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Abstract: This paper studies a parabolic equation with exponential nonlinearity, which has several
applications, for example the self-trapped beams in plasma. Based on a modified concavity method
we prove the blow-up of the solution for initial data with high initial energy. We also proposed the
solution’s lower and upper bound of the blow-up time for the equation. Our results complement the
existing results.
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1. Introduction

This paper is concerned with blow-up of solutions for the following parabolic equation
with exponential nonlinear source{

ut = ∆u− u + λ f (u) in (0, T)× R2

u(x, 0) = u0(x)inR2,
(1)

where λ > 0,

f (u) := 2α0ueα0u2
, for some α0 > 0, (2)

with initial data u0 ∈ H1(R2). Equation (1) has several applications, for example, the self-
trapped beams in plasma [1]. Moreover, the two-dimensional case is interesting because of
its relation to the critical Moser–Trudinger inequalities [2,3].

Equation (1) is well known with power-type nonlinearity as f (u) = |u|p−1u, which
has been extensively studied [4]. The model is used to study the competition between
the dissipative of diffusion and the influence of an explosive source term. The first result
with singular initial data is due to Weissler [5,6]. Messaoudi [7] and Liu and Wang [8]
both studied the Cauchy problem with vanishing and positive initial energy blow-up for
some special parabolic equations in finite time, respectively. Furthermore, for Equation (1)
with power-type nonlinearity and a memory term, the finite-time blow-up result for the
solution has been proved with positive initial energy in [9]. Tian [10] given out the bound
of blow-up time of the viscoelastic parabolic equation. Furthermore, the blow-up bounds
of Equation (1) with different nonlinearities except exponential nonlinearity were studied
in [11,12]. Moreover, it is noted that analytic methods were numerically used to study
various one-dimensional parabolic Equations [13–16].

In the past decades, more and more attention has been devoted to the blow-up study
of wave equations with arbitrarily initial energy [17–19]. Recently, the blow-up bounds of
wave equations with various nonlinearities have been studied [20,21]. Nevertheless, the
proof cannot directly apply to the parabolic equations.
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In this paper, we focus on Equation (1) with the exponential nonlinearity (2). If λ
satisfies the following condition

0 < λ <
1

2α0
, (3)

then the existence of ground solutions for the stationary problem associated with (1) has
been proved in [22]. For the case λ ≥ 1

2α0
the corresponding stationary problem has no

non-trivial H1(R2)- solution. As in [23], we define the maximal existence time T∗ of the
solution u(x, t) as

T∗ := sup
{

T > 0| the problem (1) admits a solution u ∈ C
(
[0, T]; H1(R2)

)}
∈ (0,+∞].

In order to introduce some existing results for the problem (1), we now denote some
notations: We use ‖ · ‖q to denote the norm in Lq(Ω). For simplicity, we always use
‖ · ‖ to denote ‖ · ‖2. Furthermore, let H(Ω) be the Sobolev space with the norm as
(‖∇(·)‖2 + ‖ · ‖2)

1
2 . We next define two auxiliary functions.

J(v) :=
1
2
‖v‖2

H1 − λ
∫
R2

F(v)dx, (4)

where
F(v) :=

∫ v

0
f (µ)dµ = eα0v2 − 1,

and

I(v) := ‖v‖2
H1 − λ

∫
R2

v f (v)dx. (5)

The potential well and its corresponding set are defined, respectively, by

W := {u ∈ H1(R2)|I(u) > 0, J(u) < d} ∪ {0}, (6)

V := {u ∈ H1R2|I(u) < 0, J(u) < d}, (7)

where the depth d of the potential well is characterized by

d := inf
u∈H1(R2)\{0}

sup
ω≥0

J(ωu) = inf
u∈N

J(u), (8)

N = {u ∈ H1(R2)|I(u) = 0, ‖∇u‖ 6= 0}. (9)

Concerning local existence and uniqueness for Equation (1) in [23–25], for any
u0 ∈ H1(R2) the Cauchy problem (1) has a unique local in time solution u ∈ C

(
[0, T]; H1(R2)

)
for some finite time T > 0.

In [23,24], the main results of global existence and non-existence of solutions for
Equation (1) can be summarized as follows: when J(u0) < d,

(i) if u0 ∈W then the maximal solutions to (1) with λ as in (3) exist globally;
(ii) if u0 ∈ V then the maximal solutions to (1) with λ as in (3) blow up in finite time.

As we know, the existing blow-up result did not consider the case of arbitrarily high
initial energy for Equation (1). This paper is devoted to studying the blow-up result for the
parabolic Equation (1) with exponential nonlinearity and high initial energy.

Under u0 ∈ H1(R2), the local existence has been proved in [23], then we are in a
position to state our main blow-up result for Equation (1).

Theorem 1. Let u ∈ C
(
[0, T); H1(R2)

)
be the maximal solution to (1) with λ satisfying

0 < λ <
1

4α0
, (10)



Mathematics 2022, 10, 2887 3 of 9

and u0 ∈ H1(R2). If

J(u0) <
θ − 2

2θ
ξ1‖u0‖2, (11)

where 2 < θ < 2(1 + ε), ε = 1
4λα0
− 1, and ξ1 > 0 is the largest eigenvalue of −∆ in R2 with

homogeneous Dirichlet boundary condition. Then the solution u(x, t) blows up at a sufficiently
large time T, where T has an upper bound T̄ as (36).

Moreover, if u0 also satisfies that

‖∇u0‖2 <
4π

α0(1 + ε)
, (12)

‖u0‖2 < M (13)

for some ε > 0 and M > 0, then the blow-up time has a lower bound T as (41).

Remark 1. The energy J(u) may be arbitrarily high. We next show this by a contradiction. Suppose
that there exists some M > 0 such that the energy J(u) < M for any u. Here we can suppose that
u ∈ L∞(R2). If u /∈ L∞(R2), then we assume that there exists a x̄ ∈ R2 such that u → ∞ as
x → x̄. We set

ũ =

{
u, x ∈ R2 x̄(ε),
0, x ∈ x̄(ε),

where x̄(ε) = {x ∈ R2 : ‖x− x̄‖ < ε}, ε is some small positive number.
Then, for every u ∈ L2(R2) ∩ L∞(R2), it holds in [26]∫

R2
(eα|u(x)|2 − 1)dx ≤ 1√

log 2
(‖u‖+ ‖u‖∞). (14)

We now take u0 = ru for some r > 0. Then we see that

J(ru) =
1
2

(
r2‖u‖2 + r2‖∇u‖2

)
− λ

∫
R2

(
eαr2u2 − 1

)
dx

≥ 1
2

(
r2‖u‖2 + r2‖∇u‖2

)
− 1√

log 2
r(‖u‖+ ‖u‖∞)dx.

If r = 1, then 1
2
(
r2‖u‖2 + r2‖∇u‖2) − 1√

log 2
r(‖u‖+ ‖u‖∞)dx < M. Obviously, as

r → +∞, 1
2
(
r2‖u‖2 + r2‖∇u‖2) − 1√

log 2
r(‖u‖+ ‖u‖∞)dx → +∞, which implies that for

arbitrarily high initial energy, there exists u0 satisfying (11).

2. Proof of Theorem 1

We first state the following equalities, which have been proved in [23]

d
dt

J(u(t)) = −‖∂tu(t)‖2, (15)

1
2

d
dt
‖u(t)‖2 = −I(u(t)). (16)

In our proof we need the following auxiliary growth functions

f̃ (u) := 2α0u(eα0u2 − 1), and F̃(u) := eα0u2 − 1− α0u2. (17)

It is obvious that

f (u) = f̃ + 2α0u, and F(u) = F̃(u) + α0u2.
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By a direct computation, we see that for any θ > 2, it is satisfied that

θF̃(s) ≤ s f̃ (s), for any s ∈ R. (18)

In order to prove the blow-up result, the following lemma is necessary, which has
been proved in [27].

Lemma 1. If Φ(t) is a nonincreasing function on [0,+∞], and satisfies that

Φ′(t)2 ≥ a + bΦ(t)2+ 1
κ (19)

for t ≥ 0, where a > 0 and b > 0, then there exists a finite time T∗ > 0 such that

limt→T∗−Φ(t) = 0,

where

T∗ ≤ 2
3κ+1

2κ
κ( a

b )
2+1/κ

√
a

(1− (1 + (
a
b
)2+1/κΦ(0)))−1/(2κ).

2.1. Proof of the Upper Bound of Blow-Up Time in Theorem 1

We first prove that I(u0) < 0. By (4) and (5),

I(u0) = θ J(u0)−
θ − 2

2
(‖u0‖2 + ‖∇u0‖2)− λ

∫
R2

u0 f (u0)dx + λθ
∫ 2

R
F(u0)dx

= θ

(
J(u0)−

θ − 2
2θ

ξ1‖u0‖2
)
−
(

θ − 2
2
− λ(θα0 − 2α0)

)
‖u0‖2

− θ − 2
2

(
‖∇u0‖2 − ξ1‖u0‖2

)
+ λ

(∫
R2

θF̃(u0)dx−
∫
R2

u0 f̃ (u0)dx
)

.

(20)

By θ > 2 and (10), we can easily see that(
θ − 2

2
− λ(θα0 − 2α0)

)
> 0. (21)

By (11), (21), (18) and the definition of ξ1, we have

I(u0) < 0. (22)

Next, by a contradiction argument, we prove that

I(u(t)) < 0

for all t ∈ [0, T) .
Suppose that there exists a time t1 such that

t1 := min{t ∈ (0, T) : I(u) = 0} > 0.

Following the local existence results in [23], we see that u(t, x) is continuous as a
function of t. Then we see that I(u(t)) < 0 when t ∈ [0, t1) and I(u(t1)) = 0. By (16) we
have that ‖u(t)‖2 is strictly increasing in t for t ∈ [0, t1), thus,

0 ≤ J(u0) <
θ − 2

2θ
ξ1‖u0‖2 <

θ − 2
2θ

ξ1‖u(t1)‖2. (23)
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On the other hand, it follows from (4), (15) and the fact that I(u(t1) = 0 that

J(u0) ≥ J(u(t1)) =
1
2
(‖u(t1)‖2 + ‖∇u(t1)‖2)− λ

∫
R2

F(u(t1))dx− 1
θ

I(u(t1))

=

(
θ − 2

2θ
− λ(α0θ − 2α0)

)
‖u(t1)‖2 +

θ − 2
2θ
‖∇u(t1)‖2

+
λ

θ

(∫
R2

u(t1) f̃ (u(t1))dx− θ
∫
R2

F̃(u(t1))dx
)

≥ θ − 2
2θ
‖∇u(t1)‖2

≥ θ − 2
2θ

ξ1‖u(t1)‖2,

(24)

which contradicts (23). Thus, we have proved that I(u(t)) < 0 for all t ∈ [0, T).
Furthermore, by (15) we see that the following is always valid on [0, T)

J(u(t)) <
θ − 2

2θ
ξ1‖u0‖2.

Secondly, we prove that the solution of Equation (1) blows up in a finite time. We now
suppose that T∗ is sufficiently large. Then, we define the following auxiliary function: for
t ∈ [0, T∗)

G(t) =
∫ t

0
‖u(τ)‖2dτ + (T∗ − t)‖u0‖2 + a(t + σ)2, (25)

with T∗ ∈ (0, T), a > 0 and σ > 0.
We can obtain

G′(t) = ‖u(t)‖2 − ‖u0‖2 + 2a(t + σ)

=
∫ t

0

d
dτ
‖u(τ)‖2dτ + 2a(t + σ), (26)

and

1
2

G′′(t) =
1
2

d
dt
‖u(t)‖2 + a

= −I(u(t)) + a

≥ −
(
‖∇u(t)‖2 + (1− 2α0λ)‖u(t)‖2

)
+ λθ

∫
R2

F̃(u(t))dx + a

≥ −θ J(u(t) +
θ − 2

2

(
‖∇u‖2 + (1− 2α0λ)‖u(t)‖2

)
+ a

≥ −θ J(u(t)) + (θ − 2)(1− 2α0λ)‖u(t)‖2 + a

= −θ J(u0) +
∫ t

0
‖uτ(τ)‖dτ + (θ − 2)(1− 2α0λ)‖u(t)‖2 + a,

(27)

where the penultimate inequality follows from Poincaré inequality [28]. Obviously, we can
choose a sufficient large a such that a− θ J(u0) > 0, which means that G′′(t) > 0 for every
t ∈ (0, T). Since G′(0) = 2aσ > 0, then G′(t) > 0 for every t ∈ [0, T∗). Thus, we see that
G(t) is strictly increasing on [0, T∗). As G(0) = T∗‖u0‖2 + aσ2 > 0, we have that G(t) > 0
for any t ∈ [0, T∗).
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Now we denote

A :=
∫ t

0
‖u(τ)‖2dτ + a(t + σ)2, (28)

B :=
1
2

∫ t

0

d
dτ
‖u(τ)‖2dτ + a(t + σ), (29)

C :=
∫ t

0
‖uτ(τ)‖2 + a. (30)

Additionally, we see that for any s ∈ R

As2 − 2Bs + C =
∫ t

0
‖(su(τ)− uτ(τ))‖2dτ + a((t + σ)s + 1)2

≥ 0,

which implies that AC− B2 ≤ 0.
Furthermore, we have

G(t) ≥ A,

G′(t) = 2B,

G′′(t) ≥ 2θC− (2θ − 1)a− 2θ J(u0).

Then,

G(t)G′′(t)− θ

2
(G′(t))2 ≥ 2θ(AC− B2)− ((2θ − 1)a + 2θ J(u0))G(t)

≥ −((2θ − 1)a + 2θ J(u0))G(t).

Define another auxiliary function

Φ(t) = (G(t))−
θ
2+1. (31)

By direct computation, we have

Φ′(t) =

(
− θ

2
+ 1
)
(G(t))−

θ
2 G′(t), (32)

Φ′′(t) =

(
− θ

2
+ 1
)
(G(t))−

θ
2−1
(

G(t)G′′(t)− θ

2
(
G′(t)

)2
)

(33)

≤ ((2θ − 1)a + 2θ J(u0))

(
θ

2
− 1
)
(Φ(t))

θ
θ−2 . (34)

By the facts, G(t) > 0 and G′(t) > 0, we see that Φ′(t) < 0. Thus, by multiplying (34)
by Φ′(t) and integrating it from 0 to t, we obtain that

Φ′(t) ≥ C0 + C1Φ(t)
2θ−2
θ−2 , (35)

where

C0 = Φ2(0)− ((2θ − 1)a + 2θ J(u0))(2θ − 2)Φ(0)
2θ−2
θ−2 ,

C1 = ((2θ − 1)a + 2θ J(u0))(2θ − 2).

If we want C0 > 0, by direct calculation, it is sufficient that

T∗‖u0‖2 + aσ2 − ((2θ − 1)a + 2θ J(u0))(2θ − 2) > 0.



Mathematics 2022, 10, 2887 7 of 9

There exists a σ > 0 sufficiently large such that the above inequality is valid.
Now from Lemma 1 it is following that there exists a finite time T > 0 such that

Φ(t)→ 0 as t→ T−, which means that G(t)→ +∞ as t→ T−

By Lemma 1 we estimate the upper bound T̄ of the blow-up time T with T < T̄, where

T̄ = 2
3θ−4

2(θ−2)

θ−2
2

(
C0
C1

) 2θ−2
θ−2

C1/2
0

(
1−

(
1 +

C0

C1

) 2θ−2
θ−2

Φ(0)

)− 1
θ−2

. (36)

2.2. Proof of the Lower Bound of blow-up Time in Theorem 1

We define the function

φ(x) =
1
2

∫
R2

u2(x, t)dx. (37)

By (16) we see that

φ′(x) = −I(t)

≤ λ
∫
R2

u f (u)dx

= λ

(
2α0‖u‖2 +

∫
R2

2α0u2(eα0u2 − 1)dx
)

.

(38)

Equation (1) can be written in the equivalent integral formulation

Γ : u(t) = et∆u0 − λ
∫ t

0
e(t−s)∆ f (u(s))ds.

Define the following set

X =

{
u ∈ L((0, T), H1(R2)) : sup

t∈[0,T)
‖∇u(t)‖2 ≤ 4π

α0(1 + ε
2 )

, sup
t∈[0,T)

‖u(t)‖2 ≤ βM

}
,

where β is some positive constant.
Following the proof in [23] we see that Γ maps X into itself and have the next estimation

‖u(t)‖ ≤
√

M + Cεt
√
(M) + Cr

∫ t

0
t3/2−1/r,

where 1 < r < 2. As T < T̄, and we take r = 3/2, then we obtain

‖u(t)‖ ≤ Cε,M,T̄ . (39)

By the scale-invariant Trudinger–Moser inequality, we can obtain that for any v ∈ H1(R2),

∫
R2

u2(x, t)(e2α0u2(x,t) − 1)dx ≤
(∫

R2
|u(x, t)|2q1

)1/q1
(∫

R2
(eα0q2u2(x,t)−)dx

)1/q2

≤ C‖u(t)‖2
(∫

R2
(eα0q2u2(x,t)−)dx

)1/q2

≤ C
(

4π

α0(1 + ε)

)−1/(1+ε)

‖u‖2(2+ε),

(40)

where we use Holder inequality with q1, q2 > 1 satisfying 1
q1
+ 1

q2
= 1 and q2 = 1 + ε, and

Gagliardo–Nirenberg inequality as following

‖v‖q
Lq ≤ C‖∇v‖q−2‖v‖2
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for any v ∈ H1(R2) with q ≥ 2.
Combining (38) and (40) we obtain that

φ′(t) = C
(

4π

α0(1 + ε)

)−1/(1+ε)

(Cε,M,T̄ + φ2+ε(t))

≤ C
(

4π

α0(1 + ε)

)−1/(1+ε)

(Cε,M,T̄ + φ(t))2+ε

for t ∈ [0, T).
Since I(u(t)) < 0 then φ(t) > 0 for any t ∈ [0, T). Thus, we see that there exists a

lower bound underlineT of blow-up time for Equation (1)

t ≥ T =

(
4π

α0(1 + ε)

)1/(1+ε) ‖u0‖−2(1+ε)

(1 + ε)C

=

(
4π

α0(1 + ε)

)1/(1+ε) M−(1+ε)

(1 + ε)C
. (41)

Thus, the proof of Theorem 1 is completed.

3. Conclusions

This paper studies the bound of blow-up time for the parabolic equation with expo-
nential nonlinearity. This paper proved the blow-up time bound for the parabolic equation
with exponential nonlinearity based on the modified concavity method. Up to our knowl-
edge [23,24], this result is new for the exponential parabolic equations. Furthermore, we
note that some studies use analytic methods to study the parabolic equations with various
nonlinearities in R1 [13–16], which provides the main impetus for our future study.
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Anal. Non Linéaire 2006, 23, 185–207. [CrossRef]

18. Wang, Y. A sufficient condition for finite time nlow up of the nonlinear Klein-Gordon equations with arbitrary positive initial
energy. Proc. AMS 2008, 136, 3477–3482. [CrossRef]

19. Kafini, M. A blow-up result in a system of nonlinear viscoelastic wave equations with arbitrary positive initial energy. Indag.
Math. 2013, 24, 602–612. [CrossRef]

20. Wang, Y. Arbitrary initial energy blow up for fourth-order viscous damped wave equation with exponential-type growth
nonlinearity. Appl. Math. Lett. 2021, 121, 107455. [CrossRef]

21. Peng, X. Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping. Appl. Math. Lett.
2018, 76, 66–73. [CrossRef]

22. Ruf, B.; Sani, F. Ground states for elliptic equations in R2 with exponential critical growth. In Geometric Properties for Parabolic and
Elliptic PDE’s; Springer: Milan, Italy, 2013; pp. 251–267.

23. Ishiwata, M.; Ruf, B.; Sani, F.; Terraneo, E. Asymptotics for a parabolic equation with critical exponential nonlinearity. J. Evol. Equ.
2021, 21, 1677–1716. [CrossRef]

24. Ibrahim, S.; Jrad, R.; Majdoub, M.; Saanouni, T. Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc.
Simon Stevin 2014, 21, 535–551. [CrossRef]

25. Saanouni, T. A note on the inhomogeneous nonlinear heat equation in two space dimensions. Mediterr. J. Math. 2016, 13,
3651–3672. [CrossRef]

26. Ioku, N.; Ruf, B.; Terraneo, E. Existence, nonexistence, and uniqueness for a heat equation with exponential nonlinearity in R2.
Math. Phys. Anal. Geom. 2015, 18, 29. [CrossRef]

27. Li, M.R.; Tsau, L.Y. Existence and nonexistence of global solutions of some system of semilinear wave equations. Nonlinear Anal.
2003, 54, 1397–1415. [CrossRef]

28. Souplet, P. Geometry of unbounded domains, poincare inequalities and stability in semilinear parabolic equations. Commun.
Partial Differ. Equ. 1999, 24, 545–551. [CrossRef]

http://dx.doi.org/10.1016/j.aml.2017.11.013
http://dx.doi.org/10.1016/j.camwa.2018.08.043
http://dx.doi.org/10.1016/j.ijleo.2016.05.050
http://dx.doi.org/10.1016/j.ijleo.2017.02.016
http://dx.doi.org/10.3390/e24070915
http://dx.doi.org/10.3934/math.2022521
http://dx.doi.org/10.1016/j.anihpc.2005.02.007
http://dx.doi.org/10.1090/S0002-9939-08-09514-2
http://dx.doi.org/10.1016/j.indag.2013.04.001
http://dx.doi.org/10.1016/j.aml.2021.107455
http://dx.doi.org/10.1016/j.aml.2017.08.003
http://dx.doi.org/10.1007/s00028-020-00649-z
http://dx.doi.org/10.36045/bbms/1407765888
http://dx.doi.org/10.1007/s00009-016-0707-7
http://dx.doi.org/10.1007/s11040-015-9199-0
http://dx.doi.org/10.1016/S0362-546X(03)00192-5
http://dx.doi.org/10.1080/03605309908821454

	Introduction
	Proof of Theorem 1
	Proof of the Upper Bound of Blow-Up Time in Theorem 1
	Proof of the Lower Bound of blow-up Time in Theorem 1

	Conclusions
	References

