifferent. On the other hand, they are regarded as indifferent
if their distance d(x̃kj, x̃ij) ≤ ∆, where ∆ > 0 is a threshold. Suppose δ = 1/2,

then
∣∣∣∣Gkj − Gij

∣∣∣∣= √
2

2

∣∣∣∣√(ωj)
2 + (Suj)

2 −
√
(ωj)

2 + (Sij)
2
∣∣∣∣≈ √2

2 d(x̃kj, x̃ij) . As a result, let

λ =
√

2
2 ∆. For the P relation Bi P Bk: |∆Gik|=|AGik − AGki|= λ/n , so the trapezoidal

fuzzy preference threshold can be computed with ε = λ/n; for the R relation Bi R Bk:
|∆Gik|≤ λ/n and AGik > λ/n should be met under at least one indicator. Therefore, for
the I relation Bi I Bk, the trapezoidal fuzzy incomparability threshold can be calculated

with θ =

{
(nλ/2)/n = λ/2, where n is even

(nλ/2 + λ)/n = (n + 2)λ/2n, where n is odd
.

Step 6: Obtain the strong rank of alternatives.
The strong rank of alternative is attained according to the weak rank and the PIR

structure. Specifically, based on the P and I relations in the PIR structure, the rank of some
alternatives is firstly determined, and then the full rank can be derived by combing the
weak rank when the R relations exist among other alternatives. For instance, if the weak
rank of four alternatives is B1 � B2 � B3 � B4, and the PIR relations contain: B1 P B2,
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B1 P B3, B1 P B4, B2 I B3, B2 P B4 and B3 R B4, then, according to the P and I relations in
the PIR structure, the rank of part of alternatives is firstly determined. Namely, B1 � B2
because B1 P B2, B1 � B3 because B1 P B3, B1 � B4 because B1 P B4, {B2, B3} because
B2 I B3 and B2 � B4 because B2 P B4, while the rank of alternatives B3 and B4 cannot be
directly determined by the PIR relations because B3 R B4. In this case, the weak rank of
alternatives B3 and B4 can be taken as a reference. As B3 � B4 is in the weak rank, the
full rank of alternatives can be derived as B1 � {B2, B3} � B4. That is, the strong rank is
B1 � {B2, B3} � B4.

3. Case Study
3.1. Project Profile

The Kaiyang phosphate mine is located in Jinzhong Town, Guiyang City, Guizhou
Province, as shown in Figure 3. It is an extra-large phosphate mine with a history of more
than sixty years, and contains four sections (namely, Maluping, Qincaichong, Yongshaba
and Shabatu). The lithology of this mine is mainly composed of dolomite, phosphate ore,
sandstone and red shale. With the increase in mining depth, the geological conditions
become more complicated and the ground stress elevates significantly, resulting in an
increase in rockburst risk. Several rockbursts have occurred in the Kaiyang phosphate
mine, which pose a great threat to personnel safety and seriously affect the production.
Therefore, it is necessary to evaluate the rockburst risk in different lithologies, which is
valuable for personnel exposure management and the design of prevention techniques.

Figure 3. Location of the Kaiyang phosphate mine.

3.2. Determination of Evaluation Indicators

In order to comprehensively reflect the influence factors of rockburst, five indicators,
including the rock-brittleness coefficient (C1), elastic-energy index (C2), linear elastic energy
(C3), ground-stress index (C4) and rock-mass-integrity coefficient (C5) are adopted. Among
them, C1 indicates the degree of rock brittleness, which can be calculated by:

C1 = σc/σt, (31)

where σc is the unconfined compressive strength, and σt is the tensile strength.
C2 indicates the proportion of energy accumulation and dissipation, which can be

calculated by:
C2 = Ee/Ep, (32)
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where Ee is the stored elastic energy, and Ep is the dissipated energy.
C3 indicates the magnitude of elastic energy, which can be calculated by:

C3 = σ2
c /2Es, (33)

where Es is the unloading tangential modulus.
C4 indicates the intensity of ground stress, which can be calculated by:

C4 = σc/σ1, (34)

where σ1 is the maximum horizontal principle stress.
C5 indicates the integrity of rock mass, which can be calculated by:

C5= (Vm/Vr)
2, (35)

where Vm and Vr are the elastic wave speeds of rock mass and rock, respectively.
In addition, the rockburst risk is divided into four levels based on the severity of

consequences: none (L1), low (L2), moderate (L3) and high (L4). The interval of indicator
values corresponding to each level is indicated in Table 1 [28,48].

Table 1. Interval of indicator values corresponding to each level.

Indicators
Risk Levels

L1 L2 L3 L4

C1 >40 26.7–40 14.5–26.7 <14.5
C2 <2.0 2.0–3.5 3.5–5.0 >5.0
C3 <40 40–100 100–200 >200
C4 >14.5 5.5–14.5 2.5–5.5 ≤2.5
C5 <0.50 0.50–0.60 0.60–0.75 >0.75

3.3. Risk Evaluation of Rockburst

In Phase 1, the initial indicator values were obtained. To determine the rockburst risk
in different lithologies, dolomite, phosphate ore, red shale and sandstone were adopted for
assessment. These alternatives were denoted as B1, B2, B3 and B4, respectively.

Based on laboratory tests and in-situ stress measurement, the initial indicator values
were calculated, which were listed in Table 2. Meanwhile, the samples with known levels
were obtained based on Table 1, so that the risk levels of each alternative could be deter-
mined. The samples with level L1, L2, L3 and L4 were indicated as BL1 , BL2 , BL3 and BL4 ,
respectively, as shown in Table 2.

Table 2. Initial indicator values.

C1 C2 C3 C4 C5

BL1 40.0 0 0 14.5 0
BL2 26.7 2.0 40 5.5 0.50
BL3 14.5 3.5 100 2.5 0.60
BL4 0 5.0 200 0 0.75
B1 13.09 1.39 10.09 1.78 0.45
B2 23.24 5.1 165.51 5.41 0.62
B3 15.07 2.03 103.99 1.50 0.59
B4 29.7 6.31 290.97 5.61 0.69

Next, the initial indicator values were normalized. As C1 and C4 are cost indicators,
their normalization values were calculated based on Equation (12). Meanwhile, C2, C3
and C5 are benefit indicators, so their normalization values were determined according to
Equation (11). The normalized decision-making matrix is shown in Table 3.
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Table 3. Normalized decision-making matrix.

C1 C2 C3 C4 C5

BL1 0.000 0.000 0.000 0.000 0.000
BL2 0.333 0.317 0.137 0.621 0.667
BL3 0.638 0.555 0.344 0.828 0.800
BL4 1.000 0.792 0.687 1.000 1.000
B1 0.673 0.220 0.035 0.877 0.600
B2 0.419 0.808 0.569 0.627 0.827
B3 0.623 0.322 0.357 0.897 0.787
B4 0.258 1.000 1.000 0.613 0.920

According to Equation (13), the indicator values were converted into TrFNs. In this
study, the uncertainty parameters α and β were, respectively, selected as 0.1 and 0.2.
Therefore, the fuzzy decision-making matrix with TrFNs was established, as in Table 4.

Table 4. Fuzzy decision-making matrix.

C1 C2 C3 C4 C5

BL1 (0.00, 0.00, 0.00, 0.00) (0.00, 0.00, 0.00, 0.00) (0.00, 0.00, 0.00, 0.00) (0.00, 0.00, 0.00, 0.00) (0.00, 0.00, 0.00, 0.00)
BL2 (0.27, 0.30, 0.37, 0.40) (0.25, 0.29, 0.35, 0.38) (0.11, 0.12, 0.15, 0.17) (0.50, 0.56, 0.68, 0.74) (0.53, 0.60, 0.73, 0.80)
BL3 (0.51, 0.57, 0.70, 0.77) (0.44, 0.50, 0.61, 0.67) (0.27, 0.31, 0.38, 0.41) (0.66, 0.74, 0.91, 0.99) (0.64, 0.72, 0.88, 0.96)
BL4 (0.80, 0.90, 1.10, 1.200) (0.63, 0.71, 0.87, 0.95) (0.55, 0.62, 0.76, 0.82) (0.80, 0.90, 1.10, 1.20) (0.80, 0.90, 1.10, 1.20)
B1 (0.54, 0.61, 0.74, 0.81) (0.18, 0.20, 0.24, 0.26) (0.028, 0.031, 0.038, 0.042) (0.70, 0.79, 0.97, 1.05) (0.48, 0.54, 0.66, 0.72)
B2 (0.34, 0.38, 0.46, 0.50) (0.65, 0.73, 0.89, 0.97) (0.46, 0.51, 0.63, 0.68) (0.50, 0.56, 0.69, 0.75) (0.66, 0.74, 0.91, 0.99)
B3 (0.50, 0.56, 0.69, 0.75) (0.26, 0.29, 0.35, 0.39) (0.29, 0.32, 0.39, 0.43) (0.72, 0.81, 0.99, 1.08) (0.63, 0.71, 0.87, 0.94)
B4 (0.21, 0.23, 0.28, 0.31) (0.80, 0.90, 1.10, 1.20) (0.80, 0.90, 1.10, 1.20) (0.49, 0.55, 0.67, 0.74) (0.74, 0.83, 1.01, 1.10)

In Phase 2, the indicator weights were determined. First, subjective weights were
calculated by superiority linguistic ratings. Five experts were invited to give the linguistic
ratings of indicators, as indicated in Table 5. These linguistic ratings were transformed into
TrFNs, and the aggregated TrFNs were calculated by Equation (15) (see the third column in
Table 5). The subjective weights were obtained by Equation (16) (see the fourth column in
Table 5).

Table 5. Linguistic ratings and weights of indicators.

Indicators
Linguistic Ratings of Indicators

ω̃j ωs
j

E1 E2 E3 E4 E5

C1 VH H M FH H (3.1, 3.6, 3.8, 4.2) 0.1883
C2 H VH VH H FH (3.5, 4.0, 4.3, 4.6) 0.2099
C3 H VH H FH H (3.4, 3.9, 4.1, 4.5) 0.2037
C4 FH FH VH VH H (3.3, 3.8, 4.2, 4.5) 0.2023
C5 H M H H VH (3.3, 3.8, 3.9, 4.3) 0.1959

Note: VH indicates very high; H indicates high; FH indicates fairly high; and M indicates medium.

Then, the extended entropy weights model was used to calculate objective weights.
Based on Equation (17), the entropy value of each criterion was calculated as:
τ = [0.9910, 0.9889, 0.9873, 0.9920, 0.9922]. According to (18), the subjective weights were
determined as: ωo

j = [0.1846, 0.2286, 0.2617, 0.1644, 0.160691].
Finally, the comprehensive weights were determined based on game theory. By using

Equations (23) and (24), the combination coefficient ηz was calculated as:
ηz = [−0.0747, 1.0747]. Based on Equation (25), the comprehensive weights were de-
termined as: ω = [0.1843, 0.2300, 0.2660, 0.1616, 0.1580].

In Phase 3, the extended ORESTE method was used to obtain the ranking results. First,
based on Equation (9), the positive solution of each indicator was: x̃+j = (0.8, 0.9, 1.1, 1.2),
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and the negative solution of each indicator was: x̃−j = (0, 0, 0, 0). Then, according to
Equation (26), the significance degree Sij was determined, as in Table 6.

Table 6. Significance degree.

C1 C2 C3 C4 C5

BL1 0.000 0.000 0.000 0.000 0.000
BL2 0.333 0.317 0.137 0.621 0.667
BL3 0.638 0.555 0.344 0.828 0.800
BL4 1.000 0.792 0.687 1.000 1.000
B1 0.673 0.220 0.035 0.877 0.600
B2 0.419 0.808 0.569 0.627 0.827
B3 0.623 0.322 0.357 0.897 0.787
B4 0.258 1.000 1.000 0.613 0.920

Suppose δ = 0.5, the global preference score was calculated using Equation (27), as
shown in Table 7.

Table 7. Global preference score.

C1 C2 C3 C4 C5

BL1 0.130 0.163 0.188 0.114 0.112
BL2 0.269 0.277 0.212 0.454 0.484
BL3 0.469 0.425 0.307 0.596 0.577
BL4 0.719 0.583 0.521 0.716 0.716
B1 0.493 0.225 0.190 0.631 0.439
B2 0.324 0.594 0.444 0.458 0.595
B3 0.460 0.280 0.315 0.644 0.567
B4 0.224 0.726 0.732 0.448 0.660

Based on Equation (28), the preference scores were calculated as: PL1 = 0.707,
PL2 = 1.695, PL3 = 2.374, PL4 = 3.256, P1 = 1.978, P2 = 2.415, P3 = 2.266, and P4 = 2.790.

As PL4 > P4 > P2 > PL3 > P3 > P1 > PL2 > PL1 , the weak rank of each alternative
was determined as: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1 .

According to Equation (29), the average preference intensity was calculated, as in
Table 8.

Table 8. Average preference intensity.

BL1 BL2 BL3 BL4 B1 B2 B3 B4

BL1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BL2 0.198 0.000 0.000 0.000 0.024 0.000 0.000 0.010
BL3 0.333 0.136 0.000 0.000 0.091 0.057 0.033 0.079
BL4 0.510 0.312 0.176 0.000 0.256 0.170 0.198 0.164
B1 0.254 0.080 0.012 0.000 0.000 0.069 0.007 0.090
B2 0.342 0.144 0.065 0.002 0.156 0.000 0.094 0.022
B3 0.312 0.114 0.011 0.000 0.064 0.064 0.000 0.086
B4 0.417 0.229 0.162 0.071 0.253 0.097 0.191 0.000

The net preference intensity was determined by Equation (30), as shown in Table 9.
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Table 9. Net preference intensity.

BL1 BL2 BL3 BL4 B1 B2 B3 B4

BL1 0.000 −0.198 −0.333 −0.510 −0.254 −0.342 −0.312 −0.417
BL2 0.198 0.000 −0.136 −0.312 −0.056 −0.144 −0.114 −0.219
BL3 0.333 0.136 0.000 −0.176 0.079 −0.008 0.022 −0.083
BL4 0.510 0.312 0.176 0.000 0.256 0.168 0.198 0.093
B1 0.254 0.056 −0.079 −0.256 0.000 −0.087 −0.058 −0.162
B2 0.342 0.144 0.008 −0.168 0.087 0.000 0.030 −0.075
B3 0.312 0.114 −0.022 −0.198 0.058 −0.030 0.000 −0.105
B4 0.417 0.219 0.083 −0.093 0.162 0.075 0.105 0.000

Considering a representative condition, namely, α1 = (0, 3, 4, 7) and α2 = (1, 2, 5, 6), then
d(α1, α2) =

√
3

3 . Thus, λ =
√

2
2 ·

√
3

3 = 0.408, ε = λ/n = 0.082 and θ = (n + 2)λ/2n = 0.286.
Thereafter, the PIR structure of alternatives was established, as in Table 10.

Table 10. PIR structure of alternatives.

BL1 BL2 BL3 BL4 B1 B2 B3 B4

BL1 - O O O O O O O
BL2 P - O O I O O O
BL3 P P - O I I I O
BL4 P P P - P P P P
B1 P I I O - O I O
B2 P P I O P - I I
B3 P P I O I I - O
B4 P P P O P I P -

According to the PIR structure in Table 10, the strong rank order was determined as:
BL4 � B4 �

{
BL3 , B2, B3

}
�
{

BL2 , B1
}
� BL1 . Therefore, the risk of B4 belonged to level L3

to L4, the risk of B2 and B3 was level L3, and the risk of B1 was level L2.

4. Discussions
4.1. Comparison Analysis

To further verify the effectiveness of the proposed methodology, some empirical
methods and other MCDM approaches were adopted as comparisons.

First, empirical methods were adopted to determine the rockburst risk. The evaluation
results of empirical methods are indicated in Table 11. It can be seen that the evaluation
results of different empirical methods were dissimilar, and some of them were even con-
tradictory. The reason may be that these empirical methods were proposed only from
one aspect, whereas the rockburst is affected by numerous factors, such as ground stress,
rock strength and energy storage capacity. Therefore, it is more reasonable to assess the
rockburst risk by considering multiple factors simultaneously. In addition, although the
empirical methods were simple and easy to use, the specific rank of different alternatives
cannot be obtained.

Subsequently, some other MCDM methods based on TrFNs were used to compare
with the proposed method. The evaluation results are shown in Table 12. The specific
calculation process was indicated as follows.
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Table 11. Evaluation results of empirical methods.

Authors Indicators Evaluation Criteria
Evaluation Results

B1 B2 B3 B4

Peng et al. [49] C1
The intervals of L1, L2, L3 and L4 are [40,+∞], [26.7, 40.0],

[14.5, 26.7] and [0, 14.5], respectively. L4 L3 L3 L2

Kidybiński [13] C2
The intervals of L1, L2, L3 and L4 are [0, 2.0], [2.0, 3.5],

[3.5, 5.0] and [5.0,+∞], respectively. L1 L4 L2 L4

Kwasniewski
et al. [50] C3

The intervals of L1, L2, L3 and L4 are [0, 40], [40, 100],
[100, 200] and [200,+∞], respectively. L1 L3 L3 L4

Tao [15] C4
The intervals of L1, L2, L3 and L4 are [14.5,+∞], [5.5, 14.5],

[2.5, 5.5] and [0, 2.5], respectively. L4 L3 L4 L2

Wang et al. [28] C5
The intervals of L1, L2, L3 and L4 are [0, 0.50], [0.50, 0.60],

[0.60, 0.75] and [0.75,+∞], respectively. L1 L3 L2 L3

Table 12. Evaluation results of other MCDM methods.

Authors Evaluation Methods Evaluation Results

Mahdavi et al. [44] Trapezoidal fuzzy
TOPSIS method BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Wang and Li [51] Trapezoidal fuzzy
TODIM method BL4 � B4 � BL3 � B2 � B3 � B1 � BL2 � BL1

The proposed method Trapezoidal fuzzy
ORESTE method

Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � {BL3 , B2, B3} � {BL2 , B1} � BL1

When the trapezoidal fuzzy TOPSIS method [44] was used, the weighted decision ma-
trix was first obtained. Then, the positive ideal solutions were determined as:
_
x
+

1 = (0.147, 0.166, 0.203, 0.221),
_
x
+

2 = (0.184, 0.207, 0.253, 0.276),
_
x
+

3 = (0.213, 0.239,

0.293, 0.319),
_
x
+

4 = (0.129, 0.145, 0.178, 0.194),
_
x
+

5 = (0.126, 0.142, 0.174, 0.190); and all

of the negative ideal solutions were determined as:
_
x
−
j = (0, 0, 0, 0). After that, the dis-

tances from the positive ideal solution were calculated as: d+i = [1.011, 0.631, 0.408, 0.132,
0.586, 0.358, 0.452, 0.214], and the distances from the negative ideal solution were cal-
culated as: d−i = [0.000, 0.381, 0.604, 0.879, 0.425, 0.654, 0.559, 0.797]. The relative close-
ness of each alternative was: RCi = [0.000, 0.376, 0.597, 0.869, 0.420, 0.646, 0.553, 0.788].
As RCL4 > RC4 > RC2 > RCL3 > RC3 > RC1 > RCL2 > RCL1 , the ranking result was
BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1 .

When using the trapezoidal fuzzy TODIM method [51], the partial dominance matrix
was first obtained. Then, the dominance matrix of each alternative over other alterna-
tives was:

ψ(Bi, Bk) =



0.000 −7.292 −9.115 −10.858 −7.572 −9.154 −8.818 −9.622
−7.292 0.000 −5.264 −7.808 −2.214 −4.649 −4.513 −4.664
−9.115 1.039 0.000 −5.747 −0.251 −2.011 −0.555 −3.402
−10.858 1.550 1.146 0.000 1.426 0.657 1.209 −1.309
−7.572 −1.474 −3.257 −6.979 0.000 −3.818 −3.120 −4.713
−9.154 0.998 −1.662 −4.978 −1.493 0.000 −1.703 −2.751
−8.818 0.860 −1.417 −5.970 0.156 −2.460 0.000 −3.738
−9.622 0.222 −1.722 −3.781 −1.634 −0.561 −1.790 0.000


(36)

After that, the global values were: GVL1 = 0, GVL2 = 0.463, GVL3 = 0.754, GVL4 = 1,
GV1 = 0.560, GV2 = 0.741, GV3 = 0.730 and GV4 = 0.774. As GVL4 > GV4 > GVL3 >
GV2 > GV3 > GV1 > GVL2 > GVL1 , the ranking result was BL4 � B4 � BL3 � B2 � B3 �
B1 � BL2 � BL1 .

Based on Table 12, it can be seen that the weak rank of the proposed approach was the
same as the ranking result of the trapezoidal fuzzy TOPSIS method, and there was a small
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difference with that of the trapezoidal fuzzy TODIM method. Specifically, only the ranks of
BL3 and B2 were reversed. However, according to the strong rank of the proposed method,
the ranks of BL3 , B2 and B3 were almost consistent. In addition, the rank of alternatives
BL4 , BL3 , BL2 and BL1 was always BL4 � BL3 � BL2 � BL1 , and the rank of B1, B2, B3 and
B4 was always B4 � B2 � B3 � B1. Therefore, it indicated that the evaluation result of the
proposed methodology was reliable and effective.

4.2. Sensitivity Analysis

In this study, the values of uncertainty parameters α and β in Equation (13) were
suggested as 0.1 and 0.2, respectively. However, due to differences in the understanding
of rockburst and the reliability of data sources, the values of α and β may be various. To
explore the effect of parameter values on the results, other α and β values were selected.
The evaluation results of different α and β values are shown in Table 13. It can be seen that
the weak ranks under dissimilar circumstances were the same. However, it did not mean
that the uncertainty parameters had no effect on the results. The preference score Pi of
each alternative was calculated, as shown in Figure 4. The trends of Pi values were variant,
which indicated that uncertainty parameters may cause changes in evaluation results. In
addition, the strong ranks under different α and β values had some small differences.
However, the overall evaluation results was relatively stable.

Table 13. Evaluation results under different α and β values.

Value of α Value of β Evaluation Results

0.1 0.2
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � {BL3 , B2, B3} � {BL2 , B1} � BL1

0.2 0.3
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � {B4, B2} � {BL3 , B3} � B1 � BL2 � BL1

0.3 0.4
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

0.4 0.5
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

0.1 0.3
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � BL3 � {B3, B1} � BL2 � BL1

0.1 0.4
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � {B4, B2} � {BL3 , B3} � B1 � BL2 � BL1

0.1 0.5
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

0.2 0.4
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

0.2 0.5
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

0.3 0.5
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

In addition, considering that the uncertainty of different indicators may not be equal,
different values of α and β for each indicator were chosen, and the evaluation results are
shown in Table 14. From Table 14, it can be seen that the weak ranks of N1, N2, N3, N4, N5
and N6 were consistent, and the weak ranks of N7 and N8 were the same. However, the
ranks of B2 and B4 were different. The preference score Pi of each alternative was calculated,
which are displayed in Figure 5. The trend of Pi for different alternatives was different,
resulting in the difference of rank. Moreover, the strong rank under different values of α
and β for each indicator were not the same. Therefore, it can be concluded the values of
uncertainty parameters for each indicator have a certain influence on the evaluation results.
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Figure 4. Values of Pi under different circumstances.

Table 14. Evaluation results under different values of α and β for each indicator.

Number
Value of α Value of β

Evaluation Results
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

N1 0.1 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.6
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank:BL4 � {B4, B2} � {BL3 , B3} � B1 � BL2 � BL1

N2 0.5 0.4 0.3 0.2 0.1 0.6 0.5 0.4 0.3 0.2
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � {B4, B2, BL3} � B3 � B1 � BL2 � BL1

N3 0.2 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6 0.7
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � B2 � {BL3 , B3} � B1 � BL2 � BL1

N4 0.6 0.5 0.4 0.3 0.2 0.7 0.6 0.5 0.4 0.3
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � B4 � {B2, BL3} � B3 � B1 � BL2 � BL1

N5 0.3 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.8
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � {B4, B2} � BL3 � B3 � B1 � BL2 � BL1

N6 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4
Weak rank: BL4 � B4 � B2 � BL3 � B3 � B1 � BL2 � BL1

Strong rank:BL4 � {B4, B2, BL3} � B3 � B1 � BL2 � BL1

N7 0.4 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.9
Weak rank: BL4 � B2 � B4 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � {B2, B4, BL3} � {B3, B1} � BL2 � BL1

N8 0.8 0.7 0.6 0.5 0.4 0.9 0.8 0.7 0.6 0.5
Weak rank: BL4 � B2 � B4 � BL3 � B3 � B1 � BL2 � BL1

Strong rank: BL4 � {B2, B4, BL3} � B3 � {B1, BL2} � BL1

Based on the results of sensitivity analysis, the values of uncertainty parameters affect
the evaluation results directly. In reality, the uncertainty parameters can be determined
according to the variability in indicator values and the quality of data. To obtain more
reliable uncertainty parameters, multiple experiments can be conducted to acquire more
indicator values. Then, the distribution and variability of data can be used to determine
the preliminary uncertainty parameter values. After that, a sensitivity analysis can be
conducted to obtain the final value according to the changes in results. It should be noted
that the values of uncertainty parameters depend on the specific application.
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Figure 5. Values of Pi under different values of α and β for each indicator.

4.3. Managerial Implication

According to the evaluation results, some managerial implications can be obtained to
manage the rockburst risk in mines.

(1) Due to the influence of uncertainty on the evaluation results, some measures should
be taken to avoid uncertainty in reality, such as ensuring the high quality of data.

(2) Based on the evaluation results, the areas of high risk should receive more attention.
For example, a monitoring system can be installed for the early warning of rockburst.

(3) The technical parameters of rockburst prevention measures can be optimized accord-
ing to different risk levels. For different risk levels, the prevention measures and their
parameters should be different.

To sum up, this study enriches the representation of uncertain information of rockburst
indicators, the determination of indicator weights, and the evaluation methods of rockburst
risk. The highlights of the presented methodology are summarized as follows:

(1) The indicator values were expressed by TrFNs after the uncertainty parameters were
introduced, which can indicate the uncertain information more reasonably.

(2) Game theory was used to calculate the indicator weights by combining subjective and
objective weights, so that the comprehensive weights can be determined more credibly.

(3) The ORESTE approach was extended with TrFNs, which can be used to solve MCDM
problems under trapezoidal fuzzy environments.

(4) The proposed methodology was applied to evaluate rockburst risk, and can obtain
evaluation results reliably.

5. Conclusions

Evaluating rockburst risk is a crucial issue for the safe and efficient mining in deep
mines. This study proposed an extended ORESTE approach with TrFNs to assess rockburst
risk. Considering the uncertainty of evaluation information, TrFNs were adopted to express
the indicator values. The subjective and objective weights were calculated by the superiority
linguistic ratings of experts and a modified entropy weights model, respectively. The final
indicator weights were determined by integrating subjective and objective weights based
on game theory. To obtain the evaluation results under a fuzzy environment, an extended
ORESTE approach was proposed based on TrFNs. The proposed methodology was applied
to evaluate the rockburst risk of different lithologies in the Kaiyang phosphate mine. By
comparing the evaluation results with empirical methods and other trapezoidal fuzzy
MCDM approaches, it indicated that the proposed methodology was reliable and feasible.
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The evaluation results provided an effective guidance for personnel-exposure management
and the prevention of rockburst.

TrFNs enrich the representation of uncertain information in mining and geotechnical
engineering, and they can be used to express other similar evaluation information in the
future. The proposed methodology can also be adopted to handle other fuzzy MCDM
issues, such as landslide risk analysis, tunnel stability evaluation and rock-mass quality
classification. In addition, the determination of uncertainty parameters is worth researching
in depth.
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