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Abstract: The design of interconnection networks is a fundamental aspect of high-performance
computing (HPC) systems. Among the available topologies, the Galaxyfly network stands out as a
low-diameter and flexible-radix network for HPC applications. Given the paramount importance
of collective communication in HPC performance, in this paper, we present two different all-to-all
broadcast algorithms for the Galaxyfly network, which adhere to the supernode-first rule and the
router-first rule, respectively. Our performance evaluation validates their effectiveness and shows
that the first algorithm has a higher degree of utilization of network channels, and that the second
algorithm can significantly reduce the average time for routers to collect packets from the supernode.
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1. Introduction

Large-scale supercomputers are essential for tackling complex scientific and industrial
challenges [1,2]. To meet the growing demand for computing power, exascale systems
are being developed, incorporating an increasing number of interconnected processors [3].
The current fastest supercomputer, Frontier [4], comprises 8,730,112 cores and delivers a
peak performance of 1102.00 Pflop/s. The design of interconnection networks is crucial for
achieving scalability in high-performance computing (HPC) systems. Topology is a critical
design factor in interconnection networks, determining performance bounds [5] such as
end-to-end latency and bisection bandwidth, as well as network costs.

In order to fabricate large-scale supercomputers, the development of efficient network
topologies is imperative and should take into account a range of metrics. Primarily, high
bandwidth and low latency are considered as the fundamental objectives for optimizing
network topologies as they are pivotal in facilitating faster and smoother data communi-
cation [6]. Second, the total power consumption of supercomputers must be kept within
practical limitations. In the case of exascale systems, for instance, a power envelope of
20–30 MW must be strictly adhered to in order to ensure low power consumption [7]. Third,
the excellent network design should endow HPC systems with high flexibility so that HPC
systems possess the ability to vary on different scales [8].

Considerable research efforts have been devoted to investigating a range of efficient
network topologies for HPC systems, including Flattened Butterfly [9–11], Dragonfly [12–14],
HyperX [15], Skywalk [16], and SlimFly [17]. These structures are capable of delivering
low diameters for HPC systems while also ensuring scalability through the port numbers
(radixes) of the construction blocks (routers) [18]. However, the radixes of routers in
these topologies must unavoidably increase to meet the demands of existing high-radix
topologies in exascale systems and beyond [19]. This poses a significant challenge for
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high-performance routers, particularly commercial-off-the-shelf (COTS) routers, to expand
their radix, resulting in major hurdles for existing topologies to scale flexibly. To address
this issue, Lei et al. [20] introduced the Galaxyfly network, a flexible-radix low-diameter
topology that achieves network flexibility under different configuration structures by
reducing high-radix routers. The Galaxyfly network is composed of lots of supernodes,
with routers within each supernode being fully connected. Notably, Dragonfly networks
are a special case of Galaxyfly networks with only one supernode.

Collective communication is quite vital for interconnection networks [21]. Design-
ing efficient routing algorithms for collective communication poses significant challenges
due to high network bandwidth demands. Collective communication is typically achieved
through unicast-based [22,23], tree-based [24,25], and path-based [26,27] approaches. McKin-
ley et al. [28] proposed a multicast routing algorithm for wormhole-routed meshes and
hypercubes without the technical support of hardware switching. Using the message
combination, Suh and Yalamanchili [29] proposed an algorithm for minimizing message
startups at the cost of larger message sizes. Juurlink et al. [30] optimized the trade-off
between contributions owing to startups and those owing to the bounded capacity of the
connections. At present, all-to-all broadcast algorithms for the Galaxyfly network have only
been studied in the context of Dragonfly networks, highlighting the need for a dependable
and efficient algorithm specifically designed for the Galaxyfly network.

In this paper, we propose two all-to-all broadcast algorithms to mitigate high band-
width problems and routing inefficiencies when routers communicate collectively. Our
approach involves the proposal of four fundamental algorithms for packet collection and
distribution across distinct scenarios, followed by the development of two all-to-all broad-
cast algorithms. Our first algorithm prioritizes data delivery to the supernodes during the
routing process, such that the network resources can be efficiently utilized. The second al-
gorithm ensures the timely delivery of packets to other routers within the same supernode.
In summary, the main contributions of this paper are listed as follows:

• We design four basic routing algorithms by utilizing recursion and breadth-first
traversal.

• Based on basic routing algorithms, we propose two different all-to-all broadcast
algorithms. The supernode-first all-to-all broadcast algorithm can achieve a higher
utilization of network resources used in the routing process, while the router-first
all-to-all broadcast algorithm delivers packets to all routers within the same supernode
in priority.

• We implement the proposed algorithms to show their effectiveness and performance.

The rest of this paper is organized as follows. Section 2 describes the definition of the
Galaxy graph and introduces the basic concepts of the Galaxyfly network. Section 3 pro-
vides four basic algorithms for two all-to-all broadcast algorithms. Section 4 demonstrates
two all-to-all broadcast algorithms by utilizing four basic algorithms. Section 5 gives the
experimental results. Section 6 concludes this paper.

2. Preliminaries

For ease of reading, please refer to Table 1 below, which contains most of the important
notations used in this paper.
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Table 1. Notations.

Symbol Meaning

n Number of clusters in Galaxyfly network.
q Number of supernodes per cluster.
a Number of routers per supernode.
p Number of links per router to terminals.
h Number of links per router to other supernodes.
Si The supernode Si.
Ri The router Ri.
U The set of all supernodes.
|X| Number of elements in the set X.

2.1. Galaxy Graph

Lei et al. [20] proposed Galaxy graphs, which have a diameter of at most, 2. Galaxy
graphs are designed to build flexible sized networks for a given number of routers and
radii. A Galaxy graph is a graph G(V, E) of size n× q and is divided equally into n clusters,
V0, V1, V2, . . . , Vn−1. Each cluster has q supernodes; q is a prime number with q = 4`+ δ,
where ` ∈ IN and δ ∈ {−1, 0, 1}.

There are two types of edges in the Galaxy graph:

• Intra-cluster edges: The construction of intra-cluster edges requires some basic
knowledge on algebraic graphs over finite fields. We present only the basic results
necessary to understand the construction process. Intra-cluster edges connecting
nodes in the same cluster are constructed as in Definition 1.

• Inter-cluster edges: The construction of inter-cluster edges is determined by an
isomorphic function H. First, we introduce a definition on the generator graphs (i.e.,
Theorem 1), then we introduce the definition of the isomorphic function H and a
theorem on it (i.e., Definition 2 and Theorem 2). Inter-cluster edges connect nodes in
two different clusters, constructed as in Theorem 1, Definition 2, and Theorem 2.

There are q nodes in a cluster. q generates a finite field, IFq = {x0, x1, . . . , xq−1}. There
exists a primitive element ξ ∈ IFq, which generates IFq in the form of IFq = {ξt mod q|t ∈
IN} ∪ {0}. Two generator sets, X and X′, are constructed as Equations (1) and (2). All
arithmetic operations are performed in a modulo q manner. Note that |X| = |X′| =
(q− δ)/2 and X ∪ X′ = IFq − {0}.

X =


{1, ξ2, . . . , ξq−3} q = 4`+ 1
{1, ξ2, ξ4, . . . , ξ2`−2,
ξ2`−1, ξ2`+1, . . . , ξ4`−3} q = 4`− 1
{1, ξ2, . . . , ξ4`−2} q = 4`.

(1)

X′ =


{ξ, ξ3, . . . , ξq−2} q = 4`+ 1
{ξ, ξ3, ξ5, . . . , ξ2`−1,
ξ2`, . . . , ξ4`−4, ξ4`−2} q = 4`− 1
{ξ, ξ3, . . . , ξ4`−1} q = 4`.

(2)

Definition 1 (see [20]). A generator graph of X̂ ∈ {X, X′} is a q node graph with nodes labeled
{x0, x1, . . . , xq−1}, and there exists an intra-cluster edge between node xi and xj if xi − xj ∈ X̂.

Theorem 1 (see [31]). If G, G′ are generator graphs of X and X′, respectively, then G and G′ are
isomorphic graphs.
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Definition 2 (see [20]). An isomorphic function H is a one-to-one function defined on
IFq = {x0, x1, . . . , xq−1} such that for any ∀xi ∈ IFq, xi in G and H(xi) in G′ are corresponding
nodes in terms of isomorphism.

Theorem 2 (see [20]). For xi, xj ∈ IFq, xi− xj ∈ X if and only if H(xi)−H(xj) ∈ X′. The inter-
cluster edges between any two clusters Vs and Vt (0 ≤ s < t < n) are constructed as follows: for
each node xi (i = 0, 1, . . . , q− 1) in Vt, connect it to node H(xi) in Vs.

Figure 1 shows the global connection between each pair of supernodes of a Galaxy
graph with n = 3 clusters, each of which contains q = 5 supernodes. In Figure 1, we can
observe that q = 5, δ = ` = 1, IF5 = {0, 1, 2, 3, 4}, and ξ = 2. That is, each cluster contains
the nodes 0–4. In order to distinguish the nodes between different clusters, we replace the
identification of each node with Si with i ∈ {1, 2, . . . , 15}.

6S6S 7S7S 8S8S 9S9S 10S10S1V

1S1S 2S2S 4S4S 5S5S3S3S0V

11S11S 14S14S 15S15S12S12S 13S13S
2V

Figure 1. Global links of the Galaxy graph with n = 3, q = 5.

2.2. Galaxyfly Network

The Galaxyfly network is constructed by replacing each node of the Galaxy graph
with a supernode. The way in which the routers are connected affects the performance of
the network. For routers within a supernode, a full connection is used, and for global links,
the same scheme as in [32] is used to connect the Galaxyfly network global links. Galaxyfly
is defined by five parameters (n, q, a, p, h). The Galaxyfly network contains n clusters; each
cluster contains q supernodes and each supernode contains a routers. Thus, there are a
total of n× q× a routers. Each router is connected to p terminals, so that the network size
is n× q× a× p.

The concepts of supernodes and clusters in Galaxyfly networks are similar to those
of supernodes in Dragonfly and subgroups in SlimFly. This hierarchical structure allows
Galaxyfly to match well for the traffic characteristics of various HPC applications. The ad-
justable parameters n, q and a enable the Galaxyfly network to customize the network size
and bifurcation bandwidth.

Figure 2 shows a Galaxyfly network with three clusters, each of which has five supern-
odes. Each supernode is a fully connected graph of four routers.
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Figure 2. Global links in Galaxyfly networks with n = 3, q = 5, a = 4, h = 1.

3. Basic Algorithm

For the Galaxyfly networks, we propose four algorithms to implement the collection
and distribution of packets in four different scenarios. All-to-all broadcast algorithms
proposed in Section 4 will frequently call these four basic algorithms.

The basic algorithms include Router-Packet-Collection, Router-Packet-Distribution,
Supernode-Packet-Collection, and Supernode-Packet-Distribution.

3.1. Algorithms: Router-Packet-Collection (RPC) and Router-Packet-Distribution (RPD)

The algorithms Router-Packet-Collection (i.e., Algorithm 1) and Router-Packet-Distribution
implement the core algorithm of our proposed broadcast algorithm to collect and distribute
packets within the supernode via recursion. Next, we first introduce the algorithm Router-
Packet-Collection.

Algorithm 1: Router-Packet-Collection (RPC).
Input: A: the set of routers or a supernode;

m: a router in A;
Output: Packets from all routers within A are collected into the router m;
if A is a supernode then Let A be the set of routers in the supernode A;
Let B = A \ {m};
Divide B into two subsets B1 and B2 such that |B1| = d|B|/2e, |B2| = b|B|/2c;
Let b1 be an arbitrary router in B1;
Let b2 be an arbitrary router in B2;
if |B1| = 1 then Send packets of router b1 in B1 to the target router m;
else

RPC(B1, b1);
Send packets of router b1 in B1 to the target router m;

if |B2| = 1 then Send packets of router b2 in B2 to the target router m;
else

RPC(B2, b2);
Send packets of router b2 in B2 to the target router m;

return;

Theorem 3. In the RPC algorithm, the packets are accurately sent to the target router.

In PRC, all routers in a supernode are divided into two sets, B1 and B2, for executing
RPC(B1, b1) and RPC(B2, b2), respectively. If the number of routers in B1 or B2 is greater
than 1, then the algorithm will recursively execute RPC to collect all packets in set B1 into
router b1, send all packets in set B2 into router b2, and send the packets of b1 and b2 into
router m. Thus, the router m will receive all the packets in the supernode A. The algorithm
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solves the problem by decomposing the original problem into two subproblems, and thus,
the time complexity of the algorithm is O(log2 a) (see the definition of a in Table 1).

Figure 3 shows the execution process of the RPC algorithm in the Galaxyfly network.
R1–R8 in the figure indicates the routers within the supernode. The specific detailed process
is as follows:

Step 2 Step 2

Step 3

Step 2
Step 1 Step 2

Step 3

4R

8R

3R

7R

2R

6R

1R

5R

Figure 3. Collect packets from each router inside a supernode using the RPC algorithm in
Galaxyfly networks.

The executing RPC({R1, R2, R3, R4, R5, R6, R7, R8}, R4) will send the packets from R2
and R7 to R4. This process will call RPC({R1, R2, R3}, R2) and RPC({R5, R6, R7, R8}, R7)
to collect packets to R2 and R7. The result of executing RPC({R1, R2, R3}, R2) will send
the packets from R1 and R3 to R2. The result of executing RPC({R5, R6, R7, R8}, R7) will
send the packets from R5 and R8 to R7. In addition, RPC({R5, R6, R7, R8}, R7) will call
RPC({R5, R6}, R5), such that R6 sends packets to R5.

Since the links in the Galaxyfly networks are bidirectional, the RPD algorithm can be
designed as the inverse process of RPC with the same time complexity. Therefore, we omit
the details of RPD and use RPD(A, m) to denote the distribution of packets from router m
to all other routers in the supernode A.

3.2. Algorithms: Supernode-Packet-Collection (SPC) and Supernode-Packet-Distribution (SPD)

The algorithm Supernode-Packet-Collection (i.e., Algorithm 2) collects packets from
other supernodes into one supernode via breadth-first traversal. In contrast, the algo-
rithm Supernode-Packet-Distribution distributes packets from one supernode to other
supernodes. We first propose the algorithm Supernode-Packet-Collection as follows.

Algorithm 2: Supernode-Packet-Collection (SPC).
Input: U: the set of all supernodes;

A: a supernode within the set U;
Output: Collect packets from all other supernodes in U to supernode A;
Let U = U \ {A};
for x ∈ U do

if the supernode x is adjacent to supernode A then
U = U \ {x};
for y ∈ U do

if the supernode y is adjacent to supernode x then
Let e be the router in y connected to supernode x;
RPC(y, e);
Pass packets from supernode y to supernode x through router e;
U = U \ {y};

Let m be the router in A connected to the router g in supernode x;
RPC(x, g);
Pass packets from supernode x to supernode A through router g;
RPD(A, m);

return;
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Theorem 4. In the SPC algorithm, the packets are accurately sent to the target supernode.

The algorithm SPC collects packets from all supernodes in U to a supernode A. First,
the algorithm SPC will find the supernode x that is adjacent to supernode A from the set U.
Then it will find y that is adjacent to supernode x from the set U, and transmit packets from
supernode y to supernode x. Supernode x collects all packets to the router inside it that is
connected to A, and then sends the packets to supernode A. The algorithm sends packets
via breadth-first traversal, and its time complexity is O(n× q× log2 a) (see the definition
of n, q, a in Table 1).

Figure 4 shows the execution process of the SPC algorithm in a Galaxyfly network
with n = 3 and q = 5. The specific detailed process is as follows.

Step 2.1 Step 2.2

Step 4.1

Step 1.1
0V

1V

2V

Step 1.1

Step 1.1

11S 13S

6S

1S 3S 4S

7S Step 3.1
8S Step 3.2

Step 3.1

9S

Step 2.1

Step 4.2

Step 3.1

Step 2.1

Step 1.2

2S 5S

15S14S12S

10S

Figure 4. Collect packets from each supernode using the SPC algorithm in Galaxyfly networks.

Note that U is the set of all supernodes. We assume that the target supernode A is S8.
In the set U, the algorithm SPC will find the supernodes that are adjacent to supernode
S8, i.e., S5, S7, S9, S12. For S5, the supernodes adjacent to it in U are S1, S4, and S13. Pass
the packets of S1, S4, and S13 to S5 and collect them into a router inside S5 connected to
S8. Then, pass the packets to S8 and distribute the packets to all routers inside S8. For S7,
the supernodes adjacent to it in U are S3, S6, and S14. Pass the packets of S3, S6, and S14
to S7 and collect them into a router inside S7 connected to S8. Then, pass the packets to
S8 and distribute the packets to all routers inside S8. For S9, the supernodes adjacent to it
in U are S2, S10, and S15. Pass the packets of S2, S10, and S15 to S9 and collect them into a
router inside S9 connected to S8. Then, pass the packets to S8 and distribute the packets to
all routers inside S8. For S12, the supernode adjacent to it is S11. Pass the packet from S11 to
S12 and collect them into a router inside S12 connected to S8. Then, pass the packets to S8
and distribute the packets to all routers inside S8.

Since the links in Galaxyfly networks are bidirectional, the SPD algorithm can be
designed as the inverse process of SPC with the same time complexity. Therefore, we omit
the details of SPD and use SPD(U, A) to denote the distribution of packets from supernode
A to all other supernodes in U.

4. All-to-All Broadcast Algorithm

In the Galaxyfly network, when each supernode needs to send a packet to all other
supernodes, it is necessary to design all-to-all broadcast algorithms and to analyze its
performance. In this process, each supernode contains packets that need to be sent to
all other supernodes. That is, each supernode has to complete a broadcast operation.
Obviously, this can be realized by utilizing the unicast operation for each supernode.
However, such a simple strategy will result in many routers receiving a large number of
redundant packets, taking up a large amount of bandwidth and resulting in the performance
degradation of the network. This section proposes two all-to-all broadcast algorithms
that can effectively solve these problems based on the four basic algorithms proposed in
Section 3.
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4.1. Supernode-First All-to-All (SFATA) Broadcast Algorithm

In Algorithm 3, named SFATA, once one supernode receives the packets, this supern-
ode will distribute them to the next supernode immediately. Thus, the SFATA obeys the
rule of supernode-first. The overview of the SFATA algorithm is shown as follows: The
packets from the routers within the same supernode are collected into one router. Then,
these packets are forwarded to a supernode, which receives all the packets and forwards
them to all of the other supernodes. Finally, each supernode forwards the packets to all the
routers inside it. The algorithm has the following features:

• All routers accept and send packets through the shortest feasible path.
• Each router does not receive redundant packets.

Algorithm 3: Supernode-first all-to-all broadcast algorithm (SFATA).
Input: U: the set of all supernodes;

A: a supernode;
Output: All routers within all supernodes receive all packets under the rule of

supernode-first;
SPC(U, A);
SPD(U, A);
return;

Theorem 5. In the SFATA algorithm, the packets are accurately sent to the target router and the
target supernode.

The SFATA algorithm executes the SPC algorithm to call the RPC algorithm exactly
once for each supernode, which has a distance of 2 with the target supernode such that all
the packets of these supernodes are collected to one router inside them. Next, the algorithm
SPC sends the packets to the target supernode. Each time the packets are collected to a
supernode, it is necessary to execute RPC to collect the packets to a router again, collecting
a× n× q− 1 packets in total. The algorithm SPD is executed to distribute the collected
packets to all the other supernodes. Each time a supernode receives the packets, the SPD
algorithm will call the RPD algorithm to distribute the packets to all routers within the
supernode. Each router receives a total of a× n× q− 1 packets. In the process, each router
does not receive redundant packets. The time complexity of the algorithm is O(n× q×
log2 a).

Here, we assume that S8 is the target supernode. First, the supernodes that have
a distance of 2 with S8 are S1, S2, S3, S4, S6, S9, S10, S11, S13, S14, and S15, and thus, we
execute RPC to collect the packets in these supernodes, respectively. Execute SPC such
that the packets of S1, S4, and S13 are sent to S5, packets of S3, S6, and S14 are sent to S7,
packets of S2, S10, and S15 are sent to S9, and packets of S11 are sent to S12. Execute RPC
such that the packets inside S5, S7, S9, and S12 are concentrated on the router connected
with S8, through which we send the packets to S8. Execute RPD to send the packets from
the routers connected with S5, S7, S9, and S12 to other routers in S8. Finally, execute SPD to
send packets to all routers of other supernodes.

4.2. Router-First All-to-All Broadcast Algorithm (RFATA)

In Algorithm 4, named RFATA, once a packet is transmitted into one supernode,
the supernode will distribute it to all routers inside it in priority, instead of distributing it to
other supernodes immediately. Thus, the RFATA obeys the rule of router-first. The overview
of the RFATA algorithm is shown as follows: The packets from routers within the same
supernode are first collected into one router, and then this router will distribute these
packets to all routers in the same supernode. Next, the packets are forwarded to all routers
in other supernodes and this process obeys the rule of router-first. Once one supernode
receives all the packets, this supernode will distribute the packets to all other supernodes.
The algorithm has the following features:
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• All routers receive and send packets through the shortest feasible path.
• The routers in the supernode will receive packets in priority.

Algorithm 4: Router-First All-to-All Broadcast Algorithm (RFATA).
Input: U: the set of all supernodes;

A: a supernode;
Output: All routers within all supernodes receive all packets under the rule of

router-first;
for x ∈ U do

Let d be an arbitrary router in x;
RPC(x, d);
RPD(x, d);

Let U = U \ {A};
for x ∈ U do

if the supernode x is adjacent to supernode A then
U = U \ {x};
for y ∈ U do

if the supernode y is adjacent to supernode x then
Let e be the router in y connected to the router l in supernode x;
Pass the packet from supernode y to supernode x through router e;
U = U \ {y};

RPD(x, l);
Let m be the router in A connected to the router g in supernode x;
Pass packets from supernode x to supernode A through router g;
RPD(A, m);

SPD(U, A);
return;

Theorem 6. In the RFATA algorithm, the packets are accurately sent to the target router and the
target supernode.

During the packet collection phase of the router within the supernode, the RFATA
algorithm will execute RPC for each router to collect recursively all packets from the
supernode. RPD is executed to distribute the collected packets to each router. Then, the
packets are collected to a supernode using the breadth-first traversal algorithm. During the
collection process, each supernode will pass the packets to all routers inside it immediately
after receiving them. Finally, the SPD algorithm is executed to distribute the packets.
The time complexity of the algorithm is O(n× q× log2 a).

Here, we suppose that S8 is the target supernode. First, RPC and RPD are executed on
all supernodes, such that all the packets in the supernode are sent to all the routers inside
it. The supernodes have a distance of 2 with S8 are S1, S2, S3, S4, S6, S9, S10, S11, S13, S14,
and S15. The algorithm will send the packets of S1, S4, and S13 to S5, send the packets of
S3, S6, and S14 to S7, send the packets of S2, S10, and S15 to S9, send the packets of S11 to
S12, and send the packets of S3, S7, S9, and S12 to S8. Finally, SPD is executed to send the
packets to all other supernodes’ routers. During the entire process, as long as the supernode
receives a packet, it will immediately send it to all routers inside it.

5. Simulation Results

In this section, for the SFATA and RFATA algorithms, we first validate their effec-
tiveness and then evaluate their performance. The simulation experiments are written
using NEDC and C++ language. The running environment is Intel Core i7-13700H, CPU
3.40 GHz, 32 GB RAM, Windows 10 64-bit OS under omnetpp 5.6. The proposed all-to-all
broadcast algorithms only transmit the packets among the routers, which implies their
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effectiveness and performance are independent of the parameters p and h. Therefore, we
use Galaxyfly(n, q, a) to denote the Galaxyfly network in this section for brevity.

The workflow of experiments are shown as follows.
Step 1: Generate a Galaxyfly network by setting different numbers of clusters n,

number of supernodes q, and number of routers a.
Step 2: Validate the effectiveness of proposed algorithms for Galaxyfly(n, q, a) under

different packet sizes.
Step 3: Evaluate the performance of proposed algorithms for Galaxyfly(n, q, a) with a

packet size of 160B.
Step 4: Record the above results and conduct Steps 1–3 several times to reduce

accidental errors.
Throughout our simulation, we assume that the bandwidth of the network is 16 Gbps [33].

5.1. Validation

This subsection validates the effectiveness of our proposed algorithms. We generate
five network configurations, i.e., Galaxyfly(3, 5, 4), Galaxyfly(3, 5, 8), Galaxyfly(4, 5, 5),
Galaxyfly(4, 7, 4), and Galaxyfly(4, 7, 5). The packet size, denoted by PS, varies among
160B, 320B, 640B, and 1280B. In order to explore the effectiveness of the SFATA and RFATA
algorithms under these experimental configurations, we define the following three notations.

• Nr: the total number of routers in the network.
• Nc: the number of routers that successfully received packets from all routers.
• N f : the number of routers that failed to receive packets from all routers.

Then, we further define two effectiveness metrics as follows.

• SuccessRate: the ratio of the number of routers receiving all packets successfully to
the total number of routers, calculated by

SuccessRate =
Nc

Nr
, (3)

• FailureRate: the ratio of the number of routers failing to receive all packets to the total
number of routers, calculated by

FailureRate =
N f

Nr
. (4)

Table 2 presents the SuccessRate and FailureRate of the SFATA and RFATA algorithms
for various PS values in different Galaxyfly network configurations: Galaxyfly(3, 5, 4),
Galaxyfly(3, 5, 8), Galaxyfly(4, 5, 5), Galaxyfly(4, 7, 4), and Galaxyfly(4, 7, 5). Since
the experimental results are identical for these four Galaxyfly configurations, we have
consolidated them into a single table for convenience. In addition, to enhance readability,
we use SFATA.SuccessRate and SFATA.FailureRate (respectively, RFATA.SuccessRate and
RFATA.FailureRate) to denote the SuccessRate and FailureRate of the SFATA algorithm
(respectively, RFATA algorithm), respectively.

Table 2. The SuccessRate and FailureRate of SFATA and RFATA algorithms for Galaxyfly(3, 5, 4),
Galaxyfly(3, 5, 8), Galaxyfly(4, 5, 5), Galaxyfly(4, 7, 4), and Galaxyfly(4, 7, 5) under different PS values.

PS 160B 320B 640B 1280B

SFATA.SuccessRate 100% 100% 100% 100%
SFATA.FailureRate 0% 0% 0% 0%
RFATA.SuccessRate 100% 100% 100% 100%
RFATA.FailureRate 0% 0% 0% 0%

We can observe that SFATA.SuccessRate and RFATA.SuccessRate always maintain
100%, while SFATA.FailureRate and RFATA.FailureRate are always equal to 0%. It indicates
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that the two broadcast algorithms proposed are able to transmit all packets to each router
in the Galaxyfly network. In addition, their SuccessRate and FailureRate are not affected
by the PS values. Therefore, in subsequent experiments, we set the value of PS to 160B
for convenience.

5.2. Performance Analysis

In this subsection, we will evaluate the performances of the SFATA and RFATA algo-
rithms and compare them with the A2A algorithm, which is proposed for broadcast routing
in Dragonfly networks [32]. Our evaluation is conducted from the following six metrics.

• AvgTime: the average time for all packets to be received by all routers in the network.
• MaxTime: the maximum time for all routers in the network to receive all packets,

i.e., the running time of the whole all-to-all broadcast algorithm.
• MinTime: the minimum time for all packets to be received by the routers in the

network.
• AvgPacket: the average redundant packets, which is the ratio of the total number of

redundant packets to the total number of routers in the network.
• RouterTime: the average time for the router to collect packets from the supernode.
• AvgChannel: the average channel utilization, which is the ratio of the average time

spent on all channels in the network to the total routing time (i.e., MaxTime).

We still implement the simulation under the aforementioned five network configu-
rations, i.e., Galaxyfly(3, 5, 4), Galaxyfly(4, 5, 4), Galaxyfly(4, 5, 5), Galaxyfly(4, 7, 4), and
Galaxyfly(3, 5, 8). Tables 3–5 show the AvgTime, MaxTime, MinTime, AvgPacket, Router-
Time, and AvgChannel of the SFATA, RFATA, and A2A algorithms, where the time units
are µs.

Table 3. The AvgTime, MaxTime, MinTime, AvgPacket, RouterTime, and AvgChannel of SFATA algo-
rithm.

(n, q, a) (3, 5, 4) (4, 5, 4) (4, 5, 5) (4, 7, 4) (3, 5, 8)

AvgTime 34,100 43,700 62,400 57,300 91,600
MaxTime 56,500 73,700 92,900 101,300 132,900
MinTime 8500 9700 12,900 117,000 24,900

AvgPacket 0.000 0.000 0.000 0.000 0.000
RouterTime 27,366.7 35,057.5 52,587 46,030.4 82,947.5
AvgChannel 5.69% 5.72% 5.65% 5.73% 4.73%

Table 4. The AvgTime, MaxTime, MinTime, AvgPacket, RouterTime, and AvgChannel of RFATA al-
gorithm.

(n, q, a) (3, 5, 4) (4, 5, 4) (4, 5, 5) (4, 7, 4) (3, 5, 8)

AvgTime 44,920 56,925 82,000 71,735.7 137,213
MaxTime 67,400 87,000 112,600 115,800 178,700
MinTime 14,600 17,000 22,600 19,000 48,300

AvgPacket 1.000 2.333 1.200 0.643 1.000
RouterTime 2440 2310 3160 2096.43 8006.67
AvgChannel 4.02% 3.97% 3.80% 4.01% 2.95%

Table 5. The AvgTime, MaxTime, MinTime, AvgPacket, and AvgChannel of A2A algorithm [32].

(n, a) (3, 20) (4, 20) (4, 25) (4, 28) (3, 40)

AvgTime 14,295 18,080 24,696 28,896.4 38,997.5
MaxTime 21,900 28,200 34,800 39,000 55,900
MinTime 1800 1800 2200 2500 3800

AvgPacket 0.000 0.000 0.000 0.000 0.000
AvgChannel 12.99% 13.21% 13.52% 13.62% 10.53%
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It can be observed that the AvgTime, MaxTime, and MinTime of the SFATA algorithm
are always smaller than those of the RFATA algorithm. Particularly, the MaxTime of the
RFATA algorithm is over 1.05 times that of the SFATA algorithm, implying the SFATA
algorithm can save more than 5% of the time to complete the whole broadcast operation,
compared to the RFATA algorithm. Moreover, there are no redundant packets in the
SFATA algorithm. The AvgChannel of the SFATA algorithm is larger than that of the
RFATA algorithm; thus, the SFATA algorithm has a higher network resource utilization
than the RFATA algorithm. However, the RFATA algorithm has a lower RouterTime and
this verifies the advantage of the RFATA algorithm in prioritizing packet delivery to all
routers. For both the SFATA and RFATA algorithms, the AvgTime, MaxTime, MinTime,
RouterTime, and AvgChannel are all positively correlated with the values of parameters
n, q, a. From Table 5, it can be observed that with an equal number of routers, the A2A
algorithm always outperforms both the SFATA algorithm and the RFATA algorithm in
terms of AvgTime, MaxTime, MinTime, AvgPacket, and AvgChannel. This disparity arises
due to the inherent differences between the Dragonfly and Galaxyfly networks with q > 1,
characterized by the network diameters of 3 and 5, respectively. Notably, the Galaxyfly
network offers the flexibility to adjust the number of supernodes (i.e., parameter q), thereby
facilitating the generalizability of our findings in diverse scenarios, which is the unique
advantage of our proposed algorithms.

From the above simulation results, we can conclude the features of our proposed
algorithms, as shown in Table 6.

Table 6. The features of SFATA algorithm and RFATA algorithm.

SFATA RFATA

Rule Supernode-first Router-first

Lower execution time
Advantages AvgPacket equals to zero Lower RouterTime

Higher AvgChannel

Higher execution time
Disadvantages Higher RouterTime Higher AvgPacket

Lower AvgChannel

Application Applications that require Applications that require

Scopes completion of the whole prioritization of packet delivery to
broadcast as soon as possible all routers in the same supernode

6. Conclusions

In this paper, two all-to-all broadcast algorithms for the Galaxyfly network, complying
with the rules of supernode-first and router-first, respectively, are not only proposed, but
also actually implemented for delivering the packets from each router to all other routers.
In order to quickly complete the broadcast, the SFATA algorithm collects packets from all
supernodes to one supernode and then sends them to the other supernodes immediately.
In contrast, the RFATA algorithm forwards incoming packets immediately to all routers
within a supernode. The SFATA algorithm emphasizes the efficient utilization of network
resources, whereas the RFATA algorithm prioritizes delivering packets to all routers within
the same supernode.

Our future work aims to investigate fault-tolerant routing techniques that do not
utilize virtual channels in Galaxyfly networks. This is currently an open and intriguing
research question that requires further exploration. Additionally, we plan to explore the
development of multicast routing algorithms that cater to the unique properties of the
Galaxyfly network.
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