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1. Introduction

It is well-known that the theory of variational inequalities comes from the calculus of
variations. Initially, this theory was developed to investigate some equilibrium problems.
Variational inequalities in finite and infinite dimensions have been widely considered as a
mathematical tool for investigating partial differential equations, having many applications
principally in mechanics, and optimization problems that arise in economics, finance, or
game theory, (see, for instance, [1–4]).

In many situations, solving some optimization problems with the classical methods
(see [5]) becomes very complicated and, moreover, these methods may not always ensure
the existence of exact solutions. In such cases, the concept of (Tykhonov) well-posedness as-
sociated with the considered problem ensures the convergence for the sequence of approxi-
mating solutions toward the exact solution. Generally speaking, the well-posedness concept
represents an important technique to investigate the related problems, such as: fixed point
problems [6], variational inequalities [7], hemivariational inequalities [8–12], complemen-
tary problems [13], equilibrium problems [14], Nash equilibrium problems [15], etc. Let us
mention that the notion of well-posedness for optimization problems without constraints
was introduced by Tykhonov [16]. Since then, different types of well-posedness for varia-
tional inequalities were considered, for example, Levitin-Polyak well-posedness [17], and
generic well-posedness [18–22]. Ceng and Yao [23] studied the generalized well-posedness
of a mixed variational inequality and proved that the generalized well-posedness for the
inequality problem is equivalent to that of fixed point problems and inclusion problems.
For other different but connected ideas to this topic, the reader is directed to [24–33].

Further, the hemivariational inequality, as a generalization of a variational inequality,
was studied by Panagiotopoulos [34]. The well-posedness for hemivariational inequalities
was analyzed by Goeleven and Mentagui [35]. Thereafter, Xiao et al. [12,36,37] investigated
the well-posedness for hemivariational inequalities by introducing the approximating
sequences and establishing some metric characterizations in Euclidean spaces. Recently,
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Hu et al. [38] obtained certain equivalence results for well-posedness associated to split
variational-hemivariational inequality. Also, Bai et al. [39] studied a class of generalized
mixed hemivariational-variational inequalities of elliptic type in a Banach space and ob-
tained a well-posedness result for the inequality, including existence, uniqueness, and
stability of the solution. Moreover, the well-posedness of history and state-dependent
sweeping processes has been investigated by several researchers ([40–42]).

The multi-time (or multi-dimensional) optimal control theory, which is in close connec-
tion with the calculus of variations, solves different kinds of operations research problems
that arise in applied science or technology. In the last decade, this theory was intensively
considered both theoretically and practically ([43–47]). Therefore, variational inequality
with multiple variables of evolution represents an interesting generalization of variational
inequality (see [48–51]), with many real applications provided by the involved functionals.

In this study, motivated by the aforementioned research works, we study the well-
posedness and generalized well-posedness for a class of commanded variational inequali-
ties governed by multiple integral functionals. Concretely, by using the hemicontinuity,
monotonicity, and pseudomonotonicity associated with the considered multiple integral
functional, and by introducing the set of approximating solutions for the considered
class of controlled variational inequalities, we establish several characterization results
on well-posedness and well-posedness in the generalized sense for the inequality. Next,
let’s highlight the main merits of this paper. Firstly, most of the former research pa-
pers have been investigated in classical spaces with finite dimensions. In this paper, the
mathematical context is defined by some function spaces with infinite dimensions and
controlled functionals of multiple integral types. Recently, Treanţă [45] studied some
variational inequality-constrained control problems (that is, some optimization problems
with controlled variational inequalities as constraints), which imply partial derivatives
of second-order. Also, the curvilinear case for controlled variational inequality problem
was investigated in Treanţă [48]. Moreover, by considering the functional (variational)
derivative, well-posed isoperimetric-type constrained variational control problems have
been studied in Treanţă [51]. In consequence, this paper deals with a special situation in
which the variational problem is a controlled variational inequality defined by functionals
of multiple integral types.

The current paper is organized as follows. In Section 2, we present the monotonicity,
hemicontinuity, and pseudomonotonicity for a multiple integral functional. In Section 3,
by introducing the approximating solution set of the considered commanded variational
inequalities, we formulate the notions of well-posedness and generalized well-posedness
associated with this class of inequalities. Then, we prove that well-posedness can be
studied in the terms of existence and uniqueness of the solution. Moreover, we state
sufficient conditions for the generalized well-posedness by assuming the boundedness of
approximate solutions. The results stated in this study are illustrated with some examples.
In Section 4, the paper ends with some conclusions.

2. Problem Formulation and Preliminaries

Let K be a compact set inRm and consider τ = (τγ) ∈ K, γ ∈ {1, . . . , m}. Also consider
P is the space of piece-wise smooth state functions s : K→ Rn, having the norm

‖ s ‖=‖ s ‖∞ +
m

∑
γ=1
‖ sγ ‖∞, ∀s ∈ P ,

where we used the notation sγ :=
∂s

∂τγ
, γ ∈ {1, . . . , m}. Denote by Q the space consisting

of piece-wise continuous control functions u : K → Rk, having the uniform norm.
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In the following, we assume that P×Q is a closed, convex and nonempty subset of
P ×Q, with (s, u)|∂K = given, ∂si

∂τγ = Xi
γ(τ, s, u) = given, with the inner product

〈(s, u), (z, w)〉 =
∫

K

[
s(τ) · z(τ) + u(τ) · w(τ)

]
dτ

=
∫

K

[ n

∑
i=1

si(τ)zi(τ) +
k

∑
j=1

uj(τ)wj(τ)
]
dτ, ∀(s, u), (z, w) ∈ P ×Q

and the induced norm, where dτ = dτ1 · · · dτm denotes the volume element on Rm.

Let J1(Rm,Rn) be the first-order jet bundle associated with Rm andRn. By considering
the real-valued continuously differentiable function f : J1(Rm,Rn)×Rk → R, we define
the following scalar functional governed by a multiple integral:

F : P ×Q → R, F(s, u) =
∫

K
f (τ, s, sγ, u)dτ,

where sγ =
∂s

∂τγ
, γ ∈ {1, . . . , m}.

Next, we introduce the commanded variational inequality (in short, CVI): find (s, u) ∈
P×Q such that ∫

K

[
∂ f
∂s

(πs,u)(z− s) +
∂ f
∂sγ

(πs,u)Dγ(z− s)
]

dτ

+
∫

K

[
∂ f
∂u

(πs,u)(w− u)
]

dτ ≥ 0, ∀(z, w) ∈ P×Q,

where Dγ is the total derivative operator and (πs,u) := (τ, s, sγ, u).

Let S be the feasible solution set of (CVI),

S =
{
(s, u) ∈ P×Q :

∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πs,u(τ))

+ Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πs,u(τ))

+ (w(τ)− u(τ))
∂ f
∂u

(πs,u(τ))
]
dτ ≥ 0,

∀(z, w) ∈ P×Q
}

,

where (πs,u(τ)) := (τ, s(τ), sγ(τ), u(τ)).

Definition 1. We say the functional
∫

K
f (πs,u(τ))dτ is monotone on P×Q if, for any (s, u), (z, w) ∈

P×Q, the following inequality holds:∫
K

[
(s(τ)− z(τ))

(
∂ f
∂s

(πs,u(τ))−
∂ f
∂s

(πz,w(τ))

)
+ (u(τ)− w(τ))

(
∂ f
∂u

(πs,u(τ))−
∂ f
∂u

(πz,w(τ))

)
+ Dγ(s(τ)− z(τ))

(
∂ f
∂sγ

(πs,u(τ))−
∂ f
∂sγ

(πz,w(τ))

)]
dτ ≥ 0.

Example 1. Let m = 2 and K = [0, 1]2. Consider

f (πs,u(τ)) = u(τ) + es(τ) − 1.
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Then, we show that
∫

K
f (πs,u(τ))dτ is monotone on P×Q = C1(K,R)× C(K,R). Indeed,

we get ∫
K

[
(s(τ)− z(τ))

(
∂ f
∂s

(πs,u(τ))−
∂ f
∂s

(πz,w(τ))

)
+ (u(τ)− w(τ))

(
∂ f
∂u

(πs,u(τ))−
∂ f
∂u

(πz,w(τ))

)
+ Dγ(s(τ)− z(τ))

(
∂ f
∂sγ

(πs,u(τ))−
∂ f
∂sγ

(πz,w(τ))

)]
dτ

=
∫

K
(s(τ)− z(τ))(es(τ) − ez(τ))dτ ≥ 0, ∀(s, u), (z, w) ∈ P×Q.

Definition 2. We say the functional
∫

K
f (πs,u(τ))dτ is pseudomonotone on P × Q if, for all

(s, u), (z, w) ∈ P×Q, the following implication holds:∫
K

[
(s(τ)− z(τ))

∂ f
∂s

(πz,w(τ)) + (u(τ)− w(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(s(τ)− z(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0

⇒
∫

K

[
(s(τ)− z(τ))

∂ f
∂s

(πs,u(τ)) + (u(τ)− w(τ))
∂ f
∂u

(πs,u(τ))

+Dγ(s(τ)− z(τ))
∂ f
∂sγ

(πs,u(τ))
]
dτ ≥ 0.

Example 2. Let m = 2 and K = [0, 1]2. Consider

f (πs,u(τ)) = sin u(τ) + s(τ)es(τ).

Then, we show that the functional
∫

K
f (πs,u(τ))dτ is pseudomonotone on

P×Q = C1(K, [−1, 1])× C(K, [−1, 1].

We obtain ∫
K

[
(s(τ)− z(τ))

∂ f
∂s

(πz,w(τ)) + (u(τ)− w(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(s(τ)− z(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ

=
∫

K

[
(u(τ)− w(τ)) cos w(τ) + (s(τ)− z(τ))(ez(τ) + z(τ)ez(τ))

]
dτ ≥ 0

∀(s, u), (z, w) ∈ P×Q

⇒
∫

K

[
(s(τ)− z(τ))

∂ f
∂s

(πs,u(τ)) + (u(τ)− w(τ))
∂ f
∂u

(πs,u(τ))

+Dγ(s(τ)− z(τ))
∂ f
∂sγ

(πs,u(τ))
]
dτ
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=
∫

K

[
(u(τ)− w(τ)) cos u(τ) + (s(τ)− z(τ))(es(τ) + s(τ)es(τ))

]
dτ ≥ 0

∀(s, u), (z, w) ∈ P×Q.

But, it is not monotone on P×Q, because∫
K

[
(s(τ)− z(τ))

(
∂ f
∂s

(πs,u(τ))−
∂ f
∂s

(πz,w(τ))

)
+ (u(τ)− w(τ))

(
∂ f
∂u

(πs,u(τ))−
∂ f
∂u

(πz,w(τ))

)
+ Dγ(s(τ)− z(τ))

(
∂ f
∂sγ

(πs,u(τ))−
∂ f
∂sγ

(πz,w(τ))

)]
dτ

=
∫

K

[
(u(τ)− w(τ))(cos u(τ)− cos w(τ))

+ (s(τ)− z(τ))(s(τ)es(τ) + es(τ) − z(τ)ez(τ) − ez(τ))
]
dτ � 0,

∀(s, u), (z, w) ∈ P×Q.

By considering Usman and Khan [52], we formulate the following definition of hemi-
continuity for the aforementioned multiple integral functional.

Definition 3. The functional
∫

K
f (πs,u(τ))dτ is said to be hemicontinuous on P× Q if, for all

(s, u), (z, w) ∈ P×Q, the application

σ→
〈
((s(τ), u(τ))− (z(τ), w(τ)),

(
δF
δsσ

,
δF
δuσ

)〉
, 0 ≤ σ ≤ 1

is continuous at 0+, where

δF
δsσ

:=
∂ f
∂s

(πsσ ,uσ (τ))− Dγ
∂ f
∂sγ

(πsσ ,uσ (τ)) ∈ P,

δF
δuσ

:=
∂ f
∂u

(πsσ ,uσ (τ)) ∈ Q,

sσ := σs + (1− σ)z, uσ := σu + (1− σ)w.

Lemma 1. Consider the functional
∫

K
f (πs,u(τ))dτ is hemicontinuous and pseudomonotone on

the closed, convex and nonempty set P× Q. Then, (s, u) ∈ P× Q solves (CVI) if and only if
it solves ∫

K

[
(z(τ)− s(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q.

Proof. Suppose the pair (s, u) ∈ P×Q is solution for (CVI). In consequence, it implies∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πs,u(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πs,u(τ))

+Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πs,u(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q.
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By considering the pseudomonotonicity of
∫

K
f (πs,u(τ))dτ, it follows

∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q.

Conversely, assume that∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q.

Further, for σ ∈ (0, 1) and (z, w) ∈ P×Q, consider

(zσ, wσ) = ((1− σ)s + σz, (1− σ)u + σw) ∈ P×Q.

The above inequality implies∫
K

[
(zσ(τ)− s(τ))

∂ f
∂s

(πzσ ,wσ (τ)) + (wσ(τ)− u(τ))
∂ f
∂u

(πzσ ,wσ (τ))

+Dγ(zσ(τ)− s(τ))
∂ f
∂sγ

(πzσ ,wσ (τ))
]
dτ ≥ 0, (z, w) ∈ P×Q,

and for σ→ 0 (by using the hemicontinuity of
∫

K
f (πs,u(τ))dτ), we get

∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πs,u(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πs,u(τ))

+Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πs,u(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q,

which proves that (s(τ), u(τ)) solves (CVI).

3. Well-Posedness and Generalized Well-Posedness of (CVI)

In this section, well-posedness and generalized well-posedness are analyzed for the
considered commanded variational inequalities.

Definition 4. We say that a sequence {(sn, un)} ⊂ P×Q is an approximating sequence for (CVI)
if there exists a sequence of positive real numbers θn → 0 as n→ ∞, satisfying∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q.

Definition 5. The commanded variational inequality problem (CVI) is named well-posed if:
(i) it has a unique solution (s0(τ), u0(τ));
(ii) every approximating sequence of (CVI) converges to the unique solution (s0(τ), u0(τ)).

Definition 6. The commanded variational inequality problem (CVI) is named generalized well-
posed if:
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(i) the set of solutions of (CVI) is nonempty, that is, S 6= ∅;
(ii) every approximating sequence of (CVI) has a subsequence that converges to some point of S .

Let θ > 0 be fixed. Now, for investigating well-posedness and generalized well-
posedness for (CVI), we formulate the approximating solution set for (CVI), as follows:

Sθ =
{
(s, u) ∈ P×Q :

∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πs,u(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πs,u(τ))

+ Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πs,u(τ))
]
dτ + θ ≥ 0, ∀(z, w) ∈ P×Q

}
.

Remark 1. Obviously, S = Sθ , when θ = 0, and it holds

S ⊆ Sθ for each θ > 0 and Sθ ⊂ Sη for 0 < θ ≤ η.

Next, we define the diameter of B as follows:

diam B = sup
x,y∈B

‖x− y‖.

Theorem 1. Let the functional
∫

K
f (πs,u(τ))dτ be hemicontinuous and monotone on the closed,

convex and nonempty set P×Q. Then the problem (CVI) is well-posed if and only if

Sθ 6= ∅ for all θ > 0 and diam Sθ → 0 as θ → 0.

Proof. Assume that the problem (CVI) is well-posed. Then it has a unique solution
S = {(s̄(τ), ū(τ))}. Since S ⊆ Sθ , ∀θ > 0, we get Sθ 6= ∅ for all θ > 0. Consider,
contrary to the result, that diam Sθ 9 0 as θ → 0. Then there exist r > 0, a positive integer
m, θn > 0 with θn → 0 and (sn(τ), un(τ)), (s′n(τ), u′n(τ)) ∈ Sθn such that

‖(sn(τ), un(τ))− (s′n(τ), u′n(τ))‖ > r, ∀n ≥ m. (1)

Since (sn(τ), un(τ)), (s′n(τ), u′n(τ)) ∈ Sθn , we get∫
K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q

and ∫
K

[
(z(τ)− s′n(τ))

∂ f
∂s

(πs′n ,u′n(τ)) + (w(τ)− u′n(τ))
∂ f
∂u

(πs′n ,u′n(τ))

+Dγ(z(τ)− s′n(τ))
∂ f
∂sγ

(πs′n ,u′n(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q.

Now, it is obvious that {(sn(τ), un(τ))} and {(s′n(τ), u′n(τ))} are approximating se-
quences for (CVI). Moreover, they converge to the unique solution (s̄(τ), ū(τ)) (by assump-
tion, the problem (CVI) is well-posed). By computation, we obtain

‖(sn(τ), un(τ))− (s′n(τ), u′n(τ))‖
= ‖(sn(τ), un(τ))− (s̄(τ), ū(τ)) + (s̄(τ), ū(τ))− (s′n(τ), u′n(τ))‖
≤ ‖(sn(τ), un(τ))− (s̄(τ), ū(τ))‖+ ‖(s̄(τ), ū(τ))− (s′n(τ), u′n(τ))‖ ≤ θ,

which contradicts (1), for some θ = r.
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Conversely, consider {(sn(τ), un(τ))} is an approximating sequence of (CVI). Conse-
quently, there exists a sequence of positive real numbers θn → 0 as n→ ∞ such that∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+ Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q (2)

is fulfilled, which implies (sn(τ), un(τ)) ∈ Sθn . Since diam Sθn → 0 as θn → 0, we get
{(sn(τ), un(τ))} is a Cauchy sequence converging to some point (s̄, ū) ∈ P×Q (as P×Q
is closed).

Since the functional
∫

K
f (πs,u(τ))dτ is monotone on P×Q, for (s̄, ū), (z, w) ∈ P×Q,

we get ∫
K

[
(s̄(τ)− z(τ))

(
∂ f
∂s

(πs̄,ū(τ))−
∂ f
∂s

(πz,w(τ))

)
+(ū(τ)− w(τ))

(
∂ f
∂u

(πs̄,ū(τ))−
∂ f
∂s

(πz,w(τ))

)
+Dγ(s̄(τ)− z(τ))

(
∂ f
∂sγ

(πs̄,ū(τ))−
∂ f
∂sγ

(πz,w(τ))

)]
dτ ≥ 0

namely, ∫
K

[
(s̄(τ)− z(τ))

∂ f
∂s

(πs̄,ū(τ)) + (ū(τ)− w(τ))
∂ f
∂u

(πs̄,ū(τ))

+Dγ(s̄(τ)− z(τ))
∂ f
∂sγ

(πs̄,ū(τ))
]
dτ

≥
∫

K

[
(s̄(τ)− z(τ))

∂ f
∂s

(πz,w(τ)) + (ū(τ)− w(τ))
∂ f
∂u

(πz,w(τ))

+ Dγ(s̄(τ)− z(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ. (3)

By considering the limit as n→ ∞ in (2), it yields∫
K

[
(s̄(τ)− z(τ))

∂ f
∂s

(πs̄,ū(τ)) + (ū(τ)− w(τ))
∂ f
∂u

(πs̄,ū(τ))

+ Dγ(s̄(τ)− z(τ))
∂ f
∂sγ

(πs̄,ū(τ))
]
dτ ≤ 0. (4)

It follows from (3) and (4) that∫
K

[
(z(τ)− s̄(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− ū(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s̄(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0.

By using Lemma 1, we obtain∫
K

[
(z(τ)− s̄(τ))

∂ f
∂s

(πs̄,ū(τ)) + (w(τ)− ū(τ))
∂ f
∂u

(πs̄,ū(τ))

+Dγ(z(τ)− s̄(τ))
∂ f
∂sγ

(πs̄,ū(τ))
]
dτ ≥ 0,
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which implies that (s̄(τ), ū(τ)) ∈ S . Let us prove the uniqueness of (CVI). Contrarily,
suppose (s1(τ), u1(τ)), (s2(τ), u2(τ)) are two distinct solutions of (CVI). Then

0 < ‖(s1(τ), u1(τ))− (s2(τ), u2(τ))‖ ≤ diam Sθ → 0 as θ → 0,

and this completes the proof.

Corollary 1. Consider all the hypotheses of Theorem 1 are fulfilled. Then the controlled variational
inequality (CVI) is well-posed if and only if

S 6= ∅ and diam Sθ → 0 as θ → 0.

Proof. The proof follows in the same manner as in Theorem 1. Hence, it is omitted.

Theorem 2. Let the functional
∫

K
f (πs,u(τ))dτ be hemicontinuous and monotone on the closed,

convex and nonempty set P×Q. Then (CVI) is well-posed if and only if it admits a unique solution.

Proof. Let us consider that (CVI) is well-posed. Thus, it has a unique solution (s0(τ), u0(τ)).
Conversely, consider that (CVI) has a unique solution (s0(τ), u0(τ)), but it is not well-posed.
Consequently, there exists an approximating sequence {(sn(τ), un(τ))} of (CVI) which
does not converge to (s0(τ), u0(τ)). Since {(sn(τ), un(τ))} is an approximating sequence
of (CVI), there must exist a sequence of positive real numbers {θn} with θn → 0 as n→ ∞
such that ∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+ Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q. (5)

In the following, we start by reductio ad absurdum to prove the boundedness of
{(sn(τ), un(τ))}. Suppose {(sn(τ), un(τ))} is not bounded, involving ‖(sn(τ), un(τ))‖ →
+∞ as n → +∞. Now, we consider δn(τ) =

1
‖(sn(τ), un(τ))− (s0(τ), u0(τ))‖

and

(sn(τ), un(τ)) = (s0(τ), u0(τ)) + δn(τ)[(sn(τ), un(τ))− (s0(τ), u0(τ))].
We can see that {(sn(τ), un(τ))} is bounded in P×Q. So, passing to a subsequence if

necessary, we may assume that

(sn(τ), un(τ))→ (s(τ), u(τ)) weakly in P×Q 6= (s0(τ), u0(τ)).

It is easy to verify that (s(τ), u(τ)) 6= (s0(τ), u0(τ)) thanks to ‖δn(τ)[(sn(τ), un(τ))−
(s0(τ), u0(τ))‖ = 1 for all n ∈ N. Since (s0(τ), u0(τ)) is a solution of (CVI),∫

K

[
(z(τ)− s0(τ))

∂ f
∂s

(πs0,u0(τ)) + (w(τ)− u0(τ))
∂ f
∂u

(πs0,u0(τ))

+Dγ(z(τ)− s0(τ))
∂ f
∂sγ

(πs0,u0(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q.

By considering Lemma 1, we obtain∫
K

[
(z(τ)− s0(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− u0(τ))
∂ f
∂u

(πz,w(τ))

+ Dγ(z(τ)− s0(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q. (6)
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Since the functional
∫

K
f (πs,u(τ))dτ is monotone on P×Q, for (sn, un), (z, w) ∈ P×Q,

we get ∫
K

[
(sn(τ)− z(τ))

(
∂ f
∂s

(πsn ,un(τ))−
∂ f
∂s

(πz,w(τ))

)
+(un(τ)− w(τ))

(
∂ f
∂u

(πsn ,un(τ))−
∂ f
∂s

(πz,w(τ))

)
+Dγ(sn(τ)− z(τ))

(
∂ f
∂sγ

(πsn ,un(τ))−
∂ f
∂sγ

(πz,w(τ))

)]
dτ ≥ 0,

that is, ∫
K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ

≤
∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πz,w(τ))

+ Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ. (7)

Combining with (5) and (7), we have∫
K

[
(z(τ)− sn(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ

≥ −θn ∀(z, w) ∈ P×Q.

Since δn → 0 as n→ ∞ (see {(sn(τ), un(τ))} is not bounded), we can consider n0 ∈ N
is large enough with δn < 1, for n ≥ n0. Multiplying the above inequality and (6) by
δn(τ) > 0 and 1− δn(τ) > 0, respectively, and making the summation, it implies∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ

≥ −θn ∀(z, w) ∈ P×Q, ∀n ≥ n0.

Since (sn(τ), un(τ)) weakly converges to (s(τ), u(τ)) 6= (s0(τ), u0(τ)) and (sn(τ), un(τ))
= (s0(τ), u0(τ)) + δn(τ)[(sn(τ), un(τ))− (s0(τ), u0(τ))], it has∫

K

[
(z(τ)− s(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ

= lim
n→∞

∫
K

[
(z(τ)− sn(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ

≥ − lim
n→∞

θn = 0, ∀(z, w) ∈ P×Q.
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By Lemma 1, we obtain∫
K

[
(z(τ)− s(τ))

∂ f
∂s

(πs,u(τ)) + (w(τ)− u(τ))
∂ f
∂u

(πs,u(τ))

+ Dγ(z(τ)− s(τ))
∂ f
∂sγ

(πs,u(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q. (8)

This involves (s(τ), u(τ)) 6= (s0(τ), u0(τ)) is a solution of (CVI), which is a contradic-
tion with the uniqueness of (CVI). Thus, {(sn(τ), un(τ))} is a bounded sequence having
a convergent subsequence {(snk (τ), unk (τ))} which converges to (s̄, ū ∈ P×Q as k→ ∞.
Next, for (snk , unk ), (z, w) ∈ P×Q, we obtain (see (7))∫

K

[
(z(τ)− snk (τ))

∂ f
∂s

(πsnk ,unk
(τ)) + (w(τ)− unk (τ))

∂ f
∂u

(πsnk ,unk
(τ))

+Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πsnk ,unk
(τ))

]
dτ

≤
∫

K

[
(z(τ)− snk (τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− unk (τ))
∂ f
∂u

(πz,w(τ))

+ Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ. (9)

Also, by (5), we obtain

lim
k→∞

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πsnk ,unk
(τ)) + (w(τ)− unk (τ))

∂ f
∂u

(πsnk ,unk
(τ))

+ Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πsnk ,unk
(τ))

]
dτ ≥ 0. (10)

By (9) and (10), we get

lim
k→∞

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− unk (τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0,

⇒
∫

K

[
(z(τ)− s̄(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− ū(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s̄(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0.

By considering Lemma 1, it follows∫
K

[
(z(τ)− s̄(τ))

∂ f
∂s

(πs̄,ū(τ)) + (w(τ)− ū(τ))
∂ f
∂u

(πs̄,ū(τ))

+Dγ(z(τ)− s̄(τ))
∂ f
∂sγ

(πs̄,ū(τ))
]
dτ ≥ 0,

which shows that (s̄(τ), ū(τ)) is a solution of (CVI). Hence, (snk (τ), unk (τ))→ (s̄(τ), ū(τ)),
that is, (snk (τ), unk (τ))→ (s0(τ), u0(τ)), involving (sn(τ), un(τ))→ (s0(τ), u0(τ)).

Theorem 3. Let
∫

K
f (πs,u(τ))dτ be hemicontinuous and monotone on the convex, compact and

nonempty set P×Q. Then (CVI) is generalized well-posed if and only if S is non-empty.
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Proof. Consider that (CVI) is generalized well-posed. Therefore, S is non-empty. Now,
conversely, consider {(sn(τ), un(τ))} is an approximating sequence for (CVI). Then, there
exists a sequence of positive real numbers θn → 0 satisfying∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+ Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q. (11)

By hypothesis, P× Q is a compact set and, therefore, {(sn(τ), un(τ))} has a subse-
quence {(snk (τ), unk (τ))}which converges to some pair (s0, u0) ∈ P×Q. Since the integral

functional
∫

K
f (πs,u(τ))dτ is monotone on P×Q, for (snk , unk ), (z, w) ∈ P×Q, we have

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πsnk ,unk
(τ)) + (w(τ)− unk (τ))

∂ f
∂u

(πsnk ,unk
(τ))

+Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πsnk ,unk
(τ))

]
dτ

≤
∫

K

[
(z(τ)− snk (τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− unk (τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ.

By considering limit k→ ∞ in the above inequality, it implies

lim
k→∞

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πsnk ,unk
(τ)) + (w(τ)− unk (τ))

∂ f
∂u

(πsnk ,unk
(τ))

+Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πsnk ,unk
(τ))

]
dτ

≤ lim
k→∞

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− unk (τ))
∂ f
∂u

(πz,w(τ))

+ Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ. (12)

Since {(snk (τ), unk (τ))} is an approximating subsequence in P×Q, by (11), it follows

lim
k→∞

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πsnk ,unk
(τ)) + (w(τ)− unk (τ))

∂ f
∂u

(πsnk ,unk
(τ))

+ Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πsnk ,unk
(τ))

]
dτ ≥ 0, ∀(z, w) ∈ P×Q. (13)

By (12) and (13), we obtain

lim
k→∞

∫
K

[
(z(τ)− snk (τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− unk (τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− snk (τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q,

⇒
∫

K

[
(z(τ)− s0(τ))

∂ f
∂s

(πz,w(τ)) + (w(τ)− u0(τ))
∂ f
∂u

(πz,w(τ))

+Dγ(z(τ)− s0(τ))
∂ f
∂sγ

(πz,w(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q.
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By Lemma 1, we get∫
K

[
(z(τ)− s0(τ))

∂ f
∂s

(πs0,u0(τ)) + (w(τ)− u0(τ))
∂ f
∂u

(πs0,u0(τ))

+Dγ(z(τ)− s0(τ))
∂ f
∂sγ

(πs0,u0(τ))
]
dτ ≥ 0, ∀(z, w) ∈ P×Q,

which implies that (s0(τ), u0(τ)) ∈ S .

Theorem 4. Let
∫

K
f (πs,u(τ))dτ be hemicontinuous and monotone on the convex, compact and

nonempty set P×Q. Then (CVI) is generalized well-posed if there exists θ > 0 such that Sθ 6= ∅
and it is bounded.

Proof. Consider θ > 0 with Sθ is nonempty and bounded, and {(sn(τ), un(τ))} is an
approximating sequence for (CVI). Thus, there exists a sequence of positive real numbers
θn → 0 satisfying∫

K

[
(z(τ)− sn(τ))

∂ f
∂s

(πsn ,un(τ)) + (w(τ)− un(τ))
∂ f
∂u

(πsn ,un(τ))

+Dγ(z(τ)− sn(τ))
∂ f
∂sγ

(πsn ,un(τ))
]
dτ + θn ≥ 0, ∀(z, w) ∈ P×Q,

which involves (sn(τ), un(τ)) ∈ Sθ , ∀n > m (see m as a positive integer). We get
{(sn(τ), un(τ))} is a bounded sequence with a convergent subsequence {(snk (τ), unk (τ))}
which weakly converges to (s0(τ), u0(τ)) as k → ∞. In the same manner of the proof of
Theorem 3, we obtain (s0(τ), u0(τ)) ∈ S and the proof is complete.

Next, to highlight the theoretical elements derived in the paper, a real-life application is
presented to which this approach applies and for which the previous methods do not work.

Illustrative application. Let m = 2, K = [0, 1]2 = [0, 1]× [0, 1] and P×Q = C1(K, [−10, 10])×
C(K, [−10, 10]). For f (πs,u(τ)) = u2(τ) + es(τ) − s(τ), let us extremize the mass of the flat

plate K, having a controlled density given by
∂ f
∂s

(πs,u)(z − s) +
∂ f
∂sγ

(πs,u)Dγ(z − s) +

∂ f
∂u

(πs,u)(w− u), for any (z, w) ∈ P×Q, that depends on the current point, such that the

following controlled dynamical system sγ(τ) = u(τ), ∀τ ∈ K, together with the boundary
conditions (s, u)|∂K = 0, are satisfied.

To solve the above concrete mechanical-physics problem, we consider

f (πs,u(τ)) = u2(τ) + es(τ) − s(τ)

and the controlled variational inequality (CVI-1): Find (s, u) ∈ P×Q such that∫
K

[
2(w(τ)− u(τ))u(τ) + (z(τ)− s(τ))(es(τ) − 1)

]
dτ1dτ2 ≥ 0, ∀(z, w) ∈ P×Q,

(s, u)|∂K = 0, sγ = u.

We have S = {(0, 0)} and the functional
∫

K
f (πs,u(τ))dτ is hemicontinuous and mono-

tone on the closed, convex and nonempty set P×Q = C1(K, [−10, 10])× C(K, [−10, 10]).
All the hypotheses of Theorem 2 are satisfied. Therefore, we obtain the controlled varia-
tional inequality (CVI-1) is well-posed. Also, Sθ = {(0, 0)} and consequently, Sθ 6= ∅ and
diam Sθ → 0 as θ → 0. By using Theorem 1, we obtain the controlled variational inequality
problem (CVI-1) is well-posed.
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4. Conclusions

In this paper, well-posedness and generalized well-posedness have been analyzed
for a class of commanded variational inequalities by introducing the new variants for
hemicontinuity, monotonicity, and pseudomonotonicity associated with the considered
functional. More concretely, under suitable hypotheses, we have established that the well-
posedness can be analyzed in terms of the existence and uniqueness of the solution. Also,
sufficient conditions have been formulated and proved for the generalized well-posedness
by assuming the boundedness of approximating solution set. In addition, some examples
have been presented to illustrate the theoretical results.
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