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Abstract: In this paper, we give sufficient conditions for the construction of certain symmetric and
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1. Introduction

The structured inverse eigenvalue problem (SIEP) consists of determining sufficient
and necessary conditions for a data set to be the spectral information of a structured
matrix. Some structured matrices considered in the SIEP are Jacobi inverse eigenvalue
problems, Toeplitz inverse eigenvalue problems, nonnegative inverse eigenvalue problems,
stochastic inverse eigenvalue problems, and inverse singular value problems [1]. If the
matrix is required to be nonnegative and symmetric, it is called a symmetric nonnegative
inverse eigenvalue problem. Two particular SIEPs for symmetric matrices were introduced
in [2], one is for constructing an up-arrow symmetric matrix from the smallest and largest
eigenvalue of its principal principal submatrices, and the other for constructing a symmetric
matrix arrowhead up from the largest eigenvalue of its principal principal submatrices and
an eigenvector associated with its largest eigenvalue. These kinds of problems are also
called extreme inverse eigenvalue problems. In the last years, extreme inverse eigenvalue
problems for certain symmetric matrices such as tridiagonal, Jacobi, bordered diagonal, and
acyclic matrices, among others, have been considered (see e.g., [3–6]). In [7–10], the authors
advance the extreme inverse eigenvalue problem by studying nonsymmetric cases. The
symmetric pentadiagonal matrix, i.e., the symmetric matrix with 2p + 1 bands with p = 2,
appears in the inverse problem for a vibrating beam [11]. In this case, the pentadiagonal
matrix A involves the stiffness data of the beam, in which the first subdiagonals must be
negative and the second subdiagonals positive. Given

σ(A) = (λi)
n
1 , σ(A1) = (µi)

n−1
1 , σ(A1,2) = (νi)

n−2
1 , (1)

where σ(A) denotes the spectrum of A, and A1, A1,2 the matrices when their first row and
column, and their first two rows and columns, respectively, are removed, such that the
eigenvalues are strictly interleaved, Gladwell constructs a pentadiagonal matrix A such
that (1) holds [12].
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The inverse extreme eigenvalue problem for a symmetric pentadiagonal matrix arises
from the inverse problem for a discrete beam which occurs in the structural design of beams,
buildings, and bridges, among others. In constructing the mass-spring systems, the problem
of inferring the bending stiffness and density of a beam from its eigenfrequencies when
one or both ends are clamped is studied as the inverse problem of extreme eigenvalues
for symmetric pentadiagonal matrices [13]. This discrete beam problem considers some
variables such as masses, stiffness, and lengths of a discrete beam. A relevant and widely
studied problem is the Euler–Bernoulli beam problem, which presents some variations
such as modes of vibration, an arbitrary number of concentrated open cracks [14,15], an
online system of masses and springs with a minimum mass for total stiffness, and a sand
cantilever beam system in bending vibration [16].

In this paper, we consider the following kinds of pentadiagonal matrices:

A =



a1 b1 b2
b1 a2 0 b3

b2 0 a3
. . . . . .

b3
. . . . . . 0 bn−1
. . . 0 an−1 bn

bn−1 bn an


, (2)

with bj > 0, j = 1, 2 . . . , n− 1, and

B =



a1 b1 b2
c1 a2 0 b3

c2 0 a3
. . . . . .

c3
. . . . . . 0 bn−1
. . . 0 an−1 bn

cn−1 cn an


, (3)

where aj, bj, and cj are real numbers with bjcj > 0, j = 1, 2 . . . , n (see [17]).

Remark 1.

1. The matrix A defined in (2) is similar to a symmetric tridiagonal matrix [17]. However, the
eigenvalues of its leading principal submatrices are not preserved under such similarity.

2. Notice that the matrix B of the form (3) is diagonally similar to the symmetric pentadiagonal
matrix

DBD−1 =



a1
√

b1c1
√

b2c2
√

b1c1 a2 0
. . .

√
b2c2 0 a3

. . . . . .
. . . 0

. . . 0
√

bn−1cn−1
. . . 0 an−1

√
bncn√

bn−1cn−1
√

bncn an


(4)
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with D = diag(α1, α2, . . . , αn), and

αj=



 b n
2 c

∏
k=d j

2 e

c2k
b2k

 1
2

, j old

 d n
2 e

∏
k=d j+1

2 e

c2k−1
b2k−1

 1
2

, j even

(5)

j = 1, 2, . . . , n− 1, where dxe and bxc denote the least integer greater or equal to x and the
greater integer least than or equal to x, respectively, αn = 1, and

d n
2 e

∏
k=1

b2k−1
c2k−1

=
b n

2 c

∏
k=1

b2k
c2k

, (6)

which implies that, under this transformation, the eigenvalues of the leading principal subma-
trices Bj, j = 1, 2, . . . , n of the matrix B remain invariant.

In the sequel, we deal with nonsymmetric pentadiagonal matrices such that (6) holds.
Throughout the text, given an n × n symmetric matrix Mn, for j = 1, 2, . . . , n, Mj

denotes the j × j leading principal submatrix of Mn, σ(Mj) = {λ(j)
1 , λ

(j)
2 , . . . , λ

(j)
j } the

spectrum of Mj, Pj(λ) the characteristic polynomial of Mj, λ
(j)
1 , λ

(j)
j the smallest and largest

eigenvalue of Mj, respectively (also called extreme eigenvalues), and Ij the identity matrix
of order j.

In this paper, we consider the following two extremal inverse eigenvalue problems to
be similar but more general than the one considered by Gladwell in [12]:

Problem 1. Given the set of real numbers{
λ
(n)
1 , . . . , λ

(j)
1 , . . . , λ

(2)
1 , λ

(1)
1 , λ

(2)
2 , . . . , λ

(j)
j , . . . , λ

(n)
n

}
,

and a positive real number d, construct a symmetric pentadiagonal matrix A of the form (2) such
that λ

(j)
1 and λ

(j)
j are, respectively, the smallest and largest eigenvalue of the leading principal

submatrix Aj, j = 1, 2, . . . , n, and bn = d.

Problem 2. Given the set of real numbers{
λ
(n)
1 , . . . , λ

(j)
1 , . . . , λ

(2)
1 , λ

(1)
1 , λ

(2)
2 , . . . , λ

(j)
j , . . . , λ

(n)
n

}
,

a nonzero vector x = (x1, x2, . . . , xn)T and two positive real numbers d1 and d2, construct a
nonsymmetric pentadiagonal matrix B of the form (3) such that λ

(j)
1 and λ

(j)
j are, respectively, the

smallest and largest eigenvalue of the leading principal submatrix Bj, j = 1, 2, . . . , n,
(

λ
(n)
n , x

)
is

an eigenpair of B, bn = d1, and cn = d2.

The paper is organized as follows: in Section 2, we give sufficient conditions for the
existence and construction of a symmetric pentadiagonal matrix A of the form (2) from
the extreme eigenvalues of its leading principal submatrices. In Section 3, we determine
a relationship between the entries of the eigenvector of a nonsymmetric pentadiagonal
matrix B of the form (3) associated with its largest eigenvalue. Then, we give sufficient
conditions for the construction of a matrix B of the form (3) from the extreme eigenvalues of
its leading principal submatrices and an eigenpair. Throughout the paper, some illustrative
examples are presented.
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2. Symmetric Pentadiagonal Matrices from Extremal Eigenvalues

In this section, we show that the interleaving of the extreme eigenvalues of the leading
principal submatrices of a symmetric pentadiagonal matrix is sufficient to guarantee a
solution to Problem 1. In particular, we give a sufficient condition for the construction of
a symmetric pentadiagonal matrix from the extreme eigenvalues of its leading principal
submatrices and a prescribed entry. Moreover, a solution set is given.

Lemma 1. Let A be an n× n symmetric pentadiagonal matrix of the form (2) and let Aj be the
j × j principal submatrix of A with characteristic polynomial Pj(λ), j = 1, 2, . . . , n. Then the
sequence

{
Pj(λ)

}n
j=1 satisfies the recurrence relation:

P1(λ) = λ− a1, (7)

Pj(λ) =
(
λ− aj

)
Pj−1(λ)− b2

j−1Qj−1(λ), j = 2, 3, . . . , n− 1, (8)

Pn(λ) = (λ− an)Pn−1(λ)− b2
nPn−2(λ)− b2

n−1Qn−1(λ)− 2
n

∏
i=1

bi (9)

where Q1(λ) = 1 and Qj−1(λ), j = 3, . . . , n is the characteristic polynomial of the principal
submatrix of A obtained by deleting the (j − 2)-th row and column of the leading principal
submatrix Aj−1.

Proof. It is immediate by expanding the determinant.

Hereafter, we will adopt the following notations

Rj = Pj−2

(
λ
(j)
1

)
Qj−1

(
λ
(j)
j

)
− Pj−2

(
λ
(j)
j

)
Qj−1

(
λ
(j)
1

)
Sn = Qn−1

(
λ
(n)
n

)
−Qn−1

(
λ
(n)
1

)
Tn = Pn−1

(
λ
(n)
n

)
− Pn−1

(
λ
(n)
1

)
Uj = Pj−1

(
λ
(j)
j

)
Qj−1

(
λ
(j)
1

)
− Pj−1

(
λ
(j)
1

)
Qj−1

(
λ
(j)
j

)
Vj = Pj−2

(
λ
(j)
1

)
Pj−1

(
λ
(j)
j

)
− Pj−2

(
λ
(j)
j

)
Pj−1

(
λ
(j)
1

)
Wj =

(
λ
(j)
j − λ

(j)
1

)
Pj−1

(
λ
(j)
1

)
Pj−1

(
λ
(j)
j

)
Zj = λ

(j)
j Pj−1

(
λ
(j)
j

)
Qj−1

(
λ
(j)
1

)
− λ

(j)
1 Pj−1

(
λ
(j)
1

)
Qj−1

(
λ
(j)
j

)
γ =

d n
2 e

∏
k=1

c2k−1

b n
2 c

∏
k=1

b2k, for all j = 2, . . . , n− 1.



(10)

The following lemma will be very useful in our results.

Lemma 2 ([4]). Let P(λ) be a monic polynomial of degree n with all real zeros. If λ1 and λn are,
respectively, the smallest and largest zeros of P(λ), then

(1) If µ < λ1, we have that (−1)nP(µ) > 0,
(2) If µ > λn, we have that P(µ) > 0.

Theorem 1. Let the set of real numbers
{

λ
(j)
1 , λ

(j)
j

}n

j=1
, and a positive real number d satisfy

λ
(n)
1 < · · · < λ

(j)
1 < · · · < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · · < λ

(j)
j < · · · < λ

(n)
n , (11)

where Un, Vn, and Wn are as in (10). Then, there exists a symmetric pentadiagonal matrix A of the
form (2), such that λ

(j)
1 and λ

(j)
j are, respectively, the smallest and largest eigenvalues of the leading

principal submatrix Aj, j = 1, 2, . . . , n.
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Proof. It is immediate that a1 = λ
(1)
1 . To show the existence of a symmetric pentadiagonal

matrix A with the required properties is equivalent to showing that:
On the one hand, the system of equationsPj

(
λ
(j)
1

)
=
(

λ
(j)
1 − aj

)
Pj−1

(
λ
(j)
1

)
− b2

j−1Qj−1

(
λ
(j)
1

)
= 0,

Pj

(
λ
(j)
j

)
=
(

λ
(j)
j − aj

)
Pj−1

(
λ
(j)
j

)
− b2

j−1Qj−1

(
λ
(j)
j

)
= 0.

(12)

has real solutions aj and bj−1 with b2
j−1 > 0, j = 1, 2, . . . , n− 1. In effect, from (11) and

Lemma 2, the determinant of the system (12)

−Uj = Pj−1

(
λ
(j)
1

)
Qj−1

(
λ
(j)
j

)
− Pj−1

(
λ
(j)
j

)
Qj−1

(
λ
(j)
1

)
is nonzero. Solving (12), for j = 1, 2, . . . , n− 1, we have

aj =
Zj

Uj
, b2

j−1 =
Wj

−Uj
. (13)

Moreover, from Lemma 2 we have b2
j−1 > 0, then

bj−1 =

√
Wj

−Uj
, j = 2, . . . , n− 1. (14)

On the other hand, the system of equations
Pn

(
λ
(n)
1

)
=
(

λ
(n)
1 − an

)
Pn−1

(
λ
(n)
1

)
− b2

nPn−2(λ
(n)
1 )− b2

n−1Qn−1

(
λ
(n)
1

)
− 2

n
∏
i=1

bi = 0,

Pn

(
λ
(n)
n

)
=
(

λ
(n)
n − an

)
Pn−1

(
λ
(n)
n

)
− b2

nPn−2(λ
(n)
n )− b2

n−1Qn−1

(
λ
(n)
n

)
− 2

n
∏
i=1

bi = 0,
(15)

has real solutions an, bn−1, and bn. Indeed, by solving (15) we obtain

Unb2
n−1 + 2cTnbn−1bn + Vnb2

n + Wn = 0, (16)

where c =
n−2
∏
i=1

bi. This implies that (X, Y) = (bn−1, bn) must belong to the conic

C = {(X, Y) ∈ R2 : UnX2 + 2cTnXY + VnY2 + Wn = 0},

which always exists, whether degenerate or not, i.e., C 6= ∅. Actually, Equation (16) can be
written as

LMLT = 0 (17)

with

L =
(
X Y 1

)
, M =

(
N 0
0T Wn

)
, and N =

(
Un cTn
cTn Vn

)
.

Therefore, the conic C is degenerate if det M = 0, and does not exist, i.e., C = ∅, if
det N > 0 and (Un + Vn)det M > 0. From Lemma 2 and condition (11), we obtain

−(Un + Vn)Wn > 0.

Then, if det N > 0, we have

(Un + Vn)det M = (Un + Vn)Wn det N < 0,
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i.e., the conic C always exists. Thus, bn and bn−1 that satisfy (15) exist. Moreover, as
Pn−1

(
λ
(n)
i

)
6= 0, an exists.

Next, we give a particular solution to Problem 1.

Theorem 2. Given the set of 2n− 1 real numbers
{

λ
(j)
1 , λ

(j)
j

}n

j=1
that satisfy (11), and a positive

real number d, if
UnVn < 0, (18)

and
Un(Vnd2 + Wn) < 0, (19)

where Un, Vn, and Wn are as in (10), then there exists a symmetric pentadiagonal matrix A of
the form (2), such that λ

(j)
1 and λ

(j)
j are, respectively, the smallest and largest eigenvalues of

Aj, j = 1, 2, . . . , n, and bn = d.

Proof. By Theorem 1 there exists a symmetric pentadiagonal matrix A of the form (2), such
that λ

(j)
1 and λ

(j)
j are, respectively, the smallest and largest eigenvalues of Aj, j = 1, 2, . . . , n.

Furthermore, we get

aj =
Zj

Uj
, (20)

and

bj−1 =

√
−Tj

Uj
, j = 2, . . . , n− 1. (21)

On the other hand, if bn = d, X = bn−1 is a real solution of the equation

UnX2 + 2cTndX + Vnd2 + Wn = 0, (22)

since (18) holds. Solving (22), we obtain

bn−1 = [−cTnd±
√

d2(c2T2
n −UnVn)−UnWn]U−1

n , (23)

and from (19) we choose bn−1 > 0.
Finally, solving (15) for an, we obtain

an =
λ
(n)
i Pn−1

(
λ
(n)
i

)
− d2Pn−2

(
λ
(n)
i

)
− b2

n−1Qn−1

(
λ
(n)
i

)
− 2β

Pn−1

(
λ
(n)
i

) , (24)

for i = 1 or i = n, where β =
n
∏
i=1

bi.

Remark 2.

1. Note that in Theorem 2, when constructing a symmetric pentadiagonal matrix with the
required properties, all entries in the matrix are unique except an.

2. Theorem 2 guarantees that the conic C always exists, whether it is degenerate or not. Setting a
value for bn, say d, is equivalent to considering in the plane the line X = d, which may or
may not intersect the conic C. The condition (18) on d in Theorem 2 guarantees that this line
intersects the conic at least one point.

Corollary 1. Under the same hypothesis and notations of the Theorem 1.
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1. If c2T2
n −UnVn ≥ 0, then for all d > 0 there exists a symmetric pentadiagonal matrix A of

the form (2) such that the smallest and largest eigenvalues of its leading principal submatrices
Aj, λ

(j)
1 , and λ

(j)
j , j = 1, 2, . . . , n, satisfy (11) and bn = d.

2. If Un(Vnd2 + Wn) < 0, then for all

d ∈
(

0,

√
UnWn

c2T2
n −UnVn

]

there exists a symmetric pentadiagonal matrix A of the form (2) such that the smallest and
largest eigenvalues of its leading principal submatrices Aj, λ

(j)
1 , and λ

(j)
j , j = 1, 2, . . . , n,

satisfy (11) and bn = d.

Proof. The first part is immediate. The second part follows from (18).

Remark 3. The conic C can be degenerate or not, but the type of conic is determined by its
invariants. Consequently, Corollary 1 establishes the different types of conics that can be presented,
and for which values of d, the line X = d intersects it. Indeed, we have the following cases:

1. In the first case for Un(Vnd2 + Wn) = 0, det M = det N = 0, we have that the conic C is
degenerate and as Wn(Un + Vn) < 0, the conic consist of two nonvertical parallel lines. Then,
in this case, any line X = d intersects the conic. For Un(Vnd2 + Wn) > 0, det M 6= 0 and
det N < 0. The conic C is a hyperbola with directrix parallel to axis X. Again, in this case,
any line X = d intersects the hyperbola.

2. In the second case, det N > 0, then (Un + Vn)det M < 0. The conic C is an ellipse. As the
center of the ellipse is in the axis Y, any line X = d > 0, with d in an appropriate interval
intersects the ellipse.

Example 1. In Table 1, we consider uniformly distributed random numbers generated using the
Matlab rand function

Table 1. Random extreme spectral data.

j 1 2 3 4 5 6 7

λ
(j)
1

0.1367 0.1359 −0.0287 −0.2883 −0.3880 −1.2466 −1.2533

λ
(j)
j

0.1367 0.6363 0.9552 0.9553 1.9018 2.2674 2.2842

which satisfy conditions (11) and (18) and d = 0.1753. Then from the procedure of Theorem 1,
we obtain the following symmetric pentadiagonal matrix of the form (2)

A =



0.1367 0.0192 0.3674
0.0192 0.6356 0 0.2339
0.3674 0 0.7901 0 1.0563

0.2339 0 0.3684 0 1.7356
1.0563 0 0.8239 0 0.4728

1.7356 0 0.6527 0.1753
0.4728 0.1753 0.9782


whose spectra of its the leading principal submatrices Aj, j = 1, . . . , 7, are:
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σ(A1) = {0.1367},
σ(A2) = {0.1359, 0.6363},
σ(A3) = {−0.0287, 0.6358, 0.9552},
σ(A4) = {−0.2883, 0.2329, 0.7714, 0.9553},
σ(A5) = {−0.3880, 0.2259, 0.2432, 0.7718, 1.9018}
σ(A6) = {−1.2466, −0.3880, 0.2361, 0.6366, 1.9018, 2.2674},
σ(A7) = {−1.2533, −0.4449, 0.18895, 0.6345, 0.9704, 2.0056, 2.2842}

Example 2. In Table 2, we show the errors in the construction of symmetric pentadiagonal matrices
of the form (2), from uniformly distributed random numbers using the Matlab rand function, which
satisfy conditions (11) and (18). Â denotes the constructed matrix, λ̂ the vector with extreme values
of Â, λ the vector of data obtained randomly, and eλ = log(‖λ− λ̂‖/‖λ‖).

Table 2. Relative errors in the construction of symmetric pentadiagonal matrix.

n 5 10 15 20 30 40 50

eλ −14.9713 −14.9746 −14.8271 −14.8057 −14.7293 −14.6482 −14.6037

3. Nonsymmetric Pentadiagonal Matrices from Extremal Eigenvalues and an Eigenpair

In this section, we show that each component of an eigenvector associated with the
largest eigenvalue of matrix B is a linear combination of the first and second components.
We then give sufficient conditions for the construction of a nonsymmetric pentadiagonal
matrix from (3), the extreme eigenvalues of its leading principal submatrices, an eigenpair,
and two prescribed entries.

Remark 4. Note that if (λ(n)
n , x) is an eigenpair of a nonsymmetric pentadiagonal matrix B of the

form (3), we have
Bx = λ

(n)
n x,

equivalently

a1x1 + b1x2 + b2x3 = λ
(n)
n x1, (25)

c1x1 + a2x2 + b3x4 = λ
(n)
n x2, (26)

cj−1xj−2 + ajxj + bj+1xj+2 = λ
(n)
n xj, j = 3, . . . , n− 2, (27)

cn−2yn−3 + an−1xn−1 + bnxn = λ
(n)
n xn−1, (28)

cn−1xn−2 + cnxn−1 + anxn = λ
(n)
n xn.

Next, we give a characterization of an eigenvector of the nonsymmetric pentadiagonal
matrix B.

Lemma 3. If xT = (x1, . . . , xn) ∈ Rn and (λ, x) is an eigenpair of the nonsymmetric pentadiago-
nal matrix B of the form (3), then |x1|+ |x2| > 0 and

xj =



rj−2(λ)x1 − sj−2(λ)b1x2

b j
2 c

∏
`=1

b2`

, for j odd

rj−2(λ)x2 − sj−2(λ)c1x1

b j−1
2 c

∏
`=1

b2`+1

, for j even
(29)
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where r−1 = r0(λ) = 1, r1(λ) = λ− a1, r2(λ) = λ− a2,

rj(λ) =
(
λ− aj

)
rj−2(λ)− b2

j−1rj−4(λ), j = 3, . . . , n− 2,

and s1(λ) = s2(λ) = 1, s3(λ) = λ− a3, s4(λ) = λ− a4,

sj(λ) =
(
λ− aj

)
sj−2(λ)− b2

j−1sj−4(λ), j = 5, . . . , n− 2.

Proof. From (25) and (26), we have

x3 =
r1(λ)x1 − s1(λ)b1x2

b2
, x4 =

r2(λ)x2 − s2(λ)c1x1

b3
.

Then, from (27) for j = 3, we have

x5 =
r3(λ)x1 − s3(λ)b1x2

b2b4
.

Now, suppose that (29) is true for j = 5, . . . , k. Then, if k is odd,

xk+2 =
(λ− ak)

bk+1

[
rk−2(λ)x1 − sk−2(λ)b1x2

βk

]
− ck−1

bk+1

[
rk−4(λ)x1 − sk−4(λ)b1x2

βk−2

]
=

(λ− ak)rk−2(λ)− bk−1ck−1rk−4(λ)

βk+1
x1 −

(λ− ak)sk−2(λ)− bk−1ck−1sk−4(λ)

βk+1
b1x1

=
rk(λ)x1 − sk(λ)b1x1

βk+1
,

where βk+1 =
b k

2 c
∏
`=1

b2`. It is similar if k even, since x is an eigenvector of B, x 6= 0. If

x1 = x2 = 0, then from (29), all other entries of x must be zero. Therefore |x1|+ |x2| > 0.

Lemma 4. Let B be an n× n nonsymmetric pentadiagonal matrix of the form (3) and let Bj be
the j× j leading principal submatrix of B with characteristic polynomial Pj(λ) = det

(
λIj − Bj

)
,

j = 1, 2, . . . , n. Then the sequence
{

Pj(λ)
}n

j=1 satisfies the recurrence relation:

P1(λ) = λ− a1, (30)

Pj(λ) =
(
λ− aj

)
Pj−1(λ)− bj−1cj−1Qj−1(λ), j = 2, 3, . . . , n− 1, (31)

Pn(λ) =(λ− an)Pn−1(λ)− bncnPn−2(λ)− bn−1cn−1Qn−1(λ)

−
d n

2 e

∏
k=1

b2k−1

b n
2 c

∏
k=1

c2k −
d n

2 e

∏
k=1

c2k−1

b n
2 c

∏
k=1

b2k
(32)

where Q1(λ) = 1 and Qj−1(λ), j = 3, . . . , n is the characteristic polynomial of the principal
submatrix of A obtained by deleting the (j− 2)-th row and column of the leading principal submatrix
Aj−1.

Theorem 3. Let
{

λ
(j)
1 , λ

(j)
j

}n

j=1
be a set of 2n− 1 real numbers, d1 and d2 be two positive numbers,

and x = (x1, x2, . . . , xn)T be a positive vector that satisfies (11) with

d1 6= (λ
(n)
n − λ

(1)
1 )

x1

x3
. (33)

If
(−1)n−1[Wn + bnd2Vn + 2γUn] > 0, (34)
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then there exists a unique nonsymmetric pentadiagonal matrix B of the form (3), such that λ
(j)
1 and

λ
(j)
j are, respectively, the smallest and largest eigenvalues of the leading principal submatrix Bj of

B, j = 1, 2, . . . , n, (λ(n)
n , x) is an eigenpair of B, and b1 = d1 and cn = d2.

Proof. It is immediate that a1 = λ
(1)
1 . To show that the existence of a nonsymmetric

pentadiagonal matrix B with the required properties is equivalent to proving that the
systems of equationsPj

(
λ
(j)
i

)
= 0, for j = 1, 2, . . . , n, i = 1, j,

Bx = λ
(n)
n x,

(35)

where Pj(λ) = det(λIj − Bj), j = 1, 2, . . . , n satisfies Lemma 4 and has real solutions aj, bj,
and cj with bjcj > 0.

The first expression of the system (35) can be written asPj

(
λ
(j)
1

)
=
(

λ
(j)
1 − aj

)
Pj−1

(
λ
(j)
1

)
− bj−1cj−1Qj−1

(
λ
(j)
1

)
= 0,

Pj

(
λ
(j)
j

)
=
(

λ
(j)
j − aj

)
Pj−1

(
λ
(j)
j

)
− bj−1cj−1Qj−1

(
λ
(j)
j

)
= 0,

(36)

for j = 2, 3, . . . , n− 1. For n being even

Pn

(
λ
(n)
1

)
=
(

λ
(n)
1 − an

)
Pn−1

(
λ
(n)
1

)
− bncnPn−2

(
λ
(n)
1

)
−bn−1cn−1Qn−1

(
λ
(n)
1

)
− 2γ = 0,

Pn

(
λ
(n)
n

)
=
(

λ
(n)
n − an

)
Pn−1

(
λ
(n)
n

)
− bncnPn−2

(
λ
(n)
n

)
−bn−1cn−1Qn−1

(
λ
(n)
n

)
− 2γ = 0,

(37)

since (6) holds. For n being odd, a similar system to (37) is obtained.
Moreover, from the second expression of system (35), and by (25)–(27) and (33), we

obtain

b2 =
(

λ
(n)
n − a1

) x1

x3
− d1

x2

x3
6= 0, (38)

b3 =
(

λ
(n)
n − a2

) x2

x4
− c1

x1

x4
, (39)

bj+1 =
(

λ
(n)
n − aj

) xj

xj+2
− cj−1

xj−2

xj+2
, j = 2, 3, . . . , n− 2, (40)

bn =
(

λ
(n)
n − an

) xn−1

xn
− cn−2

xn−3

xn
. (41)

Then, from (36), we obtain

cj−1 = −
Wj

bj−1Rj
(42)

and

aj =
Zj

Rj
, (43)

for j = 2, . . . , n− 1.
By Lemma 2 and condition (11), we have

bj−1cj−1 = −
(−1)j−1Wj

(−1)j−1Rj
> 0,

for j = 2, . . . , n− 1.
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Now, from (37) and Lemma 4, it follows that

cn−1 =
1

bn−1

Wn + bnd2Vn + 2γUn

−Rn
, (44)

and
an =

Zn + bnd2Tn + 2γSn

Rn
. (45)

Finally, from (34) we conclude bn−1cn−1 > 0.

Example 3. Given random real numbers in the Table 3

Table 3. Extreme spectral data.

j 1 2 3 4 5 6

λ
(j)
1

1 −0.4142 −1 −1.1357 −1.236 −1.5615

λ
(j)
j

1 2.4142 3 3.1357 3.236 3.5615

and d1 = 3, d2 = 1, and the vector

x = (2, 1.2807, 1.2807, 1.2807, 1.2807, 0.0177)T

satisfying the conditions of Theorem 3. According to Formulas (38)–(45), there exist a nonsymmetric
pentadiagonal matrix B of the form (3) given by

B =



1 3 3
1 1 0 2
1 0 1 0 2

1 0 1 0 2
1 0 1 2

1 1 1


whose spectra of its the leading principal submatrices Bj, j = 1, . . . , 6, are:

σ(B1) = {1},
σ(B2) = {−0.4142, 2.4142},
σ(B3) = {−1, 1, 3},
σ(B4) = {−1.1357, 0.3378, 1.6621, 3.1357},
σ(B5) = {−1.236, 0, 1, 2, 3.236},
σ(B6) = {−1.5615, −0.5615, 0, 2, 2.5615, 3.5615},

and Bx = (3.5615)x.

Example 4. In Table 4, we show the errors in the construction of nonsymmetric pentadiagonal
matrices of the form (3), from uniformly distributed random numbers using the Matlab rand
function, which satisfy conditions (11), (33), and (34). Here, we adopt the notations from Example
2. In addition, ex = log(‖B̂x− λ̂

(n)
n x‖/‖λ(n)

n x‖).

Table 4. Relative errors in the construction of a nonsymmetric pentadiagonal matrix.

n 5 10 15 20 30 40 50

eλ −14.6143 −14.4017 −14.2956 −14.0792 −13.8641 −13.6728 −12.9366

ex −14.4871 −14.2250 −13.8901 −13.0411 −12.7655 −12.4002 −12.1874
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4. Conclusions

In this paper, we give sufficient conditions for the existence of some symmetric and
nonsymmetric pentadiagonal matrices considering the extreme eigenvalues of their leading
principal submatrices in the first case, and, additionally, an eigenvector for the second
case is considered. Our results, being constructive, provide an algorithm to determine the
solution matrix.
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