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Abstract: The explosive growth of users and applications in IoT environments has promoted the
development of cloud computing. In the cloud computing environment, task scheduling plays a
crucial role in optimizing resource utilization and improving overall performance. However, effective
task scheduling remains a key challenge. Traditional task scheduling algorithms often rely on static
heuristics or manual configuration, limiting their adaptability and efficiency. To overcome these
limitations, there is increasing interest in applying reinforcement learning techniques for dynamic and
intelligent task scheduling in cloud computing. How can reinforcement learning be applied to task
scheduling in cloud computing? What are the benefits of using reinforcement learning-based methods
compared to traditional scheduling mechanisms? How does reinforcement learning optimize resource
allocation and improve overall efficiency? Addressing these questions, in this paper, we propose
a Q-learning-based Multi-Task Scheduling Framework (QMTSF). This framework consists of two
stages: First, tasks are dynamically allocated to suitable servers in the cloud environment based on
the type of servers. Second, an improved Q-learning algorithm called UCB-based Q-Reinforcement
Learning (UQRL) is used on each server to assign tasks to a Virtual Machine (VM). The agent makes
intelligent decisions based on past experiences and interactions with the environment. In addition,
the agent learns from rewards and punishments to formulate the optimal task allocation strategy and
schedule tasks on different VMs. The goal is to minimize the total makespan and average processing
time of tasks while ensuring task deadlines. We conducted simulation experiments to evaluate the
performance of the proposed mechanism compared to traditional scheduling methods such as Particle
Swarm Optimization (PSO), random, and Round-Robin (RR). The experimental results demonstrate
that the proposed QMTSF scheduling framework outperforms other scheduling mechanisms in terms
of the makespan and average task processing time.

Keywords: reinforcement learning; Q-learning; upper confidence bound; task scheduling

MSC: 68U01

1. Introduction

With the rapid development of the Internet of Things (IoT) we have entered a new era
of digitalization connecting various smart devices and sensors and enabling interconnectiv-
ity and information sharing among them. However, the rapid growth of the IoT brings with
it a series of challenges and issues, one of which is effectively handling the massive influx
of task requests generated by devices. In the IoT, a vast number of devices and sensors
generate an enormous amount of data processing tasks that need to be collected, stored,
analyzed, and processed. Traditional methods of task processing often struggle to cope with
such a tremendous task scale and high task generation rate. Cloud computing technology
provides robust support for addressing this problem. Based on a network, cloud computing

Mathematics 2023, 11, 3364. https://doi.org/10.3390/math11153364 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11153364
https://doi.org/10.3390/math11153364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6096-0252
https://orcid.org/0009-0007-7714-1695
https://orcid.org/0000-0001-7829-7009
https://doi.org/10.3390/math11153364
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11153364?type=check_update&version=1


Mathematics 2023, 11, 3364 2 of 17

offers efficient computing and storage resources, making the processing of large-scale tasks
feasible. By connecting IoT devices to cloud platforms, tasks generated by the devices can
be uploaded to the cloud in real-time for processing. Cloud infrastructure provides the
necessary computational power, storage capacity, and scalability to efficiently handle the
influx of tasks. This enables real-time and scalable processing of tasks generated by IoT
devices, facilitating data analysis and decision-making while providing valuable insights.
Cloud computing empowers the IoT ecosystem by offloading the computational burden
from individual devices to the cloud, ensuring efficient task management and enabling
advanced data processing and analytics. The integration of IoT and cloud computing
facilitates the seamless and effective handling of the vast volume of tasks generated by IoT
devices, paving the way for enhanced IoT applications and services in the digital age.

A vast amount of resources such as computing power, storage capacity, and network
bandwidth are available in the cloud computing environment. However, these resources
need to be allocated reasonably among multiple users and tasks in order to meet the needs
and priorities of different users. Resource allocation in the dynamic and heterogeneous
cloud computing environment can become highly complex and challenging. First, tasks and
user demands in the cloud computing environment exhibit great diversity and variability;
different tasks may require different types and scales of resources, and user demands for
resources can change over time. Second, resources in the cloud computing environment
are limited. Due to the scarcity of resources, it is necessary to allocate resources effectively
in order to maximize user satisfaction and provide high-performance services. Load
balancing of resources needs to be considered to avoid performance degradation caused
by resource overload; moreover, resource conflicts and competition inevitably exist in the
cloud computing environment. Multiple tasks or users may compete for the same resources
simultaneously, leading to resource contention and increased delays. Therefore, an effective
resource allocation scheduling strategy is needed in order to address resource conflicts and
provide fair and efficient resource utilization.

To address the performance issues in task scheduling [1–3], researchers have proposed
various novel research methods. Existing cloud computing task scheduling methods typ-
ically fall into the following categories. (1) Static Scheduling Methods: these methods
determine the execution order and allocation scheme of tasks before task submission, such
as Shortest Job First (SJF), Earliest Deadline First (EDF), and Minimum Remaining Time
(MRT). While these methods are simple to implement, they cannot adapt to dynamic envi-
ronments and changing task demands. (2) Heuristic Scheduling Methods: these methods
make task scheduling decisions based on past experience and on rules such as Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA). These methods consider certain
task priorities and resource utilization efficiency; however, they lack global optimization
and dynamic adjustment capabilities. (3) Load Balancing Scheduling Methods: the aim of
these methods is to achieve load balancing among devices in order to improve resource uti-
lization and system performance. Examples include round-robin (RR) scheduling, random
scheduling, and queue-length-based scheduling. These methods can balance task loads,
but fail to consider task characteristics and device performance differences.

Existing cloud computing task scheduling faces several challenges. (1) Large-Scale
Task Processing: cloud computing environments may have a massive number of tasks
that need to be scheduled and processed. Handling such a large-scale task processing
introduces complexity in task scheduling and increases computational complexity. (2) Dy-
namic Environment: task arrivals and departures in the cloud computing environment are
dynamically changing. The number of tasks and their resource requirements can change at
any time. Therefore, task scheduling needs to exhibit real-time adaptability and flexibility
to promptly respond to changing demands. (3) Resource Allocation and Load Balancing:
task scheduling requires the rational allocation and utilization of resources in the cloud
computing environment in order to achieve load balancing and maximize resource utiliza-
tion. Inadequate resource allocation or load imbalance can lead to system performance
degradation and resource wastage.
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Based on the need for better task scheduling performance, this study applies reinforce-
ment learning to cloud computing task scheduling and proposes a two-stage dynamic cloud
task scheduling framework called Q-Learning-based Multi-Task Scheduling Framework
(QMTSF). The first stage occurs in the cloud data center,; when user tasks arrive, they and
are initially stored in a global queue (GQ). Then, based on the characteristics of the tasks,
they are dynamically assigned to appropriate servers. The second stage takes place within
each server, specifically, the server queue (SQ). A time window is used to determine when
the tasks in the queue are assigned to each virtual machine (VM). For each time window,
the server’s task scheduler first prioritizes all tasks in the queue based on their deadline
constraints, then employs a UCB-based Q-Reinforcement Learning (UQRL) strategy to
assign tasks to suitable VMs. An incentive mechanism is applied to reward assignments
that minimize the makespan of tasks.

The main contributions of this paper are as follows:

(1) We propose Q-learning-based Multi-Task Scheduling Framework (QMTSF) to address
task scheduling issues in cloud computing. Task assignment is performed in the cloud
data center, while task scheduling for different VMs is conducted within each server.

(2) For the task assignment phase in the cloud data center, we introduce a method based
on server task type priorities to allocate tasks to suitable servers.

(3) For task scheduling within each server, we first employ a dynamic sorting strategy
to prioritize tasks based on their deadlines. This enables the Q-Learning-based task
scheduler to consider the more urgent tasks earlier, contributing to improved service
quality. Additionally, we apply an improved Q-Learning algorithm based on the
UCB strategy (UQRL) to the task scheduling within each server, resulting in reduced
average task processing times and overall makespan.

(4) We conducted experiments to validate the effectiveness and superiority of QMTSF,
comparing its performance against the PSO algorithm, random scheduling, and RR
scheduling. The experimental results confirm the effectiveness of QMTSF.

The structure of this paper is as follows: Section 2 provides an overview of the
current research progress and achievements in cloud computing task scheduling; Section 3
introduces the QMTSF system model proposed in this paper; Section 4 presents the dynamic
task allocation algorithm and UQRL algorithm used in QMTSF; and Section 5 presents the
results of the simulation experiments. Finally, Section 6 concludes the paper.

2. Related Works

Task scheduling is crucial for the efficient operation of cloud computing. A good task
scheduling strategy can effectively reduce the execution time of user tasks and meet their
demands under different constraints, increase the utilization of cloud resources, and reduce
energy consumption and operational costs.

Traditional scheduling strategies such as FCFS [4], RR [5], and random [6] can be used
as task scheduling solutions; however, their performance is no longer sufficient to meet the
requirements of cloud computing. Heuristic algorithms are designed based on the evolution-
ary principles of biological organisms through simulations of genetic operations, mutation,
and natural selection to find optimal solutions, and have been applied to task scheduling
in cloud computing. Heuristic algorithms have shown significant effectiveness in reducing
task execution time, improving resource utilization, reducing energy consumption, and
increasing throughput in cloud computing task scheduling. In a cloud data center, ineffi-
cient task scheduling can lead to insufficient resource utilization and decreased revenue. In
such cases, reducing the makespan becomes crucial for performing efficient task scheduling
in the cloud. In a study by Raju et al. [7], a hybrid algorithm [8] combining Ant Colony
Optimization (ACO) and CSA was proposed as a resource scheduling strategy to reduce
the makespan. This hybrid algorithm helped to minimize completion time or makespan
by optimally allocating the required resources for jobs submitted on time. To address the
optimization problem in workload scheduling in cloud computing, Khalili et al. [9] proposed
a single-objective Particle Swarm Optimization (PSO) [10] algorithm. Different inertia weight
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strategies were combined in the PSO to minimize the makespan. The results indicate that
combining the Linearly Decreasing Inertia Weight (LDIW) with the PSO can reduce the
makespan. In the same context, Gabi et al. [11] introduced a traditional CSO task scheduling
technique incorporating the LDIW equation to overcome the trapping problem caused by
local search. Using the CloudSim simulator tool, this technique efficiently maps tasks to
VMs based on an enhanced convergence speed, thereby minimizing the completion time.
For the current architecture of cloud data centers, Sharma et al. [12] proposed a new Hy-
brid Coordinated-heuristic Genetic Algorithm (HIGA) [13] solution for real-world scientific
workflows to address energy-efficient task scheduling. By combining the search capabil-
ity of Genetic Algorithms (GA) and the development capability of Harmony Search (HS),
HIGA provides intelligent awareness of the local and global search space, leading to fast
convergence. The goal of this work was to minimize completion time, computational energy,
energy consumption of resources, and overhead associated with the scheduler. Wu et al. [14]
proposed a market-oriented resource scheduling technique based on ACO, PSO, and GA
considering dynamic resource scheduling at both the task level and the service level. This
approach optimizes the makespan and CPU time, reducing the overall operating costs of
the data center. Meshkati et al. [15] proposed a Hybrid ABC-PSO Scheduling Framework
(HSF) that, in addition to managing the position of VMs on physical nodes, reduces active
nodes by turning off unused ones, thereby saving energy. Song et al. [16] designed a Fast
N-Particle Swarm Optimization (FN-PSO) algorithm to address the scheduling problem
between composite tasks in a distributed cloud computing environment, reducing task execu-
tion time. Huang et al. [17] proposed a PSO-based task scheduler that utilizes a logarithmic
decrement strategy to minimize the makespan of the cloud system in cloud task scheduling.
Zhou et al. [18] proposed an improved GA combined with a greedy strategy to optimize
the task scheduling process, reducing the number of algorithm iterations and significantly
improving performance in terms of minimizing the total completion time, average response
time, and QoS. Sulaiman et al. [19] introduced a hybrid heuristic algorithm based on ge-
netic algorithms and lists for scheduling heterogeneous computing tasks. However, these
optimization methods provide an optimal solution and are primarily designed for static
optimization problems, making them less suitable for dynamic optimization problems.

In response to the aforementioned issues, Reinforcement Learning (RL) [20–22] has
been actively applied in cloud computing task scheduling. RL is a direct learning strategy
that enables an agent to learn appropriate policies through trial and error, acquiring rewards
from the environment without any prior knowledge. The agent observes its own state and
selects actions to obtain rewards associated with the chosen actions from the environment.
Based on past experiences, the agent learns the optimal actions to maximize rewards. Q-
Learning is a classic RL algorithm that has been applied in task scheduling. Wei et al. [23]
and Khan et al. [24] proposed a sensor node cooperative RL approach for task scheduling
to optimize the trade-off between energy and application performance in sensor networks.
Each node considers the local state observations of its neighbors and shares knowledge
with other agents to enhance the learning process and achieve better results than individual
agents. Wei et al. [25] combined the Q-Learning RL method with an improved supervised
learning model, Support Vector Machine (ISVM-Q), for task scheduling in Wireless Sensor
Networks (WSNs). The ISVM model takes state–action pairs as inputs and calculates
Q-value estimates. Based on this estimation, the agent selects the optimal tasks to be
performed. Experimental results have demonstrated that the ISVM method improves
application performance by putting sensors and communication modules in sleep mode
when necessary while preserving network energy. Li et al. [26] proposed Q-Grid, an RL-
based hierarchical protocol, to improve information dissemination rates by minimizing
latency and hop count. The protocol divides the geographic region into small grids and
searches for the optimal grid next to the destination based on the traffic of neighboring grids,
establishing a Q-Value table. Ding et al. [27] proposed QEEC, an efficient energy-saving
cloud computing task scheduling framework based on Q-Learning. This framework utilizes
the M/M/S queue model for task reallocation and employs a Q-Learning algorithm based
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on an Îţ-Greedy policy [28] to achieve energy-efficient utilization of cloud resources during
task scheduling. Ge et al. [29] introduced a global-perspective flexible task scheduling
scheme based on Q-Learning, aiming to improve task scheduling success rate, reduce
latency, and prolong the lifespan of the Internet of Things (IoT). Liu et al. [30] proposed
a Q-Learning approach based on multi-objective optimization and the FANET routing
protocol. They were able to achieve a higher packet delivery rate and lower latency and
energy consumption, leading to better performance.

For RL, the process can be divided into exploration and exploitation. Exploration refers
to the selection of actions to gain new knowledge, while exploitation refers to selecting
the best action based on stored knowledge. The agent should strike a balance between
these two. Resolving this trade-off problem allows the agent to achieve more efficient
learning, as an inefficient exploration strategy would result in more suboptimal actions
and poorer performance. In the exploration phase of Q-Learning, the ε-Greedy algorithm is
commonly used, which employs a completely random policy for exploration. However,
this algorithm converges slowly and is prone to becoming trapped in local optima. In the
exploration–exploitation trade-off, only the immediate benefits are considered, without
taking into account the cost of obtaining those benefits (i.e., exploration attempts). Excessive
consideration of immediate benefits may overlook the value of other potential strategies,
while excessive focus on exploration attempts may neglect the maximum benefit from
exploitation, leading to a lower overall success rate. Thus, a good choice is to balance
current benefits and exploration attempts with the aim of achieve the highest possible
success rate within a limited number of rounds.

The Upper Confidence Bound (UCB) algorithm is an algorithm that uses the cur-
rent benefits and exploration attempts as the criteria for selection. The UCB strategy
was proposed as a method of balancing exploration and exploitation in the multi-armed
bandit problem [31,32]. This method balances the relationship between exploration and
exploitation by considering the number of times an action is chosen, and has better perfor-
mance [33] than methods such as ε-Greedy. Several improved methods based on UCB have
been proposed, such as UCB1-tuned [34] and Discounted UCB [35]. The UCB approach
adopts an optimistic attitude towards uncertainty, and uses the upper confidence bound
of option returns as the estimated value of returns. The basic idea is that the more times
a certain option is tried, the narrower the confidence interval for the estimated returns
becomes, and the lower the uncertainty. Options with higher mean values tend to be
selected multiple times, representing the conservative part of the algorithm (exploitation).
On the other hand, options with fewer attempts have wider confidence intervals and higher
uncertainty. Options with wider confidence intervals are more likely to be chosen multiple
times, representing the aggressive part of the algorithm (exploration).

Saito et al. [36] studied the performance of applying UCB to the Q-Learning algorithm
and conducted numerical analysis, demonstrating its balance between exploitation and
exploration and its superior performance compared to other methods. Yu et al. [37] applied
UCB-2 to the Q-Learning algorithm, allowing multiple agents to act in parallel and achiev-
ing a near-linear speedup in execution time. Their approach outperformed existing parallel
algorithms in terms of sample complexity. Bae et al. [38] formulated network optimization
as a Markov decision process problem and developed a UCB-based exploration reinforce-
ment learning algorithm called Q+-Learning. This approach improves convergence speed,
minimizes performance loss during the learning process, and achieves optimal throughput.
Elsayed et al. [39] utilized an energy-efficient Q-Learning algorithm based on the UCB
strategy to dynamically activate and deactivate SCCs (sub-carrier components) in order to
maximize user throughput with the minimum number of active SCCs, thereby maximizing
energy efficiency. Li et al. [40] proposed a user scheduling algorithm based on the UCB
strategy in reinforcement learning that continuously updates the estimated behavioral
value of each user. This approach avoids the phenomenon of “extreme unfairness” during
the exploration phase, reduces algorithm complexity, and improves system throughput.
Yu et al. [41] introduced a variant of Q-Learning called Q-greedyUCB, which combines the
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average reward algorithm of Q-Learning and the UCB algorithm to achieve an optimal
delay–power trade-off scheduling strategy in communication systems. Simulation results
demonstrate that this algorithm is more effective than ε-greedy and standard Q-Learning
in terms of cumulative reward and convergence speed.

3. System Model

Cloud computing, as a common way of resource allocation, has many optimization
problems. This paper proposes a task scheduling framework called QMTSF based on
reinforcement learning to solve the task allocation and scheduling problems in cloud
computing environments. We define the cloud environment scenario as follows. There
are n Servers in a cloud center, represented as S1, S2, . . . , Si, . . . , Sn, where 1 ≤ i ≤ n. For
any server, the number of VMs is m, represented as VM1, VM2, . . . , VMj, . . . , VMm, where
1 ≤ j ≤ m. QMTSF consists of two steps used to complete the scheduling of tasks to
the VMs.

3.1. Stage 1: Task Allocation

In the first stage of task allocation, we first assign each task to a server that is suitable
for processing that type of task.

As shown in Figure 1, A cloud data center can have a large number of servers, usually
hundreds or thousands. Due to the nature of the cloud data center and the diversity of user
requests, we chose to implement a scheduling program based on task type in the first stage
of QMTSF. A GQ is used in the cloud data center to buffer all incoming user requests. The
task dispatcher continuously monitors and manages unfinished user requests and takes
timely action to assign them to each server node for processing. If the task assignment
process fails, the task is re-added to GQ and waits for reassignment.

Figure 1. QMTSF stage one: task allocation.

In the cloud environment, multiple users generate different types of task processing
requests. Each task that arrives at the cloud data center contains information, such as
the task type, deadline, task size, etc. Due to the complexity and diversity of the cloud
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environment, there may be different types of user task requests, such as video tasks, voice
tasks, text data analysis tasks, etc. How to allocate different task requests to suitable servers
for processing is an important optimization problem in cloud computing.

As shown in Figure 1, in the first stage of QMTSF, tasks are classified and assigned
initial values based on the actual situation of the cloud environment. Then, based on
the specific information of each server in the cloud data center, such as CPU, memory,
bandwidth, processing speed, network location, etc., the processing priority of each server
for its task category is set. Finally, an update interface is provided in the system to update
the task category processing priority of servers at any time when a new task type arrives.
Task classification in the cloud environment is dynamically generated and updated. When
a cloud data center receives a new task, it first looks up the Task_Type_Prio table to check
whether the task type already exists. If it does, the task is allocated based on the algorithm
described in Section 4. If the task type does not exist, the processing time for the task is
calculated based on the task size and the processing speed of each server. Subsequently,
priority values for this task type on different servers are generated, a new record is added
to the Task_Type_Prio table for each server, and the value is updated for the entire table.

For example, in a cloud environment with L task categories, we set the task categories
as follows: VIDEO_TASK = 0, VOICE_TASK = 1, . . . , TEXT_TASK = L. The task category
priority of any server in the cloud data center is an L-dimensional tuple Task_Type_Prio,
indicating which type of task the server is suitable for processing. In actual task allocation,
the task category priority of each server is searched to find the most suitable server for
processing the task and allocate the task to it. If all suitable servers are already allocated or
if no suitable server is found, the task is allocated to the server with the next lower priority
task category, and so on. Assuming that the priority tuple of a server i is Task_Type_Prioi =
< L, 1, . . . , 0 >, this means that server i is most suitable for processing text data analysis
tasks, followed by voice tasks, and least suitable for processing video tasks. Because the task
classification of servers in the cloud environment is closely related to the actual situation of
the cloud environment, in this article we focus on using reinforcement learning to schedule
tasks when tasks are allocated from servers to VMs. Therefore, the actual situation of task
classification is not described in detail in this article. However, we provide a priority update
interface for the dynamic expansion of task categories in the later stage of implementation.
A detailed description of the algorithm is provided in Section 4.

3.2. Stage 2: Task Scheduling

In the second stage of task scheduling, the tasks in the server cache queue are first
dynamically sorted, and then the UQRL algorithm is used for task scheduling from the
server to the VMs. The structure is shown in Figure 2.

Each server has m number of VMs, represented as VM1, VM2, . . . , VMj, . . . , VMm,
where 1 ≤ j ≤ m. Each VM has a task queue, called the virtual machine queue (VMQ),
represented as VMQ1, VMQ2, . . . , VMQj, . . . , VMQm, where 1 ≤ j ≤ m. When tasks
arrive at the server, they are first cached in the SQ. We have defined a time window to
execute the UQRL task scheduling algorithm once it is within a certain time period.

In existing Q-learning-based cloud task scheduling methods, user requests are usually
processed using a first-come-first-served (FCFS) approach. However, actual submitted user
tasks may have various requirements for task deadlines (completion times). Intuitively,
all other conditions being equal, tasks with shorter deadlines should be scheduled first.
Therefore, in this study, tasks in the SQ are dynamically sorted based on their deadline,
making it easier to prioritize urgent tasks and improve the system’s QoS. Then, the UQRL
algorithm is used to schedule tasks and send them to the VMQs of the different VMs, where
they wait to be executed. The VMs accept tasks one-by-one from their respective VMQs for
execution. A detailed description of the algorithm is provided in Section 4.
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Figure 2. QMTSF stage two: task scheduling.

The time a task takes from entering the cloud center to completion can be divided
into several parts: waiting time (the time spent in queue), transmission time (the time for a
task to be transmitted over the link), and execution time (the time required for the VM to
process the task). This article mainly discusses RL scheduling algorithms. To focus on the
research problem, the transmission time is temporarily ignored, and only waiting time and
execution time are considered. In the first stage of task allocation, when a user task arrives
in the GQ it is immediately assigned to the SQ. When the number of servers is sufficient
and the SQ capacity is large enough, the waiting time of tasks in the GQ can be ignored.
Therefore, we only consider the waiting time of tasks in the SQ and VMQ.

For user tasks, we make the following assumptions:

(1) When user tasks arrive at the cloud server, they are independent.
(2) Each task is complete and cannot be further divided into smaller tasks.
(3) There are no dependencies between tasks.
(4) A VM can only execute one task at a time.

4. QMTSF Algorithm
4.1. Priority-Based Task Allocation Algorithm

Each server in the cloud computing environment maintains a server task queue (SQ),
represented as SQ1, SQ2, . . . , SQi, . . . , SQn, which receives tasks assigned from the cloud
data center. Each server has a status table Status, which includes information such as the
task type priority tuple, the number of tasks waiting to be assigned in the server, the total
number of tasks assigned to VMs but not yet executed, and the average processing time of
tasks in the server. The cloud task scheduler assigns tasks to the appropriate SQ based on
the task status in the GQ and the status table information Status of all servers, which then
wait in the SQ for further task scheduling. For any server i, we use Waiting_Di = |SQi|
to indicate the number of tasks waiting in the queue and Waiting_Pi to indicate the total
number of tasks assigned to VMs but not yet executed; Task_Type_Prioi is a task type
priority tuple, and Ave_Timei is the average processing time of completed tasks (including
waiting time and processing time). Whenever a task is completed in server i, Ave_Timei is
dynamically updated. The workflow for task allocation to hosts in the cloud data center
follows Algorithm 1:
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Algorithm 1: Priority-based task allocation

1 Initialize: server number n, task number |GQ|, ServerList = φ
2 While |GQ| != 0 do
3 get first task j and get attribute Task_Typej

4 for i = 1, 2, . . . , n
5 if (Task_Type_Prioi[0] == Task_Typej)
6 if SQi is full
7 // can’t allocate task to this server
8 continue;
9 Computing estimated completion time Time_Ei

j

10 ServerList.add < i, Time_Ei
j >;

11 continue;
12 if ServerList != φ

13 find the minimum Time_Ei
j;

14 Assign Task j to Si;
15 remove Task j from GQ;

In line 9 of the above algorithm, the expected completion time of each task j assigned
to server i needs to be calculated; the formula for calculating this time is as follows:

Time_Ei
j = (Waiting_Pi + Waiting_Di + 1) ∗ Ave_Timei

The estimated completion time for a task is related to the number of tasks waiting in
the SQ and the number of tasks assigned but not yet processed. Here, Ave_Timei is the
average processing time of tasks completed on server i, including the waiting time and
processing time. This time is updated automatically whenever a task is completed on the
VM of server i. This design avoids the need to calculate the tasks in each VMQ, saving
processing time on task assignment.

In line 12 of the algorithm, if ServerList is empty the system considers assigning the
task to a suboptimal server, that is, Task_Type_Prioi[1] == Task_Typej. In this case, lines 4
to 15 are executed again; if no suboptimal host is found, the task assignment fails and no
lower priority server is considered. The task is reinserted at the end of the GQ and waits for
the next assignment. Although task assignment failures do occasionally occur in practice,
the probability is very low. The optimal and suboptimal cases can already cope with most
environments; therefore, based on the actual situation and from the perspective of time
saving, we do not consider assigning servers below the suboptimal level.

4.2. UQRL Algorithm

Reinforcement learning is an experiential machine learning technique where the agent
acquires experience through a trial-and-error process to improve future choices. In this
case, the problem to be solved is represented as a discrete-time stochastic control process
known as a Markov Decision Process (MDP). Typically, a finite MDP is defined by a tuple
(S, A, p, r), where S is the finite state space, A is the finite action space for each state
a ∈ A, p is the state transition probability from state s to state s

′ ∈ S when taking action
a ∈ A, and r ∈ R represents the immediate reward obtained after performing action
a. The main objective of the agent is to interact with its environment at each time step
t = 0, 1, 2, . . . to find the optimal policy π∗ that achieves the goal while maximizing the
long-term cumulative reward. The policy π is a function that represents the strategy used
by the RL agent. It takes a state s as input and returns the action a to be executed. The
policy can be stochastic as well, in which case it returns a probability distribution over all
possible actions instead of a single action a. A Q-Value table is constructed in the server
to store the accumulated rewards obtained, and is iteratively updated using the Bellman
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equation, allowing the decision-maker to always choose the best action at each decision
time, as shown in the following formula:

Q(s,a) ← Q(s,a) + α

[
R + γ max

a′∈A(s′)
Q(s′ ,a′) −Q(s,a)

]
where α is the learning rate and γ ∈ [0, 1) the discount factor, which controls the importance
of future rewards relative to the current reward. A larger γ places more emphasis on
expected future returns. If γ = 0, the agent is “short-sighted” and only concerned with
maximizing immediate rewards.

4.2.1. State Space

The state space S of the server is a finite set of possible states in which the VMs may
exist. We take the number of waiting tasks in the current queue of all VMs on the server
as the state. The state at time t is represented by st = < ∆1, ∆2, . . . , ∆k, . . . , ∆m >, where
1 ≤ k ≤ m. ∆k = |VMQk| is the number of tasks waiting to be executed in the buffer queue
VMQk of VM VMk at time t. For example, a state < 5, 3, . . . , 2 > indicates that there are
five tasks waiting to be executed in the buffer of VMQ1, three tasks waiting to be executed
in the buffer of VMQ2, and two tasks waiting to be executed in the buffer of VMQm.

4.2.2. Action Space

The action space A is a set of executable actions. Selecting an action assigns a task to a
VM. Because there are m VMs in a server, we use the VM number k to represent the action
(1 ≤ k ≤ m). Therefore, the action space A = 1, 2, 3, . . . , m. For example, selecting action
at = 2 at time t means that the current task is assigned to the second VM.

4.2.3. Reward

In Q-learning, after taking an action the agent immediately becomes aware of the
new state and can receive or observe signals from the environment. These signals, either
reward or punishment values, can help the scheduler to learn the optimal policy over time,
gradually improving its performance in future task scheduling. Next, we present the design
of the reward function used for the proposed scheduling program.

The total time that a task exists in the system includes its queue waiting time and the
task processing time on VMk

Time_T j
VMk

= w1 ∗ Time_W j
VMk

+ w2 ∗ Time_Ej
VMk

where Time_W j
VMk

= ek + ∑
l∈VMQk

lenl/Pk is the waiting time of task j in VMk, ek is the

remaining processing time of the task currently being executed in VMk, lenl is the data
length of the task in VMQk, and Pk is the processing speed of VMk.

Moreover, Time_Ej
VMk

is the time required to execute a task after it is assigned to VMk,
while w1 and w2 are the weights of two different times.

We define the reward value r as follows:

r =


1 (Time_T j

VMk
≤ Time_Dj

VMk
) & (Time_T j

VMk
= min

l∈VMQk
(Time_T j

VMk
))

0 (Time_T j
VMk
≤ Time_Dj

VMk
)

−1 (Time_T j
VMk

> Time_Dj
VMk

)

When taking an action a to assign task j to VMx, if VMx can meet the deadline of task
j and the sum of the waiting time and execution time of task j on VMx is the lowest among
all m VMs, then a positive reward value is given. If task j only meets the task deadline, no
reward value is given. If the task deadline cannot be met, a penalty is given. We designed a
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suitable reward function to train the scheduler with the goal of improving task processing
speed and minimizing the makespans and processing times of all tasks.

To schedule tasks reasonably in the server, we propose a task scheduling algorithm
called UQRL. We built an RL model based on UCB Q-Learning [42], with the workflow
presented below in Algorithm 2.

Algorithm 2: UQRL Task scheduling algorithm

1 Initialize Parameters: ε, δ, γ

2 Q(s,a), Q̂(s,a) ← 0, N(s,a) ← 0, ∀s ∈ S, a ∈ A

3 ε1 ← ε
24RMln 1

1−γ

, H ← ln1/((1−γ)ε1)
ln1/γ

4 ι(k) = ln(SA(k + 1)(k + 2))/δ, ak =
H+1
H+k

5 for t = 0, 1, 2, ... do
6 Given the current state st

7 Take action at ← arg max
a′

Q̂(st ,a′)

8 Receive reward rt and transit to st+1
9 N(st ,at) ← N(st ,at) + 1

10 k← N(st ,at), bk ← c
1−γ

√
Hι(k)

k

11 V̂(st+1)← max
a∈A

Q̂(st+1,a)

12 Q(st ,at) ← (1− αk)Q(st ,at) + αk[r(st ,at
) + bk + γV̂(st+1)

]

13 Q̂(st ,at) ← min(Q̂(st ,at), Q(st ,at))

In the algorithm, ε is a relaxation factor that allows the algorithm to deviate from the
local optimal solution to an extent in order to obtain a better global solution, δ represents
the magnitude of change or updating of the value function during each iteration, γ is the
discount factor for rewards, and H is the number of steps per episode.

The goals of the UQRL algorithm are to select an action that has achieved higher
rewards than other actions in past explorations and to select an action that has been
explored less than other actions. In line 7 of the algorithm, the action with the maximum
reward is selected and Q̂(s,a) is the historical minimum value of the Q function. In line 12
of the algorithm, the bk term affects the Q value based on the number of times the action
has been executed.

For each task in the SQ, the UQRL algorithm is executed to assign it to a VM until all
tasks in the SQ are assigned. Considering the current state st, the action with the maximum
reward is selected and then the state is changed to st+1. There are m VMs in the server,
and the current state is represented as st = (|VMQ1|, |VMQ2|, . . . , |VMQk|, . . . , |VMQm|).
Assuming that the selected action is at = k, according to step 8 of the algorithm, the next
state is st+1 = (|VMQ1|, |VMQ2|, . . . , |VMQk|+ 1, . . . , |VMQm|).

Each VMQ has a queue capacity c, indicating that a maximum of tasks c can be
assigned to the VM. The value can be set based on the actual state of the cloud environment
and the total number of tasks. The size of the c value affects the dimension of the state
space. Different queue capacities can be set for each VM, or they can be set to the same
capacity. Before executing each action, it is first necessary to check whether the current
queue capacity c of the VM is full. If it is full, the task is assigned to other VMs. If all VMQs
in the server are full, the scheduler waits until there is a VMQ with available capacity before
performing task assignment.

Here, the number of states in Q-Learning is denoted as S and the number of available
actions in each state is denoted as a. The time complexity of the Q-Learning algorithm is
O(S*a*N), where N represents the number of iterations required for convergence. When
comparing the UCB strategy with the greedy strategy, the UCB strategy requires fewer
iterations to converge, resulting in a lower time complexity. The space complexity of
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the Q-Learning algorithm is O(S*a), primarily due to the memory space occupied by the
Q-table. Neither the Q-Learning algorithms using the UCB strategy nor the greedy strategy
alters the size of the Q-table; therefore, they have the same space complexity.

5. Experimental Results

To verify the performance of the proposed QMTSF, we simulated task scheduling in
cloud computing on the CloudSim simulation platform. In the simulation experiment, we
validated scenarios with 100, 300, 500, 800, and 1000 tasks and with randomly generated task
lengths between 500 and 3000. There were four servers (i.e., task categories) in the cloud
environment, and each server had five VMs with processing speeds randomly generated
between 500 and 1000. To ensure the accuracy of the experiment, we took the average
of multiple experimental results as the final experimental result. The average number of
experiments conducted in this paper was ten times. We found that when the number of
experiments exceeds ten, increasing the number of experiments further had a minimal
impact on the average results.

Our experimental process consisted of two scenarios. In the first scenario, we used
QMTSF priority task scheduling and compared it with RR and random task scheduling
in the first stage of task allocation. In the second stage, we used the UQRL algorithm for
scheduling to verify the effectiveness of QMTSF priority task scheduling. In the second
scenario, we used QMTSF task scheduling in the first stage and compared the UQRL algo-
rithm with the PSO heuristic algorithm and ε-Greedy Q-Learning algorithm in the second
stage to verify the advantages of UQRL algorithm compared with other task scheduling al-
gorithms. Our simulation results showed that the UQRL algorithm can significantly reduce
the makespan and average processing time. Finally, we compared the energy consumption
of scheduling methods such as QMTSF, Q-Learning, PSO, RR, and random. Our simulation
results demonstrate that QMTSF achieves the highest energy efficiency.

5.1. QMTSF Comparison with RR and RANDOM

RR scheduling is a fair scheduling method that assigns tasks in GQ to each server in
order. Random assignment, on the other hand, randomly assigns tasks to each server. A
performance comparison of these two methods is shown in the figures below.

From Figure 3, it can be observed that when the task number is small, QMTSF has a
slightly better makespan compared to RR and Random, though the advantage is not very
significant. However, as the number of tasks increases, the makespan of QMTSF increases
only slowly, while RR and random experience a noticeable increase in time. Random
assignment performs the worst, resulting in a large number of tasks failing to meet their
deadlines. From Figure 4, it can be seen that QMTSF maintains a consistently uniform
average task processing time as the number of tasks increases, indicating that the task
processing time in QMTSF is only dependent on the VM processing speed and task data
length, with minimal impact from the task number. While the average task processing
time for RR increases with the number of tasks, this increase is within a reasonable range,
while random assignment exhibits a significantly higher increase in the average task
processing time.

This is mainly because the objective of the RR policy is to balance the load of all VMs.
As the number of tasks increases, achieving a balanced task allocation becomes increasingly
difficult. On the other hand, the Random policy schedules tasks to servers randomly
without considering the current workload of the servers, which can lead to some servers
being idle while others are congested with excessive queued tasks. In contrast, QMTSF
takes into account both the characteristics of tasks and the performance of servers when
allocating tasks. Additionally, it considers task deadlines, which further influences the
acquisition of reward values in the UQRL algorithm. RR and random assignment do not
consider this aspect, which prevents them from obtaining more optimized Q-values when
constructing the Q-table in the second stage.
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Figure 3. Makespan comparison: different task allocation policies employed in Stage I.

Figure 4. Average processing time comparison: different task allocation policies employed in Stage I.

5.2. UQRL Comparison with Q-Learning and PSO

PSO is a typical heuristic algorithm that is widely applied in various domains, includ-
ing task scheduling scenarios. In the first stage, we utilized the task allocation method
from QMTSF; in the second stage, described here, we employed both UQRL algorithm,
Q-Learning algorithm, and PSO algorithm for scheduling to compare their performance.

From Figure 5, it can be observed that when the number of tasks is small, the makespan
of PSO is slightly better than UQRL and Q-Learning, with a negligible difference. How-
ever, the makespan of UQRL and Q-Learning becomes significantly lower than PSO as
the number of tasks increases. The makespan achieved with UQRL is about 20% lower
than with PSO. This is because PSO requires multiple iterations to converge during each
scheduling process, which incurs additional iteration time. On the other hand, UQRL and
Q-Learning can quickly make scheduling decisions after Q-table training is completed.
Another approach is to train the algorithms offline and perform task scheduling online,
which improves the initial execution efficiency of the algorithms. Compared to Q-Learning,
UQRL can realize time savings of approximately 7% thanks to the faster convergence of its
UCB algorithm in finding the optimal solution as compared to the greedy algorithm. In
this case, PSO, UQRL, and Q-Learning all show a gradual increase in makespan without
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the significant degradation in performance observed in Figure 3 with random scheduling.
This is because dynamic task allocation of QMTSF was already employed in the first stage
to achieve optimal matching of tasks to servers. Thus, the performance comparison in this
stage focuses on the scheduling of tasks to VMs within the servers.

Figure 5. Makespan comparison: different task scheduling policies employed in Stage II.

From Figure 6, it can be observed that UQRL, Q-Learning, and PSO all show relatively
stable average task processing times without significant fluctuations as the number of tasks
increases. Compared to the PSO algorithm, the UQRL algorithm can reduce the average
task processing time by around 15%. This is because as the task number increases, the
time consumed by the multiple iterations needed for convergence of the PSO algorithm
is averaged among tasks, resulting in a diminishing impact. On the other hand, after the
convergence of the Q-table the UQRL algorithm does not incur significant delays in the
process of scheduling tasks to specific VMs. The average task processing time of the UQRL
algorithm is not significantly different from the Q-Learning algorithm, as both algorithms
adopt the same scheduling selection method following convergence of the Q-table.

Figure 6. Average processing time comparison: different task scheduling policies employed in
Stage II.
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5.3. Comparison of CPU Utilization between QMTSF, Q-Learning, PSO, RR, and Random

After validating the performance advantages of QMTSF in terms of the makespan and
average task processing time, we further compared the CPU utilization for the different
scheduling methods.

From Figure 7, it can be observed that as the task number increases, the CPU utilization
of the various scheduling algorithms increases as well. QMTSF exhibits the highest CPU
utilization, which, combined with its excellent performance in task execution time, indicates
that this scheduling method can quickly complete tasks within a short time and occupy the
CPU for a relatively shorter duration. This approach can simultaneously reduce the overall
runtime of the entire cloud data center, allowing for more idle time compared to the other
scheduling algorithms. Because the power consumption during CPU operation is much
higher than during idle time, this can help to achieve the goal of reducing the overall power
consumption of the cloud data center. The CPU utilization of the Q-Learning algorithm is
second only to QMTSF. Additionally, the figure shows that the PSO scheduling algorithm
outperforms RR scheduling, while random scheduling performs the worst. This indirectly
confirms the results obtained in the previous experiments regarding task execution time.

Figure 7. CPU utilization: comparison of different scheduling methods.

Based on the above experimental results, it can be observed that when compared to
RR, Random, PSO, and Q-Learning, the QMTSF framework has significant advantages
in terms of both makespan and average task processing time. Furthermore, it leads to an
improvement in CPU utilization and a reduction in the overall energy consumption of
the cloud data center. In particularly, as the number of tasks increases, the performance
improvements realized by QMTSF compared to traditional scheduling algorithms such as
RR and random assignment become very evident.

6. Conclusions

In this paper, we propose a reinforcement learning task scheduling framework called
QMTSF based on the UCB strategy for the task scheduling problem in cloud computing.
When tasks are allocated in the cloud data center, they are first assigned to servers that
are more proficient in handling certain types of task based on the task type. In task
scheduling on servers, the tasks in the queue are sorted by their respective deadlines, then
the UQRL algorithm is used to schedule each task in the queue and allocate it to a VM.
Using the UQRL algorithm minimizes the makespan while ensuring that task deadlines are
reached, reducing the average task processing time, and improving CPU utilization, thereby
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lowering the overall energy consumption of the cloud data center. Our experimental results
demonstrate that the QMTSF method performs better than other task scheduling strategies.

In the future, we plan to apply this framework to task scheduling scenarios involving
unmanned aerial vehicles (UAVs). For this, it will be necessary to explore ways of better
classifying and mapping tasks while considering their varying resource requirements,
duration, and service quality in order to validate the effectiveness of this framework in
real-world environments. Additionally, it will be necessary to address the implementation
challenges of cloud clusters in scenarios with larger-scale servers within the cloud environ-
ment. In addition, we intend to further explore the application of reinforcement learning in
multi-objective task scheduling problems.
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